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PROBABILISTIC INTERPRETATION OF LINEAR SOLVERS∗

PHILIPP HENNIG†

Abstract. This paper proposes a probabilistic framework for algorithms that iteratively solve
unconstrained linear problems Bx = b with positive definite B for x. The goal is to replace the
point estimates returned by existing methods with a Gaussian posterior belief over the elements
of the inverse of B, which can be used to estimate errors. Recent probabilistic interpretations of
the secant family of quasi-Newton optimization algorithms are extended. Combined with properties
of the conjugate gradient algorithm, this leads to uncertainty-calibrated methods with very limited
cost overhead over conjugate gradients, a self-contained novel interpretation of the quasi-Newton and
conjugate gradient algorithms, and a foundation for new nonlinear optimization methods.
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1. Introduction.

1.1. Motivation. Solving the unconstrained linear problem of finding x in

(1.1) Bx = b with symmetric, positive definite B ∈ R
N×N and b ∈ R

N

is a basic task for computational linear algebra. It is equivalent to minimizing the
quadratic f(x) = 1/2xᵀBx−xᵀb, with gradient F (x) = ∇xf(x) = Bx−b and constant
Hessian B. If N is too large for exact solution, iterative solvers such as the method of
conjugate gradients [27] (CG) are widely applied. These methods produce a sequence
of estimates {xi}i=0,...,M , updated by evaluating F (xi). The question addressed here
is: Assume we run an iterative solver for M < N steps. How much information does
doing so provide about B and its (pseudo-)inverse H? If we had to give estimates for
B, H , and for the solution to related problems Bx̃ = b̃, what should they be, and how
big of an “error bar” (a joint posterior distribution) should we put on these estimates?
The gradient F (xi) provides an error residual on xi, but not on B,H, and x̃.

It will turn out that a family of quasi-Newton methods (section 1.2), more widely
used to solve nonlinear optimization problems, can help answer this question, be-
cause classic derivations of these methods can be reformulated and extended into a
probabilistic interpretation of these methods as maxima of Gaussian posterior proba-
bility distributions (section 2). The covariance of these Gaussians offers a new object
of interest and provides error estimates (section 3). Because there are entire linear
spaces of Gaussian distributions with the same posterior mean but differing posterior
error estimates, selecting one error measure consistent with the algorithm is a new
statistical estimation task (section 4).

1.2. The Dennis family of secant methods. The family of secant update
rules for an approximation to the Newton–Raphson search direction is among the most
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popular building blocks for continuous nonlinear programming. Their evolution chiefly
occurred from the late 1950s [8] to the 1970s, and is widely understood to be crowned
by the development of the BFGS rule due to Broyden [5], Fletcher [18], Goldfarb [22],
and Shanno [39], which now forms a core part of many contemporary optimization
methods. But the family also includes the earlier and somewhat less popular DFP
rule of Davidon [8] and Fletcher and Powell [19], the Greenstadt [23] rule, and the
so-called symmetric rank-1 method [8, 4]. Several authors have proposed grouping
these methods into broader classes, among them Broyden in 1967 [4] (subsequently
refined by Fletcher [18]) and Davidon in 1975 [9]. Of particular interest here will be a
class of updates formulated in 1971 by Dennis [10], which includes all of the specific
rules cited above. It is the class of update rules mapping a current estimate B0 for
the Hessian, a vector-valued pair of observations yi = F (xi) − F (xi−1) ∈ R

N and
si = xi − xi−1 with yi = Bsi, into a new estimate Bi of the form
(1.2)

Bi+1 = Bi+
(yi −Bisi)c

ᵀ
i + ci(yi −Bisi)

ᵀ

cᵀi si
− cis

ᵀ
i (yi −Bisi)c

ᵀ
i

(cᵀi si)2
for some ci ∈ R

N .

This ensures the secant relation yi = Bi+1si, sometimes called “the quasi-Newton
equation” [13]. Convergence of the sequence of iterates xi for various members of
this class (and the classes of Broyden and Davidon) are well-understood [21, 12]. The
rules named above can be found in the Dennis class as [30]

symmetric rank-1 (SR1) c = y −B0s,(1.3)

Powell symmetric Broyden [37] c = s,(1.4)

Greenstadt [23] c = B0s,(1.5)

Davidon Fletcher Powell (DFP) c = y,(1.6)

Broyden Fletcher Goldfarb Shanno (BFGS) c = y +

√
yᵀs

sᵀB0s
B0s.(1.7)

Inverse updates. Because the update of (1.2) is of rank 2, the corresponding
estimate for the inverse H = B−1 (assuming it exists) can be constructed using the
matrix inversion lemma. Alternatively, all Dennis rules can also be used as inverse
updates [13], i.e., estimates for H itself, by exchanging s� y and B �H , B0 �H0

above (corresponding to the secant relation s = Hy). Interestingly, the DFP and
BFGS updates are duals of each other under this exchange [13]: The inverse of B1

as constructed by the DFP rule (1.6) equals the H1 arising from the inverse BFGS
rule (1.7). This does not mean BFGS and DFP are the same, but only that they fill
opposing roles in the inverse and direct formulation. To avoid confusion, in this text
the DFP rule will always be used in the sense of a direct update (estimating B, with
c = y), and the BFGS rule in the inverse sense (i.e., estimating H , with c = s). The
first parts of this text will focus on direct updates and thus mostly talk about the
DFP method instead of the BFGS rule. All results extend to the inverse models (and
thus BFGS) under the exchange of variables mentioned above. Sections 3.2 and 4 will
make some specific choices geared to inverse updates. They will then talk explicitly
about BFGS, always in the sense of an inverse update.

Towards probabilistic quasi-Newton methods. This text gives a probabilistic inter-
pretation of the Dennis family for the linear problems of (1.1). We will interpret the
secant methods as estimators of (inverse) Hessians of an objective function, and ask
what kind of prior assumptions would give rise to these specific estimators. This re-



236 PHILIPP HENNIG

sults in a self-contained derivation of inference rules for symmetric matrices. Some of
the rules quoted above can be motivated as “natural” from the inference perspective.

Another major strand of nonlinear optimization methods extends from the con-
jugate gradient algorithm of Hestenes and Stiefel [27] for linear problems, nonlinearly
extended by Fletcher and Reeves [20] and others. On linear problems, the CG and
quasi-Newton ideas are closely linked: Nazareth [33] showed that CG is equivalent to
BFGS for linear problems (with exact line searches, when the initial estimate B0 = I).
More generally, Dixon [16, 17] showed for quasi-Newton methods in the Broyden class
(which also contains the methods listed above) that, under exact line searches and
the same starting point, all methods in Broyden’s class generate a sequence of points
identical to CG, if the starting matrix B0 is taken as a preconditioner of CG. In this
sense, this text also provides a novel derivation for conjugate gradients, and will use
several well-known properties of that method. Implications of the results presented
herein to nonlinear variants of conjugate gradients will be left for future work.

1.3. Numerical methods perform inference—the value of a statistical
interpretation. The defining aspect of quasi-Newton methods is that they approxi-
mate—estimate—the Hessian matrix of the objective function, or its inverse, based
on evaluations—observations—of the objective’s gradient and certain prior structural
restrictions on the estimate. They can therefore be interpreted as inferring the latent
quantity B or H from the observed quantities s, y. This creates a connection to
statistics and probability theory, in particular the probabilistic framework of encoding
prior assumptions in a probability measure over a hypothesis space, and describing
observations using a likelihood function, which combines with the prior according to
Bayes’ theorem into a posterior measure over the hypothesis space (section 2).

On the one hand, this elucidates prior assumptions of quasi-Newton methods
(section 3). On the other hand, it suggests new functionality for the existing methods,
in particular error estimates on B and H (section 4). In future work, it may also allow
for algorithms robust to “noisy” linear maps, such as they arise in physical inverse
problems.

The interpretation of numerical problems as estimation was pointed out by statis-
ticians like Diaconis in 1988 [14] and O’Hagan in 1992 [36], well after the introduction
of quasi-Newton methods. To the best of the author’s knowledge, the idea has rarely
attracted interest in numerical mathematics, and has not been studied in the context
of quasi-Newton methods before the recent work by Hennig and Kiefel [25, 26]. An
argument sometimes raised against analyzing numerical methods probabilistically is
that numerical problems do not generally feature an aspect of randomness. But proba-
bility theory makes no formal distinction between epistemic uncertainty, arising from
lack of knowledge, and aleatoric uncertainty, arising from “randomness,” whatever
the latter may be taken to mean precisely. Randomness is not a prerequisite for the
use of probabilities. Those who do feel uneasy about applying probability theory to
unknown deterministic quantities, however, may prefer another, perhaps more sub-
jective argument: From the point of view of a numerical algorithm’s designer, the
“population” of problems that practitioners will apply the algorithm to does, in fact,
form a probability distribution from which tasks are “sampled.”

Numerical algorithms running on a finite computational budget make numerical
errors. A notion of the imprecision of these answers is helpful, in particular when the
method is used within a larger computational framework. Explicit error estimates
can be propagated through the computational pipeline, helping identify points of
instability, and to distribute or save computational resources. Needless to say, it
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makes no sense to ask for the exact error (if the exact difference between the true
and estimated answer were known, the exact answer would be known, too). But
it is meaningful to ask for the remaining volume of hypotheses consistent with the
computations so far. This paper attempts to construct such an answer for linear
problems.

1.4. Overview of main results. As pointed out above, although quasi-Newton
methods are most popular for nonlinear optimization, here the focus will be on linear
problems. Extending the probabilistic interpretation constructed here to the nonlinear
setting of inferring the (inverse) Hessian of a function f will be left for future work
(see [26] for pointers). The present aim is an iterative linear solver iterating through
posterior beliefs {pt(x,H)}t=1,...,M for H = B−1 and the solution x = Hb of the linear
problem. These beliefs will be constructed as Gaussian densities pt(H) = N (H ;Ht, Vt)
over the elements1 of H , with mean Ht and covariance matrix Vt.

The results in this paper significantly clarify and extend previous results by Hen-
nig and Kiefel [26] and Hennig [24]. Here is a brief look at the main results.

Dennis family derived in a symmetric hypothesis class (section 2). As a prob-
abilistic interpretation of results by Dennis and Moré [13] and Dennis and
Schnabel [11], Hennig [24] provided a derivation of rank-2 secant methods in
terms of two independent observations of two separate parts of the Hessian.
This viewpoint affords a nonparametric extension to nonlinear optimization,
but is not particularly elegant. This paper provides a cleaner derivation:
the Dennis family can, in fact, be derived naturally from a prior over only
symmetric matrices. This extends the results of Dennis and Schnabel [11],
from statements about the maximum of a Frobenius norm in the space of
symmetric matrices to the entire structure of that norm in that space.

Interpretation of SR1, Greenstadt, DFP, and BFGS (section 3). The choice
of prior parameters distinguishes between the members of the Dennis family.
An analysis shows that DFP and BFGS are “more correct” than other mem-
bers of the family in the sense that they are consistent with exact probabilis-
tic inference for the entire run of the algorithm, while general Dennis rules
are only consistent after the first step (Lemmas 3.2 and 3.3). Further, SR1,
Greenstadt, DFP, and BFGS all use different prior measures that, although
all “scale-free,” give imperfect notions of calibration for the prior measure.
Finally, because BFGS is equivalent to CG (see [33] and Corollary 3.4 below),
its set of evaluated gradients is orthogonal. This allows a computationally con-
venient parameterization of posterior uncertainty. Overall, the picture arising
is that, from the probabilistic perspective, the DFP and particularly BFGS
methods have convenient numerical properties, but their posterior measure
can be calibrated better.

Posterior uncertainty by parameter estimation (section 4). It will transpire
that the decision for a specific member of the Dennis family still leaves a
space of possible choices of prior covariances consistent with this update rule.
Constructing a meaningful posterior uncertainty estimate (covariance) on H
after finitely many steps requires a choice in this unidentified space, which,
as in other estimation problems, needs to be motivated based on some notion
of regularity in H . Several possible choices are discussed in section 3, all of

1For notational convenience, the elements of H will be treated as the elements of a vector of
length N2; see the beginning of section 2.2.
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which add very low overhead to the standard conjugate gradient algorithm.

2. Gaussian inference from matrix-vector multiplications.

2.1. Introduction to Gaussian inference. Gaussian inference—probabilistic
inference using both a Gaussian prior and a Gaussian likelihood—is one of the best-
studied areas of probabilistic inference. The following is a very brief introduction;
more can be found in introductory texts [38, 29]. Consider a hypothesis class consist-
ing of elements of the D-dimensional real vector space, v ∈ R

D, and assign a Gaussian
prior probability density over this space:

(2.1) p(v) = N (v;μ,Σ) :=
1

(2π)D/2|Σ|1/2 exp

(
−1

2
(v − μ)ᵀΣ−1(v − μ)

)
,

parametrized by mean vector μ ∈ R
D and positive definite covariance matrix Σ ∈

R
D×D. If we now observe a linear mapping Aᵀv + a = y ∈ R

M of v, up to Gaussian
uncertainty of covariance Λ ∈ R

M×M , i.e., according to the likelihood function

(2.2) p(y |A, a, v) = N (y;Aᵀv + a,Λ),

then, by Bayes’ theorem and a simple linear computation (see, e.g., [38, section 2.1.2]),
the posterior, the unique distribution over v consistent with both prior and likelihood,
is
(2.3)
p(v | y,A, a) = N [v;μ+ΣA(AᵀΣA+Λ)−1(y−Aᵀμ− a),Σ−ΣA(AᵀΣA+Λ)−1AᵀΣ].

This derivation also works in the limit of perfect information, i.e., for a well-defined
limit of Λ� 0, in which case2 the likelihood converges to the Dirac distribution
p(y |A, a, v)� δ(y − Aᵀv − a). The crucial point is that constructing the posterior
after linear observations involves only linear algebraic operations, with the posterior
covariance (the “error bar”) using many of the computations also required to compute
the mean (the “best guess”).

Gaussian inference is closely linked to least-squares estimation: Because the loga-
rithm is concave, the maximum of the posterior (2.3) (which equals the mean) is also
the minimizer of the quadratic norm (using ‖x‖2K := xᵀK−1x)

(2.4) −2 log p(v | y,A, a) = ‖y −Aᵀv − a‖2Λ + ‖v − μ‖2Σ + const .

The added value of the probabilistic interpretation is embodied in the posterior co-
variance, which quantifies remaining degrees of freedom of the estimator and can thus
also be interpreted as a measure of uncertainty, or estimated error.

2.2. Inference on asymmetric matrices from matrix vector multiplica-
tions. We now consider Gaussian inference in the specific context of iterative solvers
for linear problems as defined in (1.1). Our solver shall maintain a current probability
density estimate, either pi(B) or pi(H), i = 0, . . . ,M . The solver does not have direct
access to B itself, but only to a function mapping s�Bs, for arbitrary s ∈ R

N .
It is possible to use the Gaussian inference framework in the context of secant

methods [26] through the use of Kronecker algebra: We write the elements of B as

2If A is not of maximal rank, a precise formulation requires a projection of y into the preimage
of A. This is merely a technical complication. It is circumvented here by assuming, later on, that
line-search directions are linearly independent. This amounts to a maximal-rank A.
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a vector
−→
B ∈ R

N2

, indexed as
−→
B ij by the matrix’ index set3 (i, j) ∈ R × R. The

Kronecker product provides the link between such “vectorized matrices” and linear
operations (e.g., [40]). The Kronecker product A ⊗ C of two matrices A ∈ R

Ma×N

and C ∈ R
Mc×N is the MaMc × N2 matrix with elements (A ⊗ C)(ij)(k�) = AikCj�.

It has the property (A ⊗ C)
−→
B =

−−−−→
ABCᵀ. Thus,

−→
BS can be written as (I ⊗ S)

−→
B ,

which allows incorporating the kind of observations made by an iterative solver in a
Gaussian inference framework, according to the following lemma.

Lemma 2.1 (proof in Hennig and Kiefel, 2013 [26]). Given a Gaussian prior

over a general quadratic matrix
−→
B , with prior mean

−→
B 0 and a prior covariance with

Kronecker structure, p(B) = N (
−→
B ;

−→
B 0,W ⊗W ), the posterior mean after observing

BS = Y ∈ R
N×M (i.e., M projections along the line-search directions S ∈ R

N×M ) is

(2.5) BM = B0 + (Y −B0S)(S
ᵀWS)−1WSᵀ

and the posterior covariance is

(2.6) VM = W ⊗ [W −WS(SᵀWS)−1WSᵀ] .
This implies, for example, that Broyden’s rank-1 method [3] is equal to the poste-

rior mean update after a single line search for the parameter choice W = I. This is a
probabilistic rephrasing of the much older observation, most likely by Dennis and Moré
[13], that Broyden’s method minimizes a change in the Frobenius norm ‖Bi−Bi−1‖F,I

such that Bisi = yi. The weighted Frobenius norm ‖A‖2F,W = tr(AW−1AᵀW−1)
(with the positive definite weighting W ) is the �2 loss on vectorized matrices in the

sense that ‖A‖2F,W = ‖−→A‖2W⊗W .
An important observation is that Broyden’s method ceases to be a direct match

to this update after the first line search, because matrix SᵀWS is not a diagonal
matrix. This matrix will come to play a central role; we will call it the Gram matrix,
because it is an inner product of S weighted by the positive definite W .

2.2.1. Symmetric hypothesis classes. It is well known that, because the pos-
terior mean of (2.5) is not in general a symmetric matrix, it is a suboptimal learning
rule for the Hessian of an objective function, which is why this class was quickly aban-
doned in favor of the rank-2 updates in the Dennis family mentioned above. Dennis
and Moré [13] and Dennis and Schnabel [11] showed that the minimizer of weighted
Frobenius regularizers (the maximizer of the Gaussian posterior) within the linear
subspace of symmetric matrices is given by the Dennis class of update rules. Hen-
nig and Kiefel [26] constructed a probabilistic interpretation based on this derivation,
which involves doubling the input domain of the objective function and introducing
two separate, independent observations. This has the advantage of allowing for rel-
atively straightforward nonparametric extensions, and a broad class of noise models
for cases in which gradients cannot be evaluated without error [24]. But artificially
doubling the input dimensionality is dissatisfying.

We now introduce a cleaner derivation of the same updates by explicitly restrict-
ing the hypothesis class to symmetric matrices. This gives the covariance matrix a
more involved structure than the Kronecker product, and makes derivations more
challenging. It results in a new interpretation for the Dennis class, fully consistent

3In the notation used here, this vector is assumed to be created by stacking the elements of B
row after row into a column vector. An equivalent column-by-column formulation is also widely used.
In that formulation, some of the formulae below are permuted.
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with the probabilistic framework. Since the identity of the posterior mean was known
from [13, 11, 26], the interesting novel aspect here is the structure of the posterior co-
variance. In essence, it provides insight into the structure of the loss function around
the previously known estimates.

We begin by building a Gaussian prior over the symmetric matrices, using the
symmetrization operator Γ, the linear operator acting on vectorized matrices defined

implicitly through its effect Γ
−→
A = 1/2

−−−−−−→
(A+Aᵀ) (see the explicit definition in Appendix

A.1).
Lemma 2.2 (proof in Appendix A.1). Assuming a Gaussian prior p(B) =

N (
−→
B ;

−→
B 0,W ⊗W ) over the space of square matrices B ∈ R

N×N with Kronecker co-
variance cov(Bij , Bk�) = WikWj� (this requires W to be a symmetric positive definite

matrix), the prior over the symmetric matrix Γ
−→
B is p(B) = N (Γ

−→
B ; Γ

−→
B 0,W⊗�W ).

Here, W⊗�W = Γ(W ⊗W )Γᵀ is the symmetric Kronecker product of W with itself
(see, e.g., [40] for an earlier mention). It is the matrix containing elements

(2.7) (W⊗�W )ij,k� = 1/2(WikWj� +WjkWi�).

It can easily be seen that, when acting on a square (not necessarily symmetric) vec-

torized matrix K ∈ R
N×N , it has the effect (W⊗�W )

−→
K = 1/2(WKW ᵀ +W ᵀKᵀW ).

Unfortunately, not all of the Kronecker product’s convenient algebraic properties carry
over to the symmetric Kronecker product. For example, (W⊗�W )−1 = W−1⊗�W−1,
but (A⊗�B)−1 �= A−1⊗�B−1 in general, and inversion of this general form is straightfor-
ward only for commuting, symmetric A,B [1]. This is why the proof for the following
theorem is considerably more tedious than the one for Lemma 2.1.

Theorem 2.3 (proof in Appendix A.2). Assume a Gaussian prior of mean
B0 and covariance V = W⊗�W on the elements of a symmetric matrix B. After
M linearly independent noise-free observations of the form Y = BS, Y, S ∈ R

N×M ,
rk(S) = M , the posterior belief over B is a Gaussian with mean

BM = B0 + (Y −B0S)(S
ᵀWS)−1SᵀW +WS(SᵀWS)−1(Y −B0S)

ᵀ(2.8)

−WS(SᵀWS)−1(Sᵀ(Y −B0S))(S
ᵀWS)−1SᵀW,

and posterior covariance

(2.9) VM = (W −WS(SᵀWS)−1SᵀW )⊗�(W −WS(SᵀWS)−1SᵀW ).

This immediately leads to the following corollary.
Corollary 2.4. The Dennis family of quasi-Newton methods is the posterior

mean after one step (M = 1) of Gaussian regression on matrix elements.
Proof. Assume Y, S ∈ R

N×1, and set c = WS in (1.2).
Note that, for each member of the Dennis class, there is an entire vector space

of W consistent with c = WS. Additionally, each member of the Dennis family is
itself a scalar space of choices c, because (1.2) is unchanged under the transformation
c�αc for α ∈ R\0. Dealing with these degrees of freedom turns out to be the central
task when defining probabilistic interpretations of linear solvers.

2.2.2. Remark on the structure of the prior covariance. The fact that
symmetric Kronecker product covariance matrices give rise to some of the most popu-
lar secant methods may be reason enough to be interested in these structured Gaussian
priors. This section provides two additional arguments in their favor.
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The first argument, applicable to the entire family of Gaussian inference rules,
is that they give consistent estimates and thus convergent solvers: The priors of
Lemma 2.1 and Theorem 2.3 assign nonzero mass to all square and all symmetric
matrices, respectively. It thus follows, from standard theorems about the consistency
of parametric Bayesian priors (e.g., [6]), that linear solvers based on the mean estimate
arising from either of these two Gaussian priors, applied to linear problems of general
or symmetric structure, respectively, are guaranteed (assuming perfect arithmetic
precision) to converge to the correctB (and B−1, where it exists) afterM = N linearly
independent line searches (i.e., rk(S) = M). This is because the Schur complement
W − WS(SᵀWS)−1SᵀW is of rank N − M [41, eq. 0.9.2], so the remaining belief
after M = N is a point-mass at the unique B = Y S−1. By a generalization of
the same argument, it also follows that these linear solvers are always exact within
the vector space spanned by the line-search directions. This holds for all choices of
prior parameters B0 and W , as long as W is strictly positive definite. Of course,
good convergence rates do depend crucially on these two choices. And the aim in
this paper is to also identify choices for these parameters such that the posterior
uncertainty around the mean estimate is meaningful, too.

Since we know B to be positive definite, it would be desirable to restrict the
prior explicitly to the positive definite cone. Unfortunately, this is not straightfor-
ward within the Gaussian family, because normal distributions have full support. A
seemingly more natural prior over this cone is the Wishart distribution popular in
statistics,

(2.10) W(B;W, ν) ∝ |B|ν/2−(N−1)/2 exp
(
−ν

2
tr(W−1B)

)

(the ∝ symbol suppresses an irrelevant normalization constant). Using this prior in
conjunction with linear observations, however, causes various complications, because
the Wishart is not conjugate to one-sided linear observations of the form discussed
above. So one may be interested in finding a “linearization” (a Gaussian approxi-
mation of some form) for the Wishart, for example through moment matching. And,
indeed, the second moment (covariance) of the Wishart is ν−1(W⊗�W ) (see, e.g., [31]).

3. Choice of parameters. Having motivated the Gaussian hypothesis class,
the next step is to identify individual desirable parameter choices in this class. The
following Corollary follows directly from Theorem 2.3, by comparing (2.5) with (1.3)
to (1.7). In each of the following cases, α ∈ R\0.

Corollary 3.1.

1. The Powell symmetric Broyden update rule is the one-step posterior mean for
a Gaussian regression model with W = αI.

2. The Symmetric Rank-1 rule is the one-step posterior mean for a Gaussian
regression model with the implicit choice W = α(B−B0). (For a specific rank-
1 observation, there is a linear subspace of choices W which give WS = Y ,
but W = B is the only globally consistent such choice).

3. The Greenstadt update rule is the one-step posterior mean for a Gaussian
regression model with W = αB0.

4. The DFP update is the one-step posterior mean for the implicit choice W =
αB. (This choice is unique in a manner analogous to the above for SR1.)

5. The BFGS rule is the one-step posterior mean for the implicit choice W =

α
(
B+

√
sᵀBs
sᵀB0s

Bt

)
. (This, too, is unique in a manner analogous to the above.)
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Fig. 1. Effect of parameter choice and exact versus independent updates. Left: ten randomly
generated linear problems with N = 100 with eigenvalue scale λ = 10. Right: Analogous problems
with eigenvalue scale λ = 1000. Individual experiments as thin lines, means over all ten experiments
as thick lines. The spikes for the W = B estimate at the end of the left plot are numerical artifacts
caused by ill-conditioned random projections. They do not arise in the optimization setting.

It may seem circular for an inference algorithm trying to infer the matrix B to use
that very matrix as part of its computations (SR1, DFP, BFGS). But computation of
the mean in (2.8) only requires the projections BS of B, which are accessible because
BS = Y . However, the posterior uncertainty (see (2.9)), which is not part of the
optimizers in their contemporary form, cannot be computed this way.

Hence, with the exception of PSB, the popular secant rules all involve what
would be called empirical Bayesian estimation in statistics, i.e., parameter adapta-
tion from observed data. We also note again that the connection between probabilis-
tic maximum-a-posterior estimates and Dennis-class updates only applies in the first
of M steps. As such, the Dennis updates ignore the dependence between informa-
tion collected in older and newer search directions that leads to the matrix inverse
of G = (SᵀWS) in (2.8) and (2.9) (obviously, including this information explicitly
requires solving M linear problems, at additional cost). As will be shown in Lemma
3.3, though, for some members of the Dennis family, and for their use within linear
problems, this simplification is, in fact, exact.

3.1. A motivating experiment. How relevant is the difference between the
full rank-2M posterior update and a sequence of M rank-2 updates? Figure 1 shows
results from a simple conceptual experiment. For this test only, the various estimation
rules are treated as “stand-alone” inference algorithms, not as optimizers. Random
positive definite matrices B ∈ R

N×N were generated as follows: Eigenvalues di, i =
1, . . . , N were drawn i.i.d. from an exponential distribution p(d) = 1/λ exp(−d/λ)
with scale λ = 10 (small eigenvalues, left plot) or λ = 1000 (large eigenvalues, right
plot), respectively. A random rotation matrix Q ∈ SO(N) was drawn uniformly
from the Haar measure over SO(N), using the subgroup algorithm of Diaconis and
Shahshahani [15], giving B = QDQᵀ (where D = diag(d)). Projections—simulated
“search directions”—were drawn uniformly at random as S ∈ R

N×M , snm ∼ N (0, 1).
ForM = 1, . . . , N , the Powell Symmetric Broyden (PSB), DFP, and BFGS, as well the
corresponding posterior means from (2.8) with W = I (equal to PSB after one step)
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and W = B (equal to DFP after one step) were used to construct point estimates BM

for B. The plot shows the Frobenius norm ‖BM − B‖F between true and estimated
B, normalized by the initial error ‖B0 −B‖F . All algorithms used B0 = I.

Because directions s were chosen randomly, these results say little about these
algorithms as optimizers. What they do offer is an intuition for the difference between
the exact rank-2M posterior and repeated application of rank-2 Dennis-class update
rules. A first observation is that, in this setup, keeping track of the dependence
between consecutive search directions through SᵀWS makes a big difference: For
both pairs of “related” algorithms PSB and W = I, as well as DFP and W = B,
the full posterior mean dominates the simpler “independent” update rule. In fact,
the classic secant rules do not converge to the true Hessian B in this setup. The
consistency argument in section 2.2.2 only applies to estimators constructed by exact
inference. The experiment shows how crucial tracking the full Gram matrix SᵀWS
is after M > 1.

A second, not surprising, observation is that although both probabilistic algo-
rithms are consistent—they converge to the correct B after N steps—the quality of
the inferred point estimate after M < N steps depends on the choice of parameters.
The simplerW = I (PSB) choice performs qualitatively worse than the W = B (DFP)
choice.

The posterior covariances were used to compute posterior uncertainty estimates
for ‖BM − B‖F (gray lines in Figure 1): The Frobenius norm can be written as

‖BM −B‖2F =
−−−−−−−→
(BM −B)ᵀ

−−−−−−−→
(BM −B); thus the expected value of this quadratic form

is

E[
−−−−−−−→
(BM −B)ᵀ

−−−−−−−→
(BM −B)] =

∑
ij

VM,(ij)(ij) =
∑
ij

1

2
(WM,iiWM,jj +WM,ijWM,ij),

(3.1)

with WM := W − WS(SᵀWS)−1SᵀW . (To be clear, for W = B, computing this
uncertainty required the unrealistic step of giving the algorithm access to B, which
only makes sense for this conceptual experiment.) The uncertainty estimate forW = I
(dashed gray lines) is all but invisible in the right-hand plot because its values are
very close to 0—this algorithm has a badly calibrated uncertainty measure that has no
practical use as an estimate of error. The uncertainty under W = B (solid gray lines),
on the other hand, scales qualitatively with the size of B. This is because scaling B
by a scalar factor automatically also scales the covariance by the same factor. This
has been noted before as a “nondimensional” property of BFGS/DFP [35, eq. 6.11].
However, it is also apparent that the uncertainty estimate is too large in both plots—
here by about a factor of 5. To understand why, we consider the individual terms
in the sum of (3.1) at the beginning of the inference: The ratio between the true
estimation error on element Bij and the estimated error is

(3.2) e2ij =
(B0 −B)2ij

E[(B0 −B)2ij ]
= 2

B2
ij − 2BijB0,ij +B2

0,ij

WiiWjj +W 2
ij

.

One may argue that a “well-calibrated” algorithm should achieve eij ≈ 1. A problem
with the choice W = B becomes apparent considering diagonal elements and B0 = I:

(3.3) e2ii =
(Bii − 1)2

B2
ii

=

(
1− 1

Bii

)2

.
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This means the DFP prior is well-calibrated only for large diagonal elements (Bii � 1).
For diagonal elements Bii ≈ 1, it is underconfident (eii � 0, estimating too large an
error), and for very small diagonal elements Bii > 0, Bii  1, it can be severely over-
confident (eii �∞ estimating too small an error). For off-diagonal elements and unit
prior mean, the error estimate is

(3.4) e2ij =
2B2

ij

B2
ij +BiiBjj

=
2

1 +BiiBjj/B2
ij

for i �= j.

For positive definite B, e2ij < 1 off the diagonal holds because, for such matrices,

B2
ij < BiiBjj (see, e.g., [28, Corollary 7.1.5]), but of course e2ij can still be very small

or even vanish, e.g., for diagonal matrices. It is possible to at least fix the over-
confidence problem, using the degree of freedom in Corollary 3.1 to scale the prior
covariance to W = θ2B with θ = λmin/(λmin− 1), using λmin, the smallest eigenvalue
of B. This at least ensures eij ≤ 1 ∀(i, j).

Interestingly, setting W = B −B0 (which gives the SR1 rule after the first obser-
vation, but not after subsequent ones) gives e2ii = 1, and eij < 1 for i �= j. It also has
the property that the norm of the true B under this prior is

(3.5)
−−−−−−→
(B −B0)

ᵀ((B −B0)⊗�(B −B0))
−1−−−−−−→(B −B0) =

−→
I ᵀ−→I = N,

so the true B is exactly one standard deviation away from the mean under this prior.
These properties suggest this covariance, which will be called standardized norm co-
variance, for further investigation in section 4, which addresses the question: Is it
possible to construct a linear solver that, without “cheating” (using B or H explicitly
in the covariance), has a well-calibrated uncertainty measure and can thus meaning-
fully estimate the error of its computation; ideally, without major cost increase?

3.2. Structure of the Gram matrix. The above established that, treated as
inference rules for matrices, general Dennis rules are probabilistically exact only after
one rank-1 observation y = Bs. How strong is the error thus introduced? In fact,
as the following lemma shows, there are choices of search directions S for which the
existing algorithms do become exact probabilistic inference.

Lemma 3.2 (proof in Appendix A.3). If the Gram matrix SᵀWS is a diagonal
matrix (i.e., if the search directions S ∈ R

N×M are conjugate under the covariance
parameter W ), then the M repeated rank-2 update steps of classic secant-rule im-
plementations result in an estimate that is equal to the posterior mean under exact
probabilistic Gaussian inference from (Y, S). (The equivalent statement for inverse
updates requires conjugacy of the Y under W .)

So a cheap4 probabilistic optimizer can be constructed by choosing search direc-
tions conjugate under W . The following reformulation of a previously known lemma5

shows that, in fact, both the BFGS and DFP update rules have this property.
Lemma 3.3 (additional proof in Appendix A.4). For linear problems Bx = b with

symmetric positive definite B and exact line searches, under the DFP covariance W =
B, and line searches along the inverse of the posterior mean of the Gaussian belief, the

4We note in passing that, to reduce cost further, and regardless of whether the Gram matrix is
diagonal or not, the updates of (2.5) can be approximated by using only the M̃ most recent pairs
(si, yi), or by retaining a restricted rank M̃ form of the update. This is the analogue to “limited-
memory” methods [34] well-known in the literature for large-scale problems.

5This result is quoted by Nazareth in 1979 [33] as “well-known,” with a citation to [32]. The
proof in the appendix is less general, but may help put this lemma in the context of this text.
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Gram matrix is diagonal. Analogously for inverse updates: For inference on H = B−1

under the BFGS covariance W = H on the same linear optimization problem and line
searches along the posterior mean over H, the Gram matrix is diagonal.

The following result by Nazareth [33] establishes that, for linear problems, the
inference interpretation for BFGS transfers directly to the conjugate gradient (CG)
method of Hestenes and Stiefel [27].

Theorem 3.4 (Nazareth [33]6). For linear optimization problems as defined
in Lemma 3.3, BFGS inference on H with scalar prior mean, H0 = αI, α ∈ R, is
equivalent to the conjugate gradient algorithm in the sense that the sequence of search
directions is equal: sBFGS

i = sCG
i .

The connection between BFGS and CG is intuitive within the probabilistic frame-
work: BFGS uses W = H , so its mean estimate HM is the “best guess” for H

under (the minimizer of) the norm
−−−−−−−→
(H −HM )ᵀ(H⊗�H)−1

−−−−−−−→
(H −HM ), and its iter-

ated estimate xM is the best rank-M estimate for x when the error is measured
as (x − xM )ᵀW−1(x − xM ) = (x − xM )ᵀB(x − xM ). Minimizing this quantity after
M steps is a well-known characterization of CG [35, eq. 5.27].

Theorem 3.4 implies that describing BFGS in terms of Gaussian inference also
gives a Gaussian interpretation for CG “for free.” From the probabilistic perspective,
and exclusively for linear problems, CG is “just” a compact implementation of iterated
Gaussian inference on H from p(H) = N (H ; I, H⊗�H), with search directions along
HMF (xM ) = HM (BxM − b). This observation has conceptual value in itself (the
natural question, left open here, is what it implies for the nonparametric extensions
of CG). But Theorem 3.4, among other things, also implies the following helpful
properties for the search directions si chosen by, and gradients Fi “observed” by,
the (scalar prior mean) BFGS algorithm. They are all well-known properties of the
conjugate gradient method (e.g., [35, Thm. 5.3]). In the following, generally assume
that the algorithm has not converged at step M < N , and remember that the FM =
BxM − b are the residuals (gradients of f(x) = 1/2xᵀBx− xᵀx) after M steps, which
form yM = FM − FM−1. We have that

• the set of evaluated gradients / residuals is orthogonal:

(3.6) F ᵀ
i Fj = 0 for i �= j and i, j < N ;

• the gradients (and thus Y ) span the Krylov subspaces generated by (B, b):

(3.7) span{F0, F1, . . . , FM} = span{F0, BF0, . . . , B
MF0};

• line searches and gradients span the same vector space:

(3.8) span{s0, s1, . . . , sM} = span{F0, BF0, . . . , B
MF0}.

3.3. Discussion. We have established a probabilistic interpretation of the Den-
nis class of quasi-Newton methods, and the CG algorithm, as Gaussian inference:
The Dennis class can be seen as Gaussian posterior means after the first line search
(Corollary 2.4), but this connection extends to multiple search directions only if the
search directions are conjugate under prior covariance (Lemma 3.2). For linear prob-
lems, this is the case for the DFP, BFGS update rules (Lemma 3.3). Since BFGS is
equivalent to CG on linear problems (Lemma 3.4), this also establishes a probabilistic

6Dixon [16, 17] provided a related result linking CG to the whole Broyden class of quasi-Newton
methods: they become equivalent to CG when the starting matrix is chosen as the preconditioner.
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interpretation for linear CG. These results offer new ways of thinking about linear
solvers, in terms of solving an inference problem by collecting information and build-
ing a model rather than by designing a dynamic process converging to the minimum
of a function. It is intriguing that, from this vantage point, the extremely popular
CG/BFGS methods look less well-calibrated than one may have expected (section
3.1).

The obvious next question is: Can one design explicitly uncertain linear solvers
with a reasonably well-calibrated posterior? In addition to the scaling issues, a chal-
lenge is that, for BFGS/CG, the prior covariance W = H is only an implicit object.
After M < N steps, there exists a 1/2(N−M)(N−M+1)-dimensional cone of positive
definite covariance matrices fulfilling WY = S (and, additionally, a scalar degree of
freedom inherent to the Dennis class). How do we pick a point in this space?

4. Constructing explicit posteriors. The remainder of this paper will fo-
cus exclusively on inference on H = B−1, on inverse update rules, priors p(H) =

N (
−→
H ;

−→
H 0,W⊗�W ). As pointed out in section 1.2, these arise from the direct rules un-

der exchange of S and Y : Given (S, Y ) ∈ R
N×M , the posterior belief is p(H |S, Y ) =

N (
−→
H ;

−→
HM ,WM⊗�WM ) with

HM = H0 + (S −H0Y )(Y ᵀWY )−1Y ᵀW +WY (Y ᵀWY )−1(S −H0Y )ᵀ(4.1)

−WY (Y ᵀWY )−1[Y ᵀ(S −H0Y )](Y ᵀWY )−1Y ᵀW,

WM = W −WY (Y ᵀWY )−1Y ᵀW.

Recall from sections 1.2 and Corollary 3.1 that, cast as an inverse update, BFGS (CG)
arises from the prior p(H) = N (H ; I, θ2(H⊗�H)) for arbitrary θ ∈ R+.

4.1. Fitting covariance matrices. Equations (1.6), (1.7) show that both the
BFGS and DFP priors in principle require access to H . As noted above, for this
mean estimate it is implicitly feasible to use W = H , because this computation only
requires observed projections WY = HY = S. Computing the covariance under
W = H , however, can only be an idealistic goal: After M steps, only a subspace of
rank 1

2 (N(N + 1)− (N −M)(N −M + 1)) of the elements of H is identified. To see
this explicitly, consider the singular value decomposition7 Y = QΣUᵀ, which defines
a symmetric positive definite T ∈ R

N×N through W = QTQᵀ. This notation gives

(4.2) WM = W −WY (Y ᵀWY )−1Y ᵀW = Q(T − TΣ(ΣᵀTΣ)−1ΣᵀT )Qᵀ.

Considering the structure of Σ, one can write T in terms of block matrices

(4.3) T =

(
T++ T+−
T−+ T−−

)
then WM = Q

(
0 0
0 T−− − T−+T

−1
++T+−

)
Qᵀ,

with T++ ∈ R
M×M , T−+ = T ᵀ

+− ∈ R
M×(N−M), T−− ∈ R

(N−M)×(N−M) (and positive
definite T++, a principal block of the positive definite T ). Observing (S, Y ) exactly
identifies [T++, T+−]ᵀ = QSUᵀD−1, and provides no information at all8 about T−−.

7This is using the convention that the orthonomal matrices are Q ∈ R
N×N and U ∈ R

M×M , and
Σ ∈ R

N×M can be written with orthonormal Q ∈ R
N×N and U ∈ R

M×M , and rectangular diagonal
Σ ∈ R

N×M , which can be written as Σ = [D,0]ᵀ with an invertible diagonal matrix D ∈ R
M×M

and empty 0 ∈ R
M×(N−M).

8Knowing H to be positive definite does provide a lower bound on the eigenvalues of T−−.
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A primary goal in designing a probabilistic linear solver is thus, at step M < N ,
to (1) identify the span of WM , ideally without incurring additional cost, and to
(2) fix the entries in the remaining free dimensions in WM , by using some regularity
assumptions9 about H . The equivalence between BFGS and CG offers an elegant way
of solving problem (1) with no additional computational cost: Recall from Theorem
2.3 and Lemma 3.2 that the covariance after M steps under W = H is WM⊗�WM

with

WM = W −
M∑
i

Wyi(Wyi)
ᵀ

sᵀi yi
= W −

M∑
i

sis
ᵀ
i

sᵀi yi
= W − S(SᵀY )−1Sᵀ.(4.4)

Because, by (3.8) the vector-space spanned by S is identical to that spanned by the
orthogonal gradients, we can write the space of all symmetric positive semidefinite
matrices W with the property WY = S as

W (Ω) = S(SᵀY )−1Sᵀ + (I − F̄ F̄ ᵀ)Ω(I − F̄ F̄ ᵀ),(4.5)

with the right-orthonormal matrix F̄ containing the M normalized gradients Fi/‖Fi‖
in its columns, and a positive definite matrix Ω ∈ R

N×N (the effective size of the
space spanned in this way is only R

(N−M)×(N−M), so Ω is overparameterizing this
space).

4.1.1. Standardized norm posteriors using conjugate gradient observa-
tions. Equation (4.5) parametrizes posterior covariances of the BFGS family. In
light of the scaling issues of these priors discussed in section 3.1, one would pre-
fer, from the probabilistic standpoint, to use the standardized norm priors p(H) =
N (H ;αI , (H−H0)⊗�(H−H0)), but these priors do not share BFGS/CG’s other good
numerical properties. Instead, a hybrid algorithm can be constructed as follows:

1. Solve the linear problem using the conjugate gradient method. While the
algorithm runs, collect S, Y, F̄ . This has a storage cost of 2NM +M floats:
Because Y consists of differences between subsequent columns of F , it does
not need to be stored explicitly; the column norms ‖F‖i required to compute
F̄ require M extra floats. The computation cost of the standard conjugate
gradient algorithm is O(M) matrix-vector multiplications (that is, O(MN2)
assuming a dense matrix), plus O(MN) operations for the algorithm itself
(including computation of ‖F‖i).

2. Using the (S, Y, F̄ ) constructed by CG, compute the standardized-norm pos-
terior on H , i.e., use the prior p(H) defined above, which yields a Gaussian
posterior with mean and covariance

HM = H0 + (S −H0Y )(Y ᵀ(S −H0Y ))−1(S −H0Y )ᵀ(4.6)

= αI − (S − αY )(Y ᵀS − αY ᵀY )−1(S − αY )ᵀ and(4.7)

WM = (H −H0)− (S −H0Y )(Y ᵀ(S −H0Y ))−1(S −H0Y )ᵀ(4.8)

= S(SᵀY )−1Sᵀ + (I − F̄ F̄ ᵀ)Ω(I − F̄ F̄ ᵀ)− αI(4.9)

− (S − αY )(Y ᵀS − αY ᵀY ))−1(S − αY )ᵀ.

9A probabilistically more appealing approach would be to use a hyper-prior on the elements of
W , marginalized over the unidentified degrees of freedom. It is currently unclear to the author how
to do this in a computationally efficient way.
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A prerequisite for this is to choose α < λmin(H), less than the smallest
eigenvalue of H , to ensure that W = H − H0 is positive definite. But
λmin(H) = 1./λmax(B), which can be estimated efficiently (and without ad-
ditional cost) from the ‖F‖i. Another minor hurdle is that (4.7) and (4.9) re-
quire the inverse of SᵀY −αY ᵀY . The columns of Y are Yi = Fi−Fi−1, so, be-
cause conjugate gradient constructs orthogonal gradients, Y ᵀY is a symmetric
tridiagonal matrix, Y ᵀ

i Yj = δij(‖Fi‖2+‖Fi−1‖2)+(δi(j−1)+δ(i+1)j)‖Fi‖2, and
SᵀY is diagonal because the S are conjugate under B. So the entire Gram ma-
trix is tridiagonal, and the M linear problems in (Y ᵀS−αY Y ᵀ)−1(S−αY )ᵀ

can be solved in O(M2), e.g., using the Thomas algorithm [7, Alg. 4.3].
3. Using some statistical estimation rule to be defined below, estimate Ω. Section

4.2 proposes several such rules of cost O(M), but as usual for statistical
estimation problems, there is no uniquely correct way to perform this step.

While there is a vague connection between the standardized norm prior and the SR1
algorithm by Corollary 3.1, the algorithm described above is quite different from the
SR1 method. It uses search directions constructed by BFGS/CG, and its update rule
uses the exact Gram matrix, not the repeated rank-1 updates that give SR1 its name.

Computational cost. The computation overhead of constructing this posterior
mean and covariance, after running the conjugate gradient algorithm, isO(M2), which
is small even compared to the internal O(MN) cost of CG, let alone the O(MN2) for
the matrix-vector multiplications in CG. Storing the posterior mean and covariance
requires O(NM) space, which is feasible even for relatively large problems. Crucially,
retaining the covariance adds almost no overhead to storing the mean alone.

4.2. Estimation rules. The remaining step is to find estimates for Ω. It is
clear that there are myriad options for fixing such rules. For an initial evaluation, we
adopt the perhaps simplistic but straightforward approach of estimating Ω to a scalar
matrix Ω = ω2I (one way to motivate this is to argue that, at step M , future line
searches sM+i will point in an unknown direction in the span of I− F̄ F̄ ᵀ, so it makes
sense not to prefer any direction in the choice of Ω).

A natural idea is to use regularity structure on quantities already computed during
the run of the conjugate gradient algorithm: Assume the algorithm is currently at
step T . If at step M < T we had tried to predict the Gram matrix diagonal element
yᵀM+1WyM+1 = −sᵀM+1FM using the structure for W described above, we would have
predicted, because FM is known to be in the span of S, and orthogonal to (I − F̄ F̄ ᵀ),

yᵀM+1WyM+1 = F ᵀ
MS(SᵀY )−1SᵀFM + F ᵀ

M+1ΩFM+1,(4.10)

−sᵀM+1FM = −
M∑
i=1

(F ᵀ
M si)

2

sᵀi Fi−1
+ ω2‖FM+1‖2,(4.11)

and thus ω2 = ‖FM+1‖−2

[
M∑
i=1

(F ᵀ
Msi)

2

sᵀi Fi−1
− sᵀM+1FM

]
.(4.12)

‖FM+1‖ can be estimated from the norm of preceding gradients. The second term on
the right-hand side of (4.12) is known at step M . The first term of the right-hand
side can be estimated by regression, in ways further explored below.

First, to confirm that ω indeed tends to have regular structure related to the eigen-
value spectrum of H , Figure 2, right column, shows ωi for i = 1, . . . ,M during runs of
CG on twenty linear problems, sampled from three different generative processes for
B = QDQᵀ ∈ R

200×200. In each case, orthonormal matrices were drawn uniformly
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Fig. 2. Fitting posterior uncertainty during iterative solution of linear problems for three differ-
ent generative processes of B. Each plot shows results from twenty randomly generated experiments
with, top row: uniformly; middle row: exponentially distributed eigenvalues; bottom row: structured
eigenvalue spectrum (details in text). Left: Residual (gradient) Bx − b as a function of number
of line searches. Right: Projections ω = sᵀMFM−1, whose regular structure is used for estimating
W (Ω).

from the Haar measure over SO(N) as in section 3.1. For the top row of Figure 2, the
eigenvalues (elements of D = diag(d)) were drawn uniformly from p(di) = U(0, 10)
(the uniform distribution over [0, 10]). For the middle row, eigenvalues were drawn
from the exponential distribution p(di) = 1/λ exp(−di/λ) with scale λ = 10/ log 2 (giv-
ing a median eigenvalue of 10). Finally, for the bottom row, eigenvalues were drawn
from a structured process, with di for i = 1, . . . , 20 drawn from p(d) = U(0, 103), and
di for i = 21, . . . , 200 drawn from p(d) = U(0, 10) (i.e., the corresponding eigenvalues
of H lie nonuniformly in [0, 10−3] and [0, 0.1]). Clear structure is visible in all cases.
Using these observations, several different regression schemes for ω can be adopted.

• A simple baseline is a stationary model for the ωi. This was used to construct
error estimates in Figures 3 to 5 (in gray for the middle and bottom row, black
for the top row). Of course, if the eigenvalues of B are uniformly distributed
in the top row, the eigenvalues of H (their inverses) are not.

• A slightly more elaborate model is a linear trend with noise: ωi = ai+ b+ n
(with n ∼ N (0, σ2)). Linear regression on the values of ωi can be performed
in O(M). We can then set Ω = ω̄I with ω̄ = aN + b the expected largest
value of ωi (i.e., a noisy upper bound). This approach was used to construct
the (black) error estimates in the middle rows of Figures 3 to 5.
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Fig. 3. Error estimation on H. Posterior mean (solid red) and one standard deviation (dashed
black, gray). Left: BFGS/CG prior. Right: Standardized norm prior, from CG observations. Rows
as in Figure 2. The cut-off error bars in the bottom right plot rise up to values < 6.

• Finally, if structural knowledge is available, e.g., that the first L eigenvalues
of B are α times larger than the later ones, one may use the stationary rule
from above, but explicitly multiply the estimate ω by α for the first L steps.
This may seem contrived, but, in fact, it is not uncommon in applications
to know an effective number of degrees of freedom in B. For example, in
nonparametric least-squares regression with a very large number of N data
points distributed approximately uniformly over a range of width ρ, using
an RBF kernel of length scale λ, the model’s number of degrees of freedom
is L = ρ/(2πλ) [38, eq. 4.3]. This rule was used to construct (black) error
estimates in the bottom rows of Figures 3 to 5.

4.3. Estimating quantities of interest. This final part demonstrates a few

example uses of the Gaussian posterior p(H) = N (
−→
H ;

−→
HM ,WM⊗�WM ) on H con-

structed by the BFGS/CG method. Figures 3 to 5 show three such uses, explained
below. Each row of this figure uses data from one of the experiments shown in the
corresponding row of Figure 2.

4.3.1. Estimating H itself. The most obvious question is how far the estimate
HM for H after M steps is from the true H . This distance is estimated directly by
the Gaussian posterior of (4.1). The marginal distribution on any linear projection

A
−→
H is N (A

−→
H ;A

−→
HM , A(WM⊗�WM )Aᵀ). In particular, the marginal distribution on
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Fig. 4. True and estimated norm error ‖H −HM‖F . Posterior mean (solid red in electronic
version) and one standard deviation (dashed black and dashed gray). Left: BFGS/CG prior. Right:
Standardized norm prior, from CG observations. Rows as in Figure 2.

each element Hij is a scalar Gaussian

(4.13) p(Hij |SM , YM ) = N [Hij ;HM,ij , 1/2(WM,iiWM,jj +W 2
M,ij)].

Figure 3 shows this error estimate for forty elements of one particular H (drawn
uniformly at random from the 4 ·104 elements of the 200× 200 matrix). The estimate
arising from the uniform estimation rule for ω from section 4.2 is shown in gray in
each panel (black for the top panel). The same quantity, estimated with the linear
regression and structured estimation rules from section 4.2, is shown in black in the
middle and bottom row, respectively. The left column of the figure shows results from
the BFGS/CG prior; the right column shows results using the standardized norm prior
on data constructed with the CG algorithm as described in section 4.1.1. As expected
from the argument in section 3.1, the BFGS estimates are regularly considerably
too small, while the standardized-norm estimates have a meaningful width. The
error estimators have varying behavior. For the exponential eigenvalue spectrum, the
estimator fluctuates strongly in the first few steps before settling to a good value
(this could be corrected using a regularizer, left out here to not bias the results). For
the structured-eigenvalues problems, the region around the step from small to large
eigenvalues is problematic. But overall, they do provide a meaningful notion of error.
In particular, they are rarely too small. For most uses of statistical error estimators,
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Fig. 5. Estimating solutions to Bx′ = b′. Elementwise error on a single test vector xtest. True
error in blue (in electronic version). Error estimate with stationary model for ω in gray. Error
estimate for model-specific estimate for ω (as in Figure 2) in black. Left: BFGS/CG prior. Right:
Standardized norm prior, from CG observations. Rows as in Figure 2.

it is better to be too conservative (too large) than to be too confident. Of course, it
would be great if future research would find better calibrated error estimates.

As explained in (3.1), the same error estimates can also be collapsed into an error
estimate on the norm ‖H −HM‖F . Figure 4 shows results from such an experiment
for the twenty different H ’s from Figure 2. The quantitative results are similar to the
previous figure, but this figure more clearly shows the difference between the baseline
(gray) and exponential, structured error estimates (black), and the behavior of the
estimated errors relative to the varying norms of the drawn H ’s.

4.3.2. Estimating solutions for new linear problems. An obvious use for
the estimate for H found by CG/BFGS when solving one linear problem Bx = b is
as an instantaneous solution estimate for other linear problems Bxtest = btest. The
left and middle columns of Figure 5 show this use. In each case, an xtest was drawn
from N (x; 0, 10I), and the corresponding btest = Bxtest presented to the algorithm.
Since xtest = Hbtest is a linear projection of H , the posterior marginal on xtest is
also Gaussian p(xtest |SM , YM ) = N (xtest, HM btest,Σ), and has covariance matrix
elements

(4.14) cov(xtest,i, xtest,j) = Σij = 1/2(Wijx
ᵀ
testWxtest + (Wxtest)i(Wtest)j .



PROBABILISTIC INTERPRETATION OF LINEAR SOLVERS 253

Figure 4 shows the true errors on the elements of xtest (solid), and the estimated
marginal errors (the diagonal elements of Σ) in dashed black for the stationary, linear,
structured models, respectively (and, as in previous figures, the stationary model in
dashed gray in the two nonstationary cases). More drastically than the previous ones,
these figures show that the BFGS posterior can severely underestimate the error on
elements of xtest, while the standardized norm prior at least provides outer bounds
(albeit ones sometimes quite loose).

Remark on convergence. The error on xtest does not always collapse over the
course of finding x. This says more about CG as such than about its probabilistic
interpretation: CG does not aim to construct H , but only to find x∗. For simplicity of
exposition, we have assumed that H = B−1 exists, and CG requires the full N steps to
converge, thus identifying B and H . In general, CG regularly converges much earlier.
For an intuition, consider the special case where x0 = 0 and b = [1, . . . , 1, 0, 0, . . . , 0]
consists of K consecutive ones and N −K zeros. The CG/BFGS algorithm will never
explore the lower (N−K)×(N−K) block ofH , which may contain arbitrary numbers.
If the primary aim is not x∗ = Hb but H itself, a more elaborate course is needed;
e.g., choosing several b to span a space of interest over H . It is an interesting open
question whether the probabilistic interpretation can be used to actively collapse the
uncertainty on H in a typically more efficient way than established matrix inversion
methods like Gauss–Jordan (which is also a conjugate direction method [27]).

5. Conclusion and outlook. This text developed a probabilistic interpretation
of iterative solvers for linear problems Bx = b with symmetric B. The Dennis family
of secant updates can be derived as the posterior mean of a parametric Gaussian
model after one rank-1 observation. For rank M observations, the match between
these updates and Gaussian inference only holds if the search directions are conjugate
under the prior covariance. This is the case for the DFP direct and BFGS inverse
updates rules. Their equivalence to CG in the linear case makes them particularly
interesting. However, it also became apparent that, from an inference perspective,
the BFGS rule does not yield a well-scaled error measure.

As a first step toward a better scaled Gaussian posterior distribution, the stan-
dardized norm covariance was proposed. It is inspired by the SR1 rule, but leads
to probabilistic corrections in the form of off-diagonal terms, and can be used with
data produced by the CG algorithm, thus retaining the good numerical properties of
that method. The space of possible covariance matrices consistent with the resulting
mean is a subspace of the positive definite cone, which collapses during the run of the
algorithm (the same holds for the BFGS/CG method). Several possible estimation
rules for choosing elements in this space of covariances where proposed, arising from
different structural assumptions over H . The resulting Gaussian posterior provides
joint uncertainty estimates on the elements of H and all linear projections of H , in
particular of other linear problems xtest = Hbtest. This adds functionality to the
conjugate gradient method, at a computational overhead much smaller than the cost
of CG itself.

The implications for nonlinear optimization methods of both the quasi-Newton
and CG families remain interesting open questions. For example, clearly the conjugacy
assumption implicit in the Dennis class members is inconsistent with the probabilistic
interpretation. This was already noted by Hennig and Kiefel [25, 26], who also pro-
posed using a nonparametric Gaussian formulation to give a more explicit inference
interpretation to nonlinear optimization. This left unanswered questions regarding
the choice of prior covariance, which are only made more pressing by the results pre-
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sented here. Another direction is inference from noisy evaluations, in which case the
posterior covariance does not collapse to zero after finitely many steps of optimization,
not even in the linear case. Some related results where previously discussed in [24],
but the study of probabilistic numerical optimization remains at an early stage.

Appendix. Proofs for results from main text. Throughout the appendix,
the notation Δ = Y −B0S will be used to represent the residual.

A.1. Proof for Lemma 2.2. Because the operator Γ maps
∑

k� Γij,k�Ak� =
1/2(Aij+Aji) for all A, its elements can be written as Γij,k� = 1/2(δikδj�+δi�δjk), using
Kronecker’s δ function. We also note that Gaussians are closed under linear operations

(see, e.g., [2, eq. 2.115]: p(B) = N (
−→
B ;

−→
B 0, V ) implies p(Γ

−→
B ) = N (Γ

−→
B ;

−→
B 0,ΓV Γᵀ)).

We complete the proof by observing that

(Γ(W ⊗W )Γᵀ)ij,k� =
∑
ab,cd

1/4(δiaδjb + δibδja)(δkcδ�d + δkdδ�c)WacWbd(A.1)

= 1/4(WikWj� +Wi�Wjk +WjkWi� +Wj�Wik)(A.2)

= 1/2(WikWj� +Wi�Wjk).(A.3)

A.2. Proof for Theorem 2.3. To be shown: Given p(B) = N (
−→
B ;

−→
B 0,W⊗�W ),

the posterior from the likelihood δ(Y − BS) = limΛ� 0 N (Y ; (I ⊗ S)B,Λ), with
Y, S ∈ R

N×M and rk(S) = M , has mean (with Δ = Y −B0S)

BM = B0 +Δ(SᵀWS)−1WSᵀ +WS(SᵀWS)−1Δᵀ(A.4)

−WS(SᵀWS)−1(SᵀΔ)(SᵀWS)−1SᵀW

and covariance

VM = (W −WS(SᵀWS)−1SᵀW )⊗�(W −WS(SᵀWS)−1SᵀW ).(A.5)

We begin with the posterior mean (A.4). From (2.3), it has the form (with the prior
covariance V = W⊗�W )

B0 + V (I ⊗ S)[(I ⊗ Sᵀ)V (I ⊗ S)]−1−→Δ.(A.6)

A few straightforward steps establish that the NM × NM matrix to be inverted is
indeed invertible for linearly independent columns of S, and has elements

[(I ⊗ Sᵀ)V (I ⊗ S)]ia,jb = 1/2[Wij(S
ᵀWS)ab + (WS)ib(WS)ja].(A.7)

Also, the elements of V (I ⊗ S) are

[V (I ⊗ S)]ij,ka = 1/2(WikSja +WjkSia).(A.8)

So we are searching the unique matrix X ∈ R
N×M satisfying

−→
Δ = [(I ⊗ Sᵀ)V (I ⊗ S)]

−→
X = 1/2(

−−−−−−−−−−−−−−−−−−−→
WXSᵀWS +WSXᵀWS),(A.9)

which then gives the posterior as 1/2(WXSᵀWSWSXᵀW ). (BecauseX is rectangular,
(A.9) is a generalization of a Lyapunov equation. Standard solutions for such equations
do not apply directly.) Instead of just presenting a solution, the following lines show a
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constructive proof. We first rewrite (A.9) (SᵀWS is invertible because W is positive
definite, and S is assumed to be of rank M) as

2Δ = WXSᵀWS +WSXᵀWS,(A.10)

2W−1Δ(SᵀWS)−1 = X + SXᵀWS(SᵀWS)−1.(A.11)

Let QΣUᵀ = S be the singular value decomposition of S. That is, Q ∈ R
N×N and

U ∈ R
M×M are orthonormal, Σ ∈ R

N×M , consisting of an upper part containing the
diagonal matrix D ∈ R

M×M and a lower part in R
(N−M)×M containing on zeros. We

will write Q = [Q+, Q−], where Q+ ∈ R
N×M is a basis of the preimage of S, and

Q− ∈ R
(N−M)×M is a basis of the kernel of S. Because S is full rank, D is invertible,

and we can equivalently write

(A.12) X = QRD−1U with a (generally dense) matrix R =

(
R+

R−

)

(R+ ∈ R
M×M , R− ∈ R

(N−M)×M ). This allows the rewriting of equation (A.11) as

2QᵀW−1Δ(SᵀWS)−1 = RD−1Uᵀ +QᵀQΣUᵀ(UD−1RᵀQᵀWS)(SᵀWS)−1,(A.13)

2

(
Qᵀ

+W
−1Δ(SᵀWS)−1UD

Qᵀ
−W

−1Δ(SᵀWS)−1UD

)
=

(
R+ + [RᵀQᵀWS](SᵀWS)−1UD

R−

)
,

which identifies R−. Noting that Q+Q
ᵀ
+ = Q+D

−1UUᵀDQᵀ
+ = S+Sᵀ, we can write

RᵀQᵀWS = (Rᵀ
+Q

ᵀ
+ +Rᵀ

−Q
ᵀ
−)WS(A.14)

= (Rᵀ
+Q

ᵀ
+ + 2DUᵀ(SᵀWS)−1ΔᵀW−1Q−Q

ᵀ
−)WS(A.15)

= Rᵀ
+Q

ᵀ
+WS + 2DUᵀ(SᵀWS)−1ΔᵀW−1(I −Q+Q

ᵀ
+)WS(A.16)

= Rᵀ
+Q

ᵀ
+WS + 2DUᵀ(SᵀWS)−1ΔᵀS(A.17)

− 2DUᵀ(SᵀWS)−1ΔᵀW−1S+(SᵀWS).

Plugging back into (A.13), using (SᵀWS)−1UD = (Qᵀ
+WS)−1, we get

2Qᵀ
+W

−1Δ(SᵀWS)−1UD = R+ +Rᵀ
+Q

ᵀ
+WS(Qᵀ

+WS)−1

+ 2DUᵀ(SᵀWS)−1ΔᵀS(SᵀWS)−1UD

− 2DUᵀ(SᵀWS)−1ΔᵀW−1S+(SᵀWS)(SᵀWS)−1UD

= R+ +Rᵀ
+ + 2DUᵀ(SᵀWS)−1ΔᵀS(SᵀWS)−1UD(A.18)

− 2DUᵀ(SᵀWS)−1ΔᵀW−1S+UD,

1/2(R+ +Rᵀ
+) = Qᵀ

+W
−1Δ(SᵀWS)−1UD +DUᵀ(SᵀWS)−1ΔᵀW−1Q+(A.19)

−DUᵀ(SᵀWS)−1ΔᵀS(SᵀWS)−1UD.(A.20)

We see directly that this is a symmetric matrix, because SᵀΔ = SᵀBS − SᵀB0S =
ΔᵀS. Now, noting that XSᵀ + SXᵀ = Q+(R+ + Rᵀ

+)Q
ᵀ
+ + Q−R−Q

ᵀ
+ + Q+R

ᵀ
−Q

ᵀ
−,
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we find

1/2(XSᵀ + SXᵀ) = (Q+Q
ᵀ
+W

−1Δ(SᵀWS)−1Sᵀ)(A.21)

− S(SᵀWS)−1ΔᵀS(SᵀWS)−1Sᵀ

+ S(SᵀWS)−1ΔᵀW−1Q+Q
ᵀ
+

· (I −Q+Q
ᵀ
+)W

−1Δ(SᵀWS)−1Sᵀ

+ S(SᵀWS)−1ΔᵀW−1(I −Q+Q
ᵀ
+)

= −S(SᵀWS)−1ΔᵀS(SᵀWS)−1Sᵀ(A.22)

+W−1Δ(SᵀWS)−1Sᵀ + S(SᵀWS)−1ΔᵀW−1.

From (A.8), the posterior mean can be written as

BM = B0 + 1/2(WXSᵀW +WSXᵀW ),(A.23)

which is clearly equal to (A.4). To establish the form of the posterior covariance, we
make use of the structural similarities between the posterior mean and covariance (see
(2.3)), and notice that we have just established

∑
ka,nb

(V S)ij,ka(SᵀV S)−1
ka,nbΔnb(A.24)

= [Δ(SᵀWS)−1SᵀW +WS(SᵀWS)−1Δᵀ]ij

− [WS(SᵀWS)−1ΔᵀS(SᵀWS)−1SᵀW ]ij .

So we can simply replace Δnb with (SᵀV )nb,k� = 1/2[Wnk(S
ᵀW )b�+Wn�(S

ᵀW )bk] and
find, after a few lines of simple algebra, the form of (A.5) for the posterior covariance.
This completes the proof.

A.3. Proof for Lemma 3.2. To be shown: If the Gram matrix SᵀWS is diag-
onal, then the exact posterior mean BM after M steps, which is

BM = B0 +Δ(SᵀWS)−1SᵀW +WS(SᵀWS)−1Δᵀ(A.25)

−WS(SᵀWS)−1(SᵀΔ)(SᵀWS)−1SᵀW,

is equal to the rank-2 update of BM−1 using the Dennis update

BM = BM−1 +
(yM −BM−1sM )cᵀM + cM (yM −BM−1sM )ᵀ

cᵀMsM
(A.26)

− cMsᵀM (yM −BM−1sM )cᵀM
(cᵀMsM )2

for cM = WsM .

We first harmonize the notation between the two formulations by writing the elements
of the diagonal Gram matrix as (SᵀWS)ij = δijc

ᵀ
i si =: δijai. With this notation, the

posterior mean BM , (A.25) can be written as

BM = B0 +
M∑
i=1

Δic
ᵀ
i + ciΔ

ᵀ
i

ai
+

M∑
i=1

M∑
j=1

ci[Δ
ᵀS]ijc

ᵀ
j

aiaj
,(A.27)
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which can be written recursively as

BM = BM−1 +
ΔMcᵀM + cMΔᵀ

M

aM

(A.28)

−
M−1∑
i=1

cM [ΔᵀS]Mic
ᵀ
i + ci[Δ

ᵀS]iMcᵀM
aMai

− cM [ΔᵀS]MMcᵀM
aMaM

= BM−1 +

(
ΔM −

M−1∑
i=1

ci(Δ
ᵀS)iM
ai

)
cᵀM
aM

+
yM
aM

(
ΔM −

M−1∑
i=1

ci(Δ
ᵀS)iM
ai

)
(A.29)

− cM (ΔᵀS)MMcᵀM
a2M

.

On the other hand, the expression yM − BM−1sM from (A.26) can be written using
(A.27) as

yM −BM−1sM = yM −B0sM −
M−1∑
i=1

Δic
ᵀ
i sM + ciΔ

ᵀ
i sM

ai
+

M−1∑
i=1

M−1∑
j=1

ci(Δ
ᵀS)ijc

ᵀ
j sM

aiaj
.

(A.30)

But since, by assumption, cᵀi sM = 0 for i �= M , this expression simplifies to

yM −BM−1sM = yM −B0sM −
M−1∑
i=1

ciΔ
ᵀ
i sM
ai

= ΔM −
M−1∑
i=1

ciΔ
ᵀ
i sM
ai

.(A.31)

Similarly, the expression sᵀM (yM −BM−1sM ) from (A.26) simplifies to

sᵀM (yM −BM−1sM ) = sᵀMyM − sᵀMB0sM −
M−1∑

i

sᵀM (Δic
ᵀ
i + ciΔ

ᵀ
i )sM

ai
(A.32)

−
M−1∑

i

M−1∑
j

sᵀMci[Δ
ᵀS]ijc

ᵀ
j sM

aiaj
= sᵀMΔM .

Reinserting these expressions into (A.26), we see that it equals (A.29), which com-
pletes the proof.

A.4. Proof for Lemma 3.3. The DFP update is the direct update with the
choice W = B; and the BFGS update is the inverse update with the choice W = H .
So the Gram matrix, in both cases, is SᵀBS = Y ᵀHY = SᵀY . The i, jth element of
this symmetric M ×M matrix is yᵀi sj . The statement to be shown is that this matrix
is diagonal if the line search directions are chosen as

(A.33) si+1 = −αi+1Hi+1Fi

with the residual (the gradient of the equivalent quadratic optimization objective)
Fi = Bxi − b. We also assume perfect line searches. First, consider the special case
where j = i+ 1 (i.e., subsequent line searches). Because they are in the Dennis class,
the estimates forH (irrespective of whether they were constructed by inverting a direct
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estimate or using an inverse estimate directly) fulfill the “quasi-Newton equation”
si = Hi+1yi = Hi+1(Fi − Fi−1). Thus

(A.34) si+1 = −αi+1(si +Hi+1Fi−1).

The exact line search along si ended when sᵀi Fi = 0, so

yᵀi si+1 = −αi+1(Fi − Fi−1)
ᵀ(si +Hi+1Fi−1) = −αi+1(y

ᵀ
i Hi+1Fi−1 − sᵀi Fi−1)

(A.35)

= −αi+1(s
ᵀ
i Fi−1 − sᵀi Fi−1) = 0

(the last line follows again because, by the quasi-Newton equation, si = Hjyi for
all j > i). By symmetry of the Gram matrix, (A.35) also implies yᵀi+1si = 0. We
complete the proof inductively: Let j > i + 1 or i > j + 1, and assume yᵀi sj−a =
yᵀj−asi = 0 ∀a > 0. Also, Fj−1 can be written with a telescoping sum as

(A.36) Fj−1 = (Fj−1 − Fj−2 + Fj−2 − Fj−3 + · · · − Fi + Fi) =

j−1∑
a=i

ya + Fi.

Hence

yᵀi sj = −αjy
ᵀ
i (sj−1 +HjFj−1) [by definition of Newton’s direction](A.37)

= −αj(0 + yᵀi HjFj−1) [by induction hypothesis](A.38)

= −αjs
ᵀ
i Fj−1 [by quasi-Newton property](A.39)

= −αjs
ᵀ
i

⎡
⎣ i∑
a=j−1

ya + Fi

⎤
⎦ [by (A.36)](A.40)

= −αjs
ᵀ
i Fi [by induction hypothesis](A.41)

= 0 [because ith line search is exact].(A.42)

This completes the proof.
Remark. This also implies F ᵀ

i sj = 0 for i �= j: Assume w.l.o.g. that i > j. Then
use the telescoping sum of (A.36) to get

(A.43) 0 = yᵀi sj = (Fi − Fi−1)
ᵀsj =

⎛
⎝Fi −

i−1∑
a=j

ya − Fj

⎞
⎠

ᵀ

sj = F ᵀ
i sj .
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