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An Online Scalable Approach to Unified Multirobot
Cooperative Localization and Object Tracking

Aamir Ahmad, Guilherme Lawless, and Pedro Lima, Member, IEEE

Abstract—In this paper, we present a unified approach for multi-
robot cooperative simultaneous localization and object tracking
based on particle filters. Our approach is scalable with respect
to the number of robots in the team. We introduce a method that
reduces, from an exponential to a linear growth, the space and
computation time requirements with respect to the number of
robots in order to maintain a given level of accuracy in the full-state
estimation. Our method requires no increase in the number of
particles with respect to the number of robots. However, in our
method, each particle represents a full-state hypothesis, leading to
the linear dependency on the number of robots of both space and
time complexity. The derivation of the algorithm implementing our
approach from a standard particle filter algorithm and its complex-
ity analysis are presented. Through an extensive set of simulation
experiments on a large number of randomized datasets, we demon-
strate the correctness and efficacy of our approach. Through real
robot experiments on a standardized open dataset of a team of four
soccer-playing robots tracking a ball, we evaluate our method’s
estimation accuracy with respect to the ground truth values.
Through comparisons with other methods based on 1) nonlinear
least squares minimization and 2) joint extended Kalman filter,
we further highlight our method’s advantages. Finally, we also
present a robustness test for our approach by evaluating it under
scenarios of communication and vision failure in teammate robots.

Index Terms—Cooperative perception, distributed robot sys-
tems, localization, sensor fusion, visual tracking.

I. INTRODUCTION

ACHIEVING a complexity that scales well with the num-
ber of robots for the online cooperative simultaneous

robot localization and object tracking (SLOT) problem in a
multirobot scenario is the core topic of this paper. One of the
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approaches to multirobot cooperative object tracking is to ex-
plicitly share information among the robots. This includes shar-
ing self-localization estimates and environment observations to
enrich other robot’s observations. Moreover, for this purpose,
one needs a well-calibrated self-localization confidence measur-
ing technique to avoid reference frame inconsistencies. We ad-
dressed this situation previously in [1]. However, since the confi-
dence measuring mechanisms are often based on heuristics, e.g.,
using the number of effective particles [2] as a measure of robot
localization confidence, it might still result in false positives
(e.g., a situation where the self-localization confidence of a robot
is high in spite of it being wrongly localized). Similarly, cooper-
ative robot localization can also be performed by explicitly shar-
ing information regarding a mutually observed common object
as showed in [3], but it would still remain highly dependent on
the self-localization confidences of the teammate robots as well
as their object observation confidence measures when using the
teammate’s observation or estimates. In a scenario where a team
of robots needs to localize themselves as well as track an object,
cooperative methods for doing both simultaneously can benefit
from using a single unified approach because this would elim-
inate the need for separate self-localization/object-observation
confidence measurements. Note that this does not imply first
performing cooperative object tracking, and subsequently using
the cooperatively tracked object’s estimate to improve the self-
localization of the robots (i.e., a two-step process, which some
authors have previously explored [4]). In a unified method, both
processes (cooperative localization of robots and cooperative es-
timation of the object) are performed in a single step to prevent
the recursive propagation of estimation error from one process
to the other, which is inevitable in a two-step process. In [5],
we presented such a unified method, based on nonlinear least
squares minimization, designed for offline implementation.

In this paper, we present a novel online1 method for the
multirobot unified cooperative localization and object tracking
(UCLT) problem, based on a particle filter (PF). The goal is that
a robot estimates the state composed of its own pose, the poses
of its teammate robots, and the position of a mutually observed
tracked object, at a given timestep. The input to the method is
the state at the previous timestep and the most recent control and
observation measurements made by the robots. The control mea-
surements refer to those made by the proprioceptive sensors of

1An offline method/approach refers to a batch process which optimizes a full
trajectory of states after all measurements are acquired, while an online approach
recursively estimates the state only at a given timestep using the measurements
at that timestep and the previous state.
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the robots, e.g., odometry. The observations made by the robots
include range and bearing measurements to the environmental
landmarks/features and to the tracked object. We explicitly do
not consider interrobot range and bearing measurements. In-
cluding such measurements would simply lead to another class
of cooperative localization problem, which is not in the scope
of this paper. The main motivation for our work in this pa-
per is that through cooperatively tracking a mutually observed
common object, a team of robots can implicitly perform cooper-
ative localization. In comparison with noncooperative methods,
this would not only improve the accuracy of the object posi-
tion estimates but also improve the localization accuracy of the
robots, especially in situations where the self-localization of the
robots is prone to failure due to poor observation measurements
of environmental landmarks/features. In our method (hence-
forth referred to as PF-UCLT algorithm), presented further in
Section III, a particle’s state hypothesis component (the other
component being its weight) represents the pose of the robot run-
ning the algorithm, the poses of the teammate robots, and the
position of the tracked object. The update step of our algorithm
systematically overcomes the problem of error propagation from
the object position estimate to the robots’ pose estimates, which
happens in a two-step process as previously mentioned. The
core novel features of our approach are as follows.

1) A standard PF implementation for the UCLT problem
will require an exponentially growing number of parti-
cles, hence exponentially growing space and computa-
tional time complexity, w.r.t. the number of robots in order
to achieve a given level of estimation accuracy and to avoid
the particle deprivation problem. Our PF-UCLT approach
does not require any increase in the number of particles
w.r.t. the number of robots. This is done by exploiting
the properties of conditional and mutual independence of
some measurements involved in the estimation process.
However, in our method, each particle represents a full-
state hypothesis, leading to the linear dependency on the
number of robots of both space and time complexity. This
makes our online method scalable w.r.t. the number of
robots in the team. We show the method is scalable by
applying it to several simulated datasets and a real robot
dataset. To validate its superior performance we experi-
mentally compare it on the same datasets with

a) an online joint extend Kalman filter (EKF)-based
method and

b) an offline nonlinear least squares minimization-
based method named MMG-O [5].

2) The method is also robust to communication and sensor
measurement failures as it does not assume that the tracked
object is visible to all robots at all times. Through a series
of experiments we show how our PF-UCLT algorithm
copes with such failures.

Note that in this paper we assume a known map of landmarks
used by each robot to improve its self-localization estimate when
a sufficient number of landmarks is visible. Hence, we do not
address the simultaneous localization and mapping (SLAM)
problem. Including the mapping aspect within our framework
of cooperative localization and object tracking would not only
increase the computational complexity by requiring additional

state components, but would also violate the properties of mutual
and conditional independences in some measurements which we
explore in this work. Consequently, the SLAM extension of our
work deserves a separate treatment.

The rest of the paper is organized as follows. In Section II,
we overview the state-of-the-art methods for cooperative local-
ization and object tracking with brief comments on how our
method overcomes some of the open challenges in this context.
Section III presents the theoretical details of the PF-UCLT al-
gorithm along with its complexity analysis. This is followed by
the testbed and dataset description in Section IV. The simulation
and real robot experimental results are presented in Sections V
and VI, respectively. Section VII concludes the paper with com-
ments on future directions.

II. STATE OF THE ART

The target tracking problem, manifested in several different
forms, is now a very mature field of research [6]–[8]. Sce-
narios ranging from single to multiple robots tracking one or
more objects/targets [9] to cases where tracking benefits from
a network of static sensors in addition to moving robots [10]
have been studied extensively. PFs are one of the widely used
methods employed for target tracking [9], [11], [12] due to its
multimodal and nonparametric form. PFs are suitable for sce-
narios where the target’s motion model is unpredictable and/or
switches to a different model over time. Using PFs, authors
have efficiently addressed single-robot single-target problem,
e.g., [12]–[14]. However, it is evident that occlusions and lim-
itations on the range of sensors are some of the key reasons
why multirobot/multisensor approach has gained more attrac-
tion in the recent years. In this context, a decentralized PF-based
technique was developed in [9] and [15] to address inherent is-
sues with multirobot cooperative object tracking, e.g., limited
communication bandwidth (solved by sharing Gaussian mix-
ture models instead of complete particle sets). Other explored
techniques involve sharing target-related world-frame constraint
relations among the robots, the solution of which provides the
target’s global position estimates [4], and sharing reduced sets of
particles among the teammates [16]. While the case of multiple-
static-sensors and single-target was addressed in [17], the prob-
lem of multiple moving targets using a single moving platform
was handled in [18]. An important focus of our work in this
paper is to address a more general situation, where a moving
target is tracked by multiple moving robots which, at the same
time, also need to localize themselves. Although the solution
that we propose in this paper could be extended in a straightfor-
ward manner to multiple targets with known data association,
the increase in computational complexity with the number of
targets remains an open problem to address.

The cooperative multirobot localization problem has also at-
tained a widespread attention [19]–[23]. It has been addressed
through numerous viewpoints originating from different appli-
cation areas, e.g., using interrobot measurements [19], [24] or
communicating the relative positions among the teammates and
treating them as observation measurements in a filtering algo-
rithm where the states include the poses of all the robots [25].
Using interrobot measurements, the works of Kurazume et al.
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[26]–[29] and of Rekleitis et al. [30] are among the first that
introduced and formalized the idea of cooperative localization.
Later, in [31], Roumeliotis and Bekey provide a principled KF-
based framework to handle the interdependent and independent
measurements, whereas in [32] Rekleitis et al. formulated the
problem using a PF. More recently, in [33], Bailey et al. pre-
sented an efficient mechanism for cooperative robot localization,
which is an alternative method to overcome the recursive prop-
agation of errors. This is done by centralizing the cooperative
estimation. In their method, each robot first estimates its own
pose and then communicates it, along with an interrobot mea-
surement, to a central data server. These data, received from
all the robots in the team, are then fused to compute consistent
relative localization of every robot. However, this implies that
the robots need to have an additional sensor not only to measure
the relative distances to the other robots in the team but also to
detect their respective IDs. Besides being a practical issue, this
leads to a different class of cooperative localization problem be-
cause 1) most measurements become strongly correlated and 2)
a data association issue needs to be solved. Our work, in this pa-
per, does not address this class of problems and we assume that
direct interrobot measurements are not available. Other meth-
ods include communicating environment-specific static features
and landmark information to robots that might not be able to
observe those themselves due to occlusions/distance, e.g., [34],
[35]. Another recent method to perform cooperative localization
is to share information among the robots regarding a mobile ob-
ject/target observable (and/or being tracked) in the world frame,
at the same time, by all the robots in the team [3]. In such a
case, if the commonly observed object is also being tracked by
the robots, then both cooperative robot localization and coop-
erative object tracking can benefit from each other. This is one
of the key concepts explored by the method we propose in this
paper.

SLOT in the context of single-robot application has also
been a subject of wide interest. For instance, in [36], a con-
ditional PF localizes a mobile robot and tracks multiple people
in the environment. Later in [37], the work was extended to
address data-association with uncertainty using sample-based
joint probabilistic data association. However, extending this to
multirobot scenarios is a challenging step, which we address
in this paper. The field of active cooperative perception, al-
though slightly different in its goal from SLOT, provides sig-
nificant insights to solve the SLOT problem in the context of
multirobot scenarios. Jung and Sukhatme in [38] and Ahmad
et al. [39] present active cooperative target tracking methods,
where the goal is to control each of the robots in the team and
move them to a location such that the cooperative target per-
ception uncertainty is minimized. An approach by Zhou and
Roumeliotis [40] addresses the issue of complexity that arises
in active cooperative target tracking and reduces it from expo-
nential to linear w.r.t. the number of robots. However, in their
approach, robot localization is not addressed, and it only deals
with the motion control of the robots (generating future trajec-
tory of the robots) and cooperative tracking of the target. In
contrast, our approach deals with both the cooperative localiza-
tion of the robots and cooperative tracking of the object, in a

unified framework, and reduces the computational complexity
from exponential to linear w.r.t. the number of robots. A similar
idea was explored by Chang et al. in [41], where they presented
an EKF formulation of the problem and apply their method to
real humanoid robots. One of the experimental comparisons of
our method, which is based on a PF, is with the EKF-based
method. We show that our method significantly outperforms
the EKF-based approach. Earlier, we had presented an offline
solution to the UCLT problem in [5] based on nonlinear least
squares minimization. In this paper, we will also compare our
PF-based online solution with the offline approach presented
in [5] and show that comparable accuracies can be achieved
by our latest method in real time. Furthermore, it is a two-step
approach in which the errors of target estimation are propa-
gated to self-localization of the robots, although not recursively
since target observations are in nonrobot-centric frames. The
usage of nonrobot-centric frames can sometimes be difficult.
For instance, in large outdoor scenarios with few observable
landmarks at a given instant, robot-centric observations are nec-
essary. In such a case, using a two-step approach, like in [4],
would lead to recursive propagation of errors.

III. PF-BASED UNIFIED COOPERATIVE LOCALIZATION

AND TRACKING

In this section, we first present the formulation of the online
UCLT problem followed by the PF-UCLT algorithm, the core
contribution of this paper, and its detailed description. The PF-
UCLT algorithm is designed in a computationally decentralized
manner, such that each robot runs its own instance of the al-
gorithm where it receives the measurements made by its own
sensors and by the sensors of its teammate robots, assumed to
be transmitted to it through a wireless communication system.

A. Online UCLT Problem Formulation

We formulate the online UCLT problem using a recursive
Bayesian filter. Let there be N robots r1 , .., rN in a team track-
ing an object O in an environment consisting of L static land-
marks represented as a set Lmap . The IDs and the positions of
the landmarks in the world frame are known. The state [two-
dimensional (2-D) pose in the world frame] of the robot rn

is given by Lrn
t = [xrn

t yrn
t θrn

t ]� and the state (3-D position
in the world frame) of the tracked moving object is given by
Ot = [xo

t yo
t zo

t ]� at the tth timestep.
The 2-D position of the lth known and static landmark is

given ll = [llx lly ]�. The landmarks are assumed to be fixed on
the ground plane on which the robots move.

The odometry measurement made by the robot rn at the tth
timestep is given by the vector urn

t and an associated noise with
zero mean and covariance matrix Rrn

t . The static landmark ob-
servation measurement of the lth landmark made by the robot rn

in its local frame at the tth timestep is given by the vector zrn ,l
t

and an associated noise with zero mean and covariance matrix
Qrn ,l

t . Similarly, the moving object O’s observation measure-
ment made by the robot rn in its local frame at the tth timestep
is given by the vector zrn ,o

t and an associated noise with zero
mean and covariance matrix Σrn ,o

t .
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We now define xt as the full-state vector being estimated by
stacking all individual states at the tth timestep as

xt =
[
Lr1

t
� . . . LrN

t
� Ot

�
]�

. (1)

ut is obtained by stacking all control (robot odometry) mea-
surements available at the tth timestep as

ut =
[
ur1

t
� . . . urN

t
�
]�

. (2)

zt is obtained by stacking all the observation measurements
available at the tth timestep as

zt =
[
zr1 ,1

t

�
. . . zr1 ,L

t

�

. . . zrN ,1
t

�
. . . zrN ,L

t

�
zr1 ,o

t
�

. . . zrN , o
t

�]�
. (3)

The online UCLT problem seeks to estimate bel(xt), the pos-
terior belief of the state xt at the tth timestep, given all the mea-
surement data up to that timestep. This is given by a probability
distribution over the state space bel(xt) = p(xt |z1:t ,u1:t), con-
ditioned on the available measurement data. Using the recursive
Bayesian filter equation, under the Markovian assumption of
state’s completeness [42], we obtain

p(xt |z1:t ,u1:t) = η p(zt |xt)
∫

p(xt |xt−1 , ut)

p(xt−1 | z1:t−1 , u1:t−1) dxt−1 (4)

where η is the proportionality constant.

B. PF-UCLT Algorithm: A Solution to the Online UCLT
Problem

We first discuss a standard PF solution to the recursive
Bayesian formulation of the online UCLT problem given by
(4), its shortcomings, then describe the proposed PF-UCLT al-
gorithm and how it addresses those shortcomings.

PF approximates bel(xt) by a set of M particles Xt �
{〈x[m ]

t , w
[m ]
t 〉}Mm=1 , representing state hypotheses and their

weights. A standard PF solution estimates Xt from Xt−1 , ut ,
zt , and Lmap through the following steps.

Step 1: A temporary particle set X̄t � {〈x̄[m ]
t , w̄

[m ]
t 〉}Mm=1 is

initialized with null values.
Step 2: Hypothesis prediction for all temporary particles

x̄[m ]
t ∼ p

(
xt |x[m ]

t−1 ,ut

)
. (5)

Step 3: Weight update for all temporary particles

w̄
[m ]
t ∝ p

(
zt |x̄[m ]

t ,Lmap

)
. (6)

Step 4: X̄t is resampled [42] to obtain Xt . Finally, the state
estimate xt is obtained from Xt using either a weighted aver-
age of the particles’ state components or the particle with the
maximum weight.

The performance of a PF is heavily dependent on the number
of particles [43], [44]. In practice, to achieve a good approxima-
tion of the posterior belief bel(xt) by a PF-based method and to

Fig. 1. Structure of particles, sub-particles, particle weights, and the associ-
ated notations defined in Section III and used in Algorithm 1 and subsequently.

not quickly fall into the particle deprivation problem [42], the
number of particles depends exponentially [43], [45] on the di-
mension of the state space represented by a particle. The particle
deprivation problem refers to a situation where none of the par-
ticles are in the vicinity of the correct state. This is more likely
to happen as the dimension of the state space grows. In [43],
Quang et al. formally prove that the PF error increases expo-
nentially with the estimated state’s dimension and therefore, to
maintain a given accuracy, the number of particles used in a
PF must increase exponentially with the state’s dimension. We
briefly discuss the role of state dimensionality in the context of
the UCLT problem.

Let us assume that in case of a single robot localization, where
the robot moves on a 2-D plane (such that the state-space dimen-
sion is 3 including its 2-D position and orientation), the required
number of particles to achieve a given accuracy level in the local-
ization estimates by a PF-based method is M (in practice, M is
usually tractably small, i.e., M in the order of thousands results
in an acceptable accuracy and computational speed). However,
when the state space consists of poses of N robots tracking 3-D
positions of O objects, the number of particles required must
be M (N +O ) to achieve the same accuracy level in all poses and
position estimates similar to that obtained by M particles in
case of a single-robot localization. This renders the usage of a
standard PF implementation inefficient for the UCLT problem.
Even with N = 2 and O = 1, which is the minimum require-
ment for a UCLT scenario, the required number of particles will
be in the order of millions.

In our solution, the PF-UCLT algorithm (see Algorithm 1), we
overcome the aforementioned issue by utilizing the properties
of conditional and mutual independence of some of the involved
variables and accordingly modifying the weight update step of
the temporary particles. Consequently, the required number of
particles remains constant w.r.t. N , whereas the space and time
complexity grow only linearly w.r.t. N in order to maintain a
given accuracy level in all the poses and position estimates.
Furthermore, the time complexity in our solution, as described
further, will also reduce from exponential to linear w.r.t. N .
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PF-UCLT Algorithm Description: Before describing the PF-
UCLT algorithm, it is important to introduce the concept of
sub-particles used throughout the rest of the text (see Fig. 1).
Since the state hypothesis component x[m ]

t of the mth particle
〈x[m ]

t , w
[m ]
t 〉 is composed of the states of all robots r1 , . . . , rN

and the tracked object O at the timestep t, we define a particle
to be an (N + 2)-tuple as

〈x[m ]
t , w

[m ]
t 〉︸ ︷︷ ︸

m thparticle

def .= 〈x[m ],r1
t , . . . , x[m ],rN

t , x[m ],o
t , w

[m ]
t 〉︸ ︷︷ ︸

(N +2)-tuple

(7)

Algorithm 1: PF-UCLT(Xt−1 ,ut , zt ,Lmap , rk ).

1: Transmit {zrk ,o
t , Σrk ,o

t , urk
t , Rrk

t , zrk ,l
t and Qrk ,l

t for
all l = 1, . . . , L} to all robots rn ; n = 1, . . . , N ;
n �= k

2: Receive {zrn ,o
t , Σrn ,o

t , urn
t , Rrn

t , zrn ,l
t and Qrn ,l

t for
all l = 1, . . . , L} such that n ∈ {1, . . . , N}; n �= k

3: X̄t � {〈x̄[m ]
t , w̄

[m ]
t 〉}Mm=1 �

{〈x̄[m ],r1
t , . . . , x̄[m ],rN

t , x̄[m ],o
t , w̄

[m ]
t 〉}Mm=1 = ∅

4: Wt � {〈w[m ],r1
t , . . . , w

[m ],rN

t , w
[m ],o
t 〉}Mm=1 = ∅

5: for m = 1 to M do
6: for n = 1 to N do
7: x̄[m ],rn

t = sample_robot_motion_model
(x[m ],rn

t−1 ,urn
t )

8: end for
9: x̄[m ],o

t = sample_object_motion_model (x[m ],o
t−1 )

10: end for
11: for m = 1 to M do
12: for n = 1 to N do

13: w
[m ],rn

t ∝
L∏

l=1

p(zrn ,l
t | x̄[m ],rn

t ,Lmap)

14: end for
15: end for
16: for n = 1 to N do
17: {〈x̄[m ],rn

t , w
[m ],rn

t 〉}Mm=1 ←

sort_descend ({〈x̄[m ],rn

t , w
[m ],rn

t 〉}Mm=1)
w.r.t. {w[m ],rn

t }Mm=1
18: end for
19: for m = 1 to M do

20: m∗ = arg max
m ′∈[m :M ]

N∏
n=1

p(zrn ,o
t | x̄[m ],rn

t , x̄[m ′],o
t )

21: Swap x̄[m ],o
t , x̄[m ∗],o

t

22: w
[m ],o
t ∝

N∏
n=1

p(zrn ,o
t | x̄[m ],rn

t , x̄[m ],o
t )

23: w̄
[m ]
t = w

[m ],o
t

N∏
n=1

w
[m ],rn

t

24: end for
25: normalize {w̄[m ]

t }Mm=1
26: Xt = resample(X̄t)
27: returnXt

where the first N elements of the (N + 2)-tuple, henceforth des-
ignated as the robot sub-particles of the mth particle, form an
N -tuple 〈x[m ],r1

t , . . . , x[m ],rN

t 〉 representing the state hypoth-
esis of the robots r1 , . . . , rN . The (N + 1)th element x[m ],o

t ,
henceforth designated as the object sub-particle of the mth par-
ticle, represents the state hypothesis of the tracked object O.
The last element w

[m ]
t represents the weight of the full mth

particle. Similar sub-particle notations for temporary particles
or particles at timestep t− 1 will follow.

We now expand (5) and (6) to further facilitate Algorithm 1
description. Using the concept of sub-particles and the vari-
able definitions in (1) and (2), we can expand the prediction
step (5) as

x̄[m ]
t ∼ p

(
xt |x[m ]

t−1 ,ut

)

⇒ 〈x̄[m ],r1
t , . . . , x̄[m ],rN

t , x̄[m ],o
t 〉 ∼ p(Lr1

t , . . . ,LrN
t , Ot |

〈x[m ],r1
t−1 , . . . ,x[m ],rN

t−1 ,x[m ],o
t−1 〉,

ur1
t , . . . ,urN

t ). (8)

Property 1: Since all the control measurements are intero-
ceptive, i.e., they concern only the internal measurements of
each individual robot and are independent from each other, the
prediction step of each sub-particle can be done separately.

Using Property 1, (8) can be written as the following set of
equations:

x̄[m ],r1
t ∼ p

(
Lr1

t |x[m ],r1
t−1 , ur1

t

)

...

x̄[m ],rN

t ∼ p
(
LrN

t |x[m ],rN

t−1 , urN
t

)

x̄[m ],o
t ∼ p

(
Ot |x[m ],o

t−1

)
. (9)

Using (1) and (3), we can expand (6) as

w̄
[m ]
t ∝ p

(
zt | x̄[m ]

t ,Lmap

)

∝ p
(
zr1 ,1

t , . . . , zr1 ,L
t , . . . , zrN ,1

t , . . . , zrN ,L
t ,

zr1 ,o
t , . . . , zrN ,o

t | 〈x̄[m ],r1
t , . . . , x̄[m ],rN

t , x̄[m ],o
t 〉,Lmap

)

∝
N∏

n=1

L∏
l=1

p
(
zrn ,l

t | 〈x̄[m ],r1
t , . . . , x̄[m ],rN

t , x̄[m ],o
t 〉,Lmap

)

N∏
n=1

p
(
zrn ,o

t | 〈x̄[m ],r1
t , . . . , x̄[m ],rN

t , x̄[m ],o
t 〉,Lmap

)

∝
N∏

n=1

L∏
l=1

p
(
zrn ,l

t | x̄[m ],rn

t ,Lmap

)

N∏
n=1

p
(
zrn ,o

t | x̄[m ],rn

t , x̄[m ],o
t

)
. (10)
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The third proportionality equation in (10) is obtained from
the second using the following property of conditional indepen-
dence.

Property 2: The observation measurements of all the static
landmarks is independent of the observation measurements of
the moving object, given the predicted poses of the observing
robots and the predicted position of the tracked object.

The final proportionality equation in (10) is obtained from
the third using the property of mutual independence for some
(and not all) of the involved variables. These properties are as
follows.

Property 3: The observation measurement for a given static
landmark made by any robot rn is dependent only on the pre-
dicted pose of the robot rn and the fixed position of that static
landmark. It is independent of the predicted poses of all the
other robots, the fixed positions of all the other static landmarks
and the predicted position of the tracked object.

Property 4: The observation measurement of the tracked ob-
ject made by any robot rn depends only on the predicted pose
of the robot rn and the predicted position of the tracked object.
It is independent of the predicted poses of all the other robots
and the fixed positions of all the known static landmarks.

Using the sub-particle concept, introduced notations and
equations [(9) and (10)], we further describe Algorithm 1.

The algorithm itself is a recursive predict–update loop, an
instance of which is required to run on each robot in the team.
Furthermore, in the description, we assume that Algorithm 1
runs on the robot rk . The algorithm’s first input is Xt−1 , the
particle set returned from the immediate preceding iteration of
the algorithm. The other inputs, as defined previously in this
section, are ut , zt ,Lmap , and rk .

In lines 1, 2 of Algorithm 1, the robot rk transmits its con-
trol and observation measurements to all the other robots in the
team and receives the same information from whichever team-
mate possible. Note that our method is not decentralized from
an information viewpoint; only from a computational viewpoint.
This means that every robot expects to receive measurements
from all its teammates and then locally performs the full-state
estimation method. Even though computation is replicated at
each robot, it should not be confused with a multicentralized
approach. In a multicentralized approach, each robot or agent
running the algorithm replicates the exact same computation
and results in the exact same estimate, which could essentially
be run on a central station and the results broadcasted back to
the robots. In our computationally decentralized approach, it is
not necessary that all robots have the exact same measurements
at every timestep. This is quite possible in situations of commu-
nication delays and failures between one or more robots in the
team but not among the other robots. Therefore, even though
the computation is replicated, the measurements at each robot
and the estimates can be different.

Lines 3, 4 define temporary sets X̄t andWt , both initialized
as empty sets. Set X̄t is a temporary particle set, where a tempo-
rary particle is an (N + 2)-tuple as described in (7). SetWt is
defined as {〈w[m ],r1

t , . . . , w
[m ],rN

t , w
[m ],o
t 〉}Mm=1 to hold tempo-

rary weight values of sub-particles corresponding to the robots
and tracked object in the set X̄t .

In lines 5–10 of Algorithm 1, X̄t stores, after computing,
the predicted values of all particles using the input particle set
Xt−1 . This is done by separately incorporating the odometry
measurements of individual robots on the robot sub-particles
x[m ],r1

t−1 , ..,x[m ],rN

t−1 and applying a user-defined motion model

on the object sub-particle x[m ],o
t−1 . The separate prediction of

the sub-particles is according to (9) and Property 1, as stated
previously.

Lines 11–24 present the core of Algorithm 1. The fusion
of all correlated observation measurements is performed here.
Our weighting mechanism (lines 11–24) associates weights to
the predicted particles without modifying its state hypothesis
components as per (10). To this effect, an ingenious rearranging
technique of sub-particles is used which eliminates the need of
an exponentially high number of particles to maintain a given
level of accuracy in the state estimates, thereby avoiding the
particle deprivation problem. This is further described in detail.

Lines 11–15: for each robot rn , its predicted sub-particle
x̄[m ],rn

t is separately assigned a weight w
[m ],rn

t proportional to∏L
l=1 p(zrn ,l

t | x̄[m ],rn

t ,Lmap), which corresponds to their ob-
servation measurements of the static landmarks. The separate
weighting of the robot sub-particles at this stage is due to
Property 3, as introduced previously.

In lines 16–18, each robot’s predicted sub-particle set
{x̄[m ],rn

t }Mm=1 is sorted in descending order w.r.t. its temporary
weight set {w[m ],rn

t }Mm=1 , generated in lines 11–15. This means
that the highest weighted sub-particle, separately for each robot,
is assigned the particle index 1, the second-highest weighted
sub-particle is assigned the particle index 2, and so on. It is cru-
cial to understand why this is done. Given that a robot’s “good”
predicted sub-particles approximate better the correct posterior
of that robot’s state than its “bad” sub-particles, consider
the following situation. If we were using the straightforward
particle weighting mechanism, i.e., the first proportionality
equation in (10), it would be very likely that a robot’s “good”
sub-particle would get coupled with a “bad” sub-particle from
another robot when computing the weight of a particle leading
to a lower overall weight for that particle, even though a
sub-particle in it was “good.” Consequently, that particle has
a much higher chance to get eliminated in the resampling step
of the PF. It is due to this loss of “good” sub-particles and
eventually the loss of “good” particles that an exponentially
high number of particles is required, so as not to fall into the
particle deprivation problem when using the first proportionality
equation of (10) directly. By sorting the individual robot’s
sub-particles and then grouping the “best with the best” robots’
sub-particles, we make sure that the “good” sub-particles from
every robot have a much higher chance to survive after the
resampling step of the PF and the particle deprivation problem
is solved partially [because up to this stage in the algorithm we
still have not considered the object observation measurements
in (10)]. Furthermore, recall that any robot rn ’s sub-particle set
{x̄[m ],rn

t }Mm=1 was predicted and weighted independently of all
the other robots’ sub-particle sets. This implies that rearranging
the robot sub-particle sets does not modify the distribution
represented by the predicted particle set X̄t .
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Lines 19–24 incorporate the observation measurements of the
tracked object made by the robots in (10).

Following from Property 1, the prediction of the tracked ob-
ject’s sub-particles {x̄[1],o

t , . . . , x̄[M ],o
t } was performed inde-

pendently of the robots’ sub-particles prediction. This enables
the freedom to rearrange the tracked object’s sub-particles be-
fore incorporating the object observation measurements in the
particle’s weight. We perform this rearrangement of the object’s
sub-particles to completely solve the problem of particle depri-
vation (recall that earlier it was partially solved by rearranging
only the robot’s sub-particles). Note that even in this rearrange-
ment step neither any new sub-particles will be created nor
any of the existing ones will be destroyed, therefore ensuring
that the distribution represented by the predicted particle set
X̄t remains unaltered. This rearrangement is performed as fol-
lows. For the mth previously rearranged set of the robots’ pre-
dicted sub-particles {x̄[m ],r1

t , . . . , x̄[m ],rN

t }, obtained after the
execution of lines 16–18, we find m∗ in line 20. Here, m∗ is
the particle index ranging from m to M at which the weight
contribution

∏N
n=1 p(zrn ,o

t | x̄[m ],rn

t , x̄[m ∗],o
t ) by the object sub-

particle x̄[m ∗],o
t to the mth particle’s weight is maximum for all

possible indices in [m : M ]. Line 20 swaps x̄[m ],o
t with x̄[m ∗],o

t

ensuring that the m∗ th object sub-particle is grouped with the
mth set of robot sub-particles, whereas the mth object sub-
particle is saved at a later index. This way none of the object
sub-particles get deleted or replicated. Lines 22, 23 then incor-
porate the weight contribution of the selected object sub-particle
into the particle weight w̄

[m ]
t . Note that the computation of the

object sub-particle’s contribution to the particle’s weight due the
object observation measurement follows from Property 4. The
particle weight computation in line 23 is in accordance with
the final expression obtained in (10). The full rearrangement
is achieved by executing lines 20–23 over all predicted sub-
particle sets [1 : M ]. The rearrangement of the tracked object’s
sub-particles, in a way such that the “good” object sub-particle
gets coupled with the “good” sub-particle set of the robots,
ensures that the particle deprivation problem is completely ad-
dressed. This concludes the weight update step of Algorithm 1.

Lastly, line 25 performs the particle weight normalization
followed by the resampling step in line 26. The resampling of
the particle set X̄t is performed to obtainXt , which is eventually
returned as the final output of this algorithm. This can be done
using standard available methods, e.g., low variance resampling
[42].

C. Space and Time Complexity Analysis of PF-UCLT

1) Space Complexity: Assuming that N is the total num-
ber of robots in the team, M is the number of particles re-
quired to obtain a given accuracy level by a PF-based method
for a single robot localization and the number of tracked
objects O = 1, the worst-case space complexity of a stan-
dard PF-based method for the online UCLT problem will be
O(

(N + 1)MN +1
)
. Algorithm 1 limits the worst-case space

complexity to O(
(N + 1)M

)
, since only M particles, with

(N + 1) sub-particles in each particle, are required in order to

maintain the same accuracy level in the state estimates. We also
show this through extensive experimental results. This feature
of the PF-UCLT algorithm makes it scalable to a large number
of robots, even when the robots may have low memory capacity.

2) Time Complexity: The worst-case time complexity
(WCTC) for a standard PF-based method would beO(

MN +1
)
,

i.e., growing exponentially with the number of robots. In our
solution, Algorithm 1, the WCTC of the weight update step
due to the observation measurements of the fixed landmarks is
O(

NM
)
. The WCTC of the sorting performed in lines 16–18

(assuming merge sort) will be O(
NM log M

)
. For the weight

update step due to the tracked object’s observation measure-
ments, the WCTC will beO(

NM 2
)
. Summing the WCTC of all

the individual steps and considering only the highest order term,
while assuming that M � (N + 1), the WCTC of the complete
weight update process in Algorithm 1 will be O(

NM 2
)
. This

is linear in terms of the number of robots N . Therefore, scaling
Algorithm 1 to a larger number of robots is feasible.

IV. TESTBED, DATASETS, BENCHMARKS, AND EXPERIMENTS

A. Testbed and Implementation

We applied the PF-UCLT algorithm to the robot soccer sce-
nario. Our testbed is the RoboCup Middle Sized League (MSL).
In MSL, all sensors, actuators, and computation power must be
on-board the robots. No remote control, sensing, or processing
is allowed. However, interrobot communication is accepted. A
FIFA standard size 5 ball of a prespecified color is used for
the competition. In such a scenario, where all robots are fully
autonomous, the self-localization of each robot and the knowl-
edge of the soccer ball’s position is essential. Adding further to
this challenge is the large field size, field symmetry, occlusions
caused by the presence of other robots, fast motion of the ball,
as well as the limited range of the sensors on each of the robots.
Therefore, robotic soccer is an ideal testbed for the implementa-
tion and evaluation of the PF-UCLT algorithm presented in this
paper. The implementation was done within the robot operating
system (ROS) framework and the source code is available here.2

B. Datasets and Ground Truth

We present results on 1) an extensive set of simulated soccer–
robots datasets and 2) a real soccer–robots dataset. Each dataset
type is described in more detail at the beginning of the corre-
sponding experimental results section. While the ground truth
(GT) for simulated datasets is obvious, the real robot dataset
also consists of GT 2-D positions of the robot and 3-D positions
of the object (but not the robot orientations). This GT was ob-
tained using an external stereo camera pair for durations when
the robots or the ball were not occluded. Error metrics, as de-
scribed below, make use of these GT values. Further details of
the GT system, which has an average error of approx. 2 cm
within a range of 9 m from the GT system’s stereo baseline, can
be obtained from [46].

2https://github.com/guilhermelawless/pfuclt_omni_dataset
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C. Metrics

The error, at each timestep, in the global estimated position
of the ball is computed as the Euclidean distance between the
ball’s estimated 3-D position (by the proposed or other compa-
rable methods) and the corresponding GT estimate for the same.
The robot localization error, at each timestep, is computed as
the Euclidean distance between the estimated 2-D position and
its corresponding GT values. The GT system provides only the
2-D GT positions of the robots, and not the GT orientations of
the robots. In the next sections, we describe the simulation and
real robot experimental results using these error metrics.

V. SIMULATION EXPERIMENTS

We created a simulated dataset generator for the MSL soccer
robot scenario.3 For a desired number of robots, size of playing
field, number of landmarks, etc., it can generate randomized
datasets that simulate 1) robot motions, including translation
and rotations, on the 2-D playing field while avoiding collisions,
and 2) arbitrary ball motion in 3-D space within the prespecified
field dimensions. The generated datasets include the following.

1) Odometry measurements at 33 Hz with artificially added
zero mean Gaussian noise [42] for each robot.

2) Landmark and ball measurements (x, y, z in each robot’s
local frame) at 16.5 Hz with added zero mean Gaussian
noise (maximum σ2 = 0.64 in X- and Y-directions and
maximum σ2 = 0.25 in the Z-direction in the robot’s local
frame).

3) GT poses of the robots and the ball. The observation mea-
surements also keep a separate record of possible occlu-
sions so that the dataset user could decide whether to use
a measurement with or without considering occlusions.

All simulation experiments described further were performed
using a field size of 9 m × 12 m and 10 landmarks. The user-
defined object motion model is as follows. The prediction step
in line 9 of Algorithm 1 was made by simply adding a zero
mean Gaussian acceleration to the object sub-particles. We ex-
plicitly avoided a separate computation of the object velocity
in simulation, contrary to what we do in the case of real robot
experiments. Since the simulation experiments focus on eval-
uating computational and space complexity of Algorithm 1 as
well as the trend of estimation accuracies w.r.t. the number of
robots, it was important to avoid any additional computational
or space-expensive step that may bias the results. All simula-
tion experiments were made on a laptop computer ASUS K550J
with CPU Intel Core i7-4710HQ (2.50 GHz up to 3.50 GHz) and
8 GB RAM. 64-bit Ubuntu 14.04 LTS was used as the operating
system.

A. Proof of Concept

The goal of this experiment is to show that performing coop-
erative localization through a mutually observed common object
improves both the localization estimates of the robots and the
tracked position of the object in comparison with the case where

3https://github.com/guilhermelawless/randgen_omni_dataset/

each robot is localized independently from the other robots and
object position estimation is accomplished by fusing the object
position estimates from every robot. To this end, we performed
the following experiment on a configuration of four robots and
one tracked object (ball) in simulation. After generating an 8-
min-long simulated dataset for this configuration, we applied a
PF-based single-robot localization and object tracking method
separately on each robot. This is also equivalent to a näive ver-
sion of the PF-UCLT Algorithm 1, i.e., with N = 1, O = 1 and
without any sub-particle rearrangements as suggested in Algo-
rithm 1. The 3-D position of the ball is then estimated using the
following different fusion methods, where the left-superscript
rn denotes the robot running its separate PF.

1) Average of the ball position estimates from all robots
as 1

N

∑N
n=1

rn Ot , where rn Ot denotes the ball position
estimated by robot rn .

2) Weighted average of the ball position estimates from all
robots as 1∑ N

n = 1
rn W t

∑N
n=1

rn Wt
rn Ot , where rn Wt is

the weight of the ball position estimate by robot rn and is
calculated as the sum of weights of the particles rn Wt =∑M

m=1
rn w

[m ]
t .

3) Weighted average as above but the weight of the ball
position estimate by robot rn is calculated as the trace
of that robot’s most recent ball observation measurement
information, i.e., rn Wt = Tr(Σrn ,o

t
−1).

4) Estimate from the robot with maximum rn Wt (two sep-
arate methods, each using one of the above methods to
calculate rn Wt).

Subsequently, to perform cooperative localization and track-
ing, we ran the PF-UCLT Algorithm 1 with N = 4 and O = 1
on this dataset. The separate PFs (on each robot) and the PF-
UCLT Algorithm 1 were run ten times each on the same dataset.
In this dataset, the landmark observation range was limited to
2 m for each robot, whereas the ball observation range was
unlimited (but within the field dimensions) and without consid-
ering occlusions. This was done to ensure that the robots often
lose sight of the landmarks, thereby allowing us to clearly ver-
ify whether or not the mutually observed tracked object helps
reduce the uncertainty in the robot pose estimates. The num-
ber of particles for both separate PFs and PF-UCLT was set to
M = 300. However, recall that the PF-UCLT method requires
sub-particles that grow linearly with the number of robots N
(see Fig. 1 for particle structure).

The box plots in Fig. 2 summarize the results of this experi-
ment over all the runs. It is evident that Robot 2 and Robot 3 had
extremely poor localization when performing their separate PFs
for robot localization and object tracking. This is due to observ-
ing very few or even no landmarks at times, and only for very
short time intervals. However, the pose estimates of these robots
substantially improve when using PF-UCLT. At the same time,
there was no significant change in the localization estimates of
Robot 1 and Robot 4, which were already well localized us-
ing their separate PFs. We also verify that compared to any of
the previously mentioned methods to fuse the ball position esti-
mates in the case of separate PFs, the PF-UCLT method results
in higher accuracy.
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Fig. 2. Comparison of independent PFs for single-robot localization and ob-
ject tracking with PF-UCLT. Solid box plots in black represent errors in robot
localization estimates obtained through the independent PFs, solid box plots in
color represent errors in ball position estimates obtained through ad hoc fusion
techniques on the independent PFs, and dashed-line box plots represent the
errors in the estimates obtained through the PF-UCLT method.

B. Scalability

The goal of this set of experiments is twofold. First, we will
show that as the number of robots N grows in the PF-UCLT
Algorithm 1, the growth of computational time is only linear.
Second, we will also show that as N grows, we do not require
an increase in the number of particles, but only a linear increase
in the number of sub-particles in order to maintain an approxi-
mately constant accuracy level in the state estimates. For each of
the two goals, we performed separate experiments as described
in the sections below.

1) Computation Time Versus Number of Robots: For this
goal we performed the following subexperiments.

a) Subexperiment A: Two separate runs on three different
simulated datasets for each of the following robot config-
urations: N = 2, N = 3, . . . , N = 10. For all datasets
O = 1. In this subexperiment, we generated datasets with
unbounded observation range for the landmarks and the
ball from the observing robots without considering occlu-
sions (by ignoring occlusion information). The range in
this and the next subexperiment is unbounded due to the
goal of analyzing the trend of computation time of the al-
gorithm. The higher the range, the more measurements are
processed in every iteration of the algorithm, thus leading
to worst-case computation time situations.

b) Subexperiment B: Same as subexperiment A but with oc-
clusions. Meaning, if a landmark or the tracked object is
occluded from the robot due to the presence of another
physical entity in the line of sight, its simulated measure-
ment is discarded.

Plots in Fig. 3 confirm that the average computation time
for one iteration of the PF-UCLT Algorithm 1 grows linearly
w.r.t. the number of robots for both subexperiments. The linear
growth in computation time is in fact due to the linear growth in
the number of landmark and ball observations as the number of

Fig. 3. Average computation time growth w.r.t. the increase in the number
of robots. Multiple points on the Y-axis denote multiple runs (2) and multiple
datasets (3) for a given number of robots.

robots increases. However, occlusions cause these observations
to drop by a near-constant factor per robot which explains the
smaller slope for subexperiment B. Moreover, a further increase
in the number of robots could itself cause the occlusion rate to
increase. Hence, we see that for the ten robot configuration, the
computation times tend to grow sublinearly in subexperiment
B. Note that for both subexperiments, we kept the number of
particles constant at 250. However, since a particle consists
of N + O subparticles (see Fig. 1 for particle structure), for
every additional robot an additional subparticle set is used which
causes the memory requirement to increase linearly with N (see
Section III-C for the space complexity analysis).

2) State Estimate Accuracy Versus Number of Robots: For
this goal, we performed the following experiment: Two separate
runs on ten different simulated datasets for each of the follow-
ing robot configurations: N = 2, N = 3, . . . , N = 10. For all
datasets O = 1. In each configuration, the maximum observa-
tion range for the landmarks and the ball was set to 3.0 m and
occlusions were considered. The lower observation range is not
only to closely mimic the real robot scenario, which is described
in the next section, but also to ensure that the estimation accu-
racy is due to the cooperative nature of the algorithm and not
simply due to having multiple landmark observations. The plots
in Fig. 4 show the trend of accuracy in the state estimation w.r.t.
the number of robots as well as the computation time growth
for the sake of completeness. The plots in Fig. 4(a) show the
robot localization errors for all the robots, the two runs and the
ten datasets for a given configuration of robots, combined into
a single box plot. For a given configuration, we also combine
the errors in the global position of the ball over all the runs and
datasets into a single box plot to facilitate comparison between
different configurations. Note that the errors in the global posi-
tion of the ball are excluded when it is out of the field of view
of all the robots leading to a nonconvergent object subparticle
set. This happens less as the number of robots increases. An
additional visibility fraction plot in Fig. 4(a) denotes the ratio
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Fig. 4. Trend of estimation accuracy and computation times in the experiment described in Section V-B1. Note that here the computation times are in general
much lower than the experiments described in Section V-B1. This is not only due to a highly restricted observation range (3 m) causing fewer observations to be
processed in the update step of our algorithm, but also due to a parallelized implementation of our method over six CPU threads on the computer described at the
beginning of Section V. (a) State estimation accuracy w.r.t. the number of robots. (b) Computation time w.r.t. the number of robots.

between the time the ball could be tracked and the total dataset
duration.

For all configurations in this experiment also we kept the
number of particles constant at 250. However, since a particle
consists of N + O subparticles (see Fig. 1 for particle struc-
ture), for every additional robot an additional subparticle set is
used. This causes the memory requirement to increase linearly
with the number of robots N (see Section III-C for the space
complexity analysis). The trend in Fig. 4(a) confirms that for
all configurations, the PF-UCLT algorithm was able to maintain
the robot localization estimate errors at a median of approx.
3–4 cm and the errors in global ball position estimate at a me-
dian of approx. 10–12 cm (this implies even lower errors in the
ball position estimate in a robot’s local reference frame). The
distribution of errors is well within the 2-sigma error bounds
of the actual measurement errors. We also experimentally es-
tablished that the PF-UCLT Algorithm 1 does not require an
increase in the number of particles, and needs only a linear in-
crease in the number of subparticles w.r.t. the number of robots
(therefore, only a linear increase in the memory requirements)
in order to maintain an approximately constant accuracy level
in all the state estimates (robots and object).

There is, however, a slight but noticeable increase in the robot
localization errors as the number of robot grows and an initial
slight decrease in the ball position errors which then saturates.
This is due to our dataset implementation strategy. The field size
is constant over all robot configurations. Therefore, the higher
the number of robots, the more is the field cluttered with robots.
This leads to extended periods of time when some robots ob-
serve neither a landmark nor the ball due to occlusions. During
that period, those robots are deemed to degrade their localization
estimate. Without any observation, their corresponding subpar-
ticles play no role in the update steps of Algorithm 1. On the
other hand, with an increasing number of robots there is an

increasing chance that the ball is in the field of view of more
robots until a certain number, after which the additional robots
are simply beyond the observation range of the ball and/or the
ball is occluded from them. Therefore, the ball position estimate
slightly improves before saturating w.r.t. the number of robots.
Note that the aforementioned degradation in the pose estimates
of the robots does not affect the ball position estimates. In fact,
in the time periods when the robots lose their localization they
are also not observing the ball (and landmarks), and thus the
ball position estimation is unaffected.

VI. REAL ROBOT EXPERIMENTS

For the real robot experiments, we used a prerecorded dataset
from a team of four MSL robots (named as OMNI1–OMNI4).
These robots are three-wheeled omnidirectional robot soccer
platforms (see [47] and [48] for a detailed description of these
robots as well as the datasets). The main sensor on the robot
is a dioptric vision system consisting of a camera providing
omnidirectional vision through a fish-eye lens. This vision sys-
tem, pointing downward to the ground, enables the robots to
detect objects of interest including the ball and landmarks up
to ∼3.5 m. In these experiments, the software was run on a
computer with CPU Quad Core Intel(R) Core(TM) i5 CPU 750
@ 2.67 GHz and 8 GB RAM.

In the experiments described further in this section, the PF-
UCLT algorithm is implemented on a part of this dataset. We
used the observation measurements of six landmarks (out of
ten), the orange ball observation measurements and the odome-
try measurements of all four robots for a period corresponding to
approximately 6 min of real-time data acquisition. This is done
in order to be consistent with the part of the dataset used by other
methods in our previous work [5] which we compare against the
PF-UCLT algorithm. Note that the ball measurements from each
robot are quite noisy. A separate characterization of the sensor
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noise, using the GT positions of the robots and the ball, shows
that the mean of the noise in the range component of these mea-
surements for all the robots is approx.−15 cm and the standard
deviation ranges from 30 to 70 cm. Since the GT orientation of
the robot is not available, this noise characterization is done only
for the range component of the ball measurements. The noise is
due to multiple sources of error including inaccuracies in color
segmentation for the ball, delays in the system (between image
acquisition time and processing, etc.) as well as partial occlu-
sions to the ball. One can also use this noise characterization
to assist in designing a filter for the ball position estimation.
However, we did not do so to be fairly comparable with the
other methods in [5]. More details can also be obtained from the
wiki4,5 page of the dataset.

In our previous work [5] with EKF and MMG-O (MMG-O
performs nonlinear least squares minimization), object velocity
was considered as a component of the estimated state. Doing
so in a PF-based method would substantially increase the com-
putational burden. In the PF-UCLT algorithm we assumed that
the velocity of the tracked object is neither directly measurable
by any exteroceptive sensor nor considered as a component of
the estimated state. Note that even though we do not explicitly
estimate the object velocity in the proposed approach, our com-
parison for the rest of the estimated state components with the
aforementioned approaches is fair. This is because all the meth-
ods use exactly the same raw sensor measurements. As an imple-
mentation strategy, what we did for PF-UCLT algorithm here is
as follows. We computed the ball velocity at every timestep by
performing a linear regression over the tracked ball positions
during a fixed number of previous timesteps. Subsequently,
this velocity, along with a zero mean Gaussian acceleration
noise, is used for predicting the object subparticles in line 9 of
Algorithm 1. Thus, the user-defined object motion model in the
real robot case is constant velocity with zero-mean Gaussian ac-
celeration. As an extra note, the success of all our experiments
also shows that the PF-UCLT algorithm is able to accommodate
different kinds of object motion models.

A. Comparison With Other Methods

The goal of this experiment is to compare PF-UCLT with
other aforementioned approaches in terms of estimation accu-
racy. The robots are henceforth mentioned as OMNI1–OMNI4.
Algorithm 1 is implemented on OMNI1. In addition to its own
measurement data, OMNI1 receives odometry, landmarks, and
object observation measurements from OMNI2, OMNI3, and
OMNI4 (lines 1, 2 of Algorithm 1). In order to emulate com-
munication between the two robots, at every iteration of the
algorithm on OMNI1, we select the closest timestamped mea-
surements from the data logs of other robots.

Fig. 5 presents the results of this experiment. The estimation
errors are calculated as described in Section IV-C. In compari-
son with the MMG-O approach, we observe that the PF-UCLT
method results in slightly less accurate localization of all robots.

4https://github.com/aamirahmad/read_omni_dataset/wiki
5https://github.com/aamirahmad/read_omni_dataset/tree/master/docs

Fig. 5. Real Robot Experiment: Estimation error comparison between online
PF-UCLT, offline MMG-O, and online EKF-based method.

The reason lies in the fact that PF-UCLT is an online approach
where the measurement data at each timestep is incorporated
only once. In contrast, MMG-O is an offline batch-processing
method that employs an iterative local linearization technique
for the least squares error minimization over the whole dataset,
and in every such iteration it improves the estimate of the com-
plete trajectory of all the robots and the ball. This enables the
MMG-O method to mitigate the effect of noisy measurements,
which are abundant in the dataset used for these experiments.
In case of the PF-UCLT method, if noisy measurements ex-
ist for a significant period of time, estimates start to become
poor. However, they recover to better estimates when less noisy
measurements arrive. Unlike the offline approach of MMG-O,
PF-UCLT is online and therefore not designed to update the
previous trajectory at any timestep, hence the mean error of lo-
calization tends to be higher in its case when compared to the
MMG-O method. Nevertheless, compared to the online EKF-
based approach, the PF-UCLT method substantially improves
the localization estimates, e.g., ∼65% reduction in the mean
localization error for OMNI1, ∼46% for OMNI2, ∼24% for
OMNI3, and ∼31% for OMNI4.

On the other hand, the PF-UCLT method shows a slightly
higher precision in tracking the ball when compared to both the
other methods. This is supported by a lower variance of the errors
in the ball’s global position estimates (0.05 m2 for PF-UCLT,
0.334 m2 for EKF, and 0.327 m2 for MMG-O). Note that a lower
mean/median error occurs when estimates are closer to the GT,
indicating higher accuracy in tracking, whereas a lower variance
of errors indicates higher precision in tracking (also true for the
robot localization estimates). The higher precision in tracking
the ball, achieved by the PF-UCLT method, is also reflected by
its smoother trajectory in the video6 accompanying this paper,
compared to that in the MMG-O video7 accompanying [5]. PF-
UCLT’s overall superior results over the EKF-based approach
is primarily due to a PF’s ability to effectively handle multiple
modalities in the observations as well as arbitrary changes in

6Video link of the PF-UCLT experiments. http://users.isr.ist.utl.pt/~aahmad/
TRO2017_video/TRO_17_PFUCLT.mp4

7This video can be downloaded from the multimedia tab of the [5]’s weblink
http://ieeexplore.ieee.org/xpl/abstractMultimedia.jsp?arnumber=6631396
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Fig. 6. Real Robot Experiment: Estimation error comparison between online
PF-UCLT and offline MMG-O methods in the situation of permanent commu-
nication failure.

the object’s motion direction. On the other hand, PF-UCLT’s
higher precision than MMG-O is due to the following reason.
Least squares are inherently sensitive to outliers unless they
are robustified, which was not the case in [5]. The real robot
dataset is contaminated with intermittent outliers in the ball
observation measurements. The low-pass filtering property of
the PF-UCLT method efficiently handles such outliers as it is
quite unlikely that a sudden wrong measurement (outlier) would
affect a correctly converged object subparticle set.

The average iteration time taken by the PF-UCLT algorithm
on the real robot dataset was 0.050 s. As reported in [5], the EKF
required 138 s for the full dataset (i.e., 20–30 ms per iteration,
showing real-time performance), whereas MMG-O took 20 s
for the whole dataset. Note that the computing hardware in [5]
was inferior to the one used here for PF-UCLT, as described
previously. Even though MMG-O is fast, the design of MMG-O
is such that it can only run on the full trajectory of states, thus
being a batch process and running offline by design.

B. Robustness to Failure Scenarios

The goal of this set of experiments is to perform robustness
analysis of the PF-UCLT algorithm and compare it with the ro-
bustness of MMG-O in the presence of communication or vision
failures. To this end, a set of 12 experiments (3 situations in 4
different scenarios) were designed and in each experiment both
methods were tested on the same portion of real-robot dataset
as in the previous experiment. Results of PF-UCLT algorithm
implementation on OMNI1 are analyzed. The scenarios include
permanent and temporary communication failures as well as
permanent and temporary vision failures. Each of the four sce-
narios consists of three different situations that correspond to an
increasing number of failed robots in that scenario. To emulate
the communication failure odometry, landmark and object ob-
servation measurements corresponding to specific timestamps
were excluded from the algorithm’s execution process. To emu-
late vision loss, only the landmark and object observation mea-
surements were excluded. We further present the results of these
experiments grouped according to the failure scenarios.

The plots in Figs. 6–9 help visualize the evolution of estima-
tion errors with the increasing number of failed robots in every

Fig. 7. Real Robot Experiment: Estimation error comparison between online
PF-UCLT and offline MMG-O methods in the situation of temporary commu-
nication failure.

scenario. Note that the errors are calculated as explained in
Section IV-C. For a particular robot, the error is calculated only
for the duration which does not correspond to the communica-
tion failure time period (during that time period the teammate
robot’s localization is irrecoverable). For the ball, as for any of
the previous experiments, the errors are calculated only if the
ball is present in the field of view of at least one of the robots.
Also, the errors are calculated only if the corresponding GT is
present and not unavailable due to occlusions from the overhead
stereo GT system. Prior to the analysis of results, it is also worth
mentioning that in the real robot dataset, the individual robot’s
odometry noise and observation measurement noise were much
higher for OMNI4 compared to the other robots. High slippage
in OMNI4’s motors lead to noisier odometry measurements.
The noisy observation measurements are caused by poor color
segmentation calibration for its vision system.

1) Permanent Communication Failure: The following three
situations were experimented under the scenario of permanent
communication failure.

One Failed Robot: Communication loss between OMNI2
and OMNI1 [80 s–end of dataset (EOD)].
Two Failed Robots: Communication loss between OMNI2
and OMNI1 (80 s–EOD), OMNI3 and OMNI1 (85 s–EOD).
Three Failed Robots: Communication loss between OMNI2
and OMNI1 (80 s–EOD), OMNI3 and OMNI1 (85 s–EOD),
OMNI4 and OMNI1 (92 s—EOD).

The EOD in all the experiments here onward is at ∼360 s.
Plots in Fig. 6 present the results of this scenario.

Primarily, we observe that for all the three situations, the er-
rors in position estimates for the robots and the ball are lower
for the MMG-O method in comparison to the PF-UCLT algo-
rithm for reasons explained in the previous section. Although
it gains on computational speed and allows real-time execu-
tion, PF-UCLT compromises on accuracy to some extent when
compared to MMG-O.

For both PF-UCLT and MMG-O, we observe from the plots
in Fig. 6 that the position estimation accuracy of the “dis-
connected” robots (robots which lose communication with
OMNI1) degrades, while the position accuracy of the “con-
nected” robots (robots whose communication with OMNI1 has
not failed) is maintained. It is noticeable that OMNI1, on which
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the algorithm runs in the case of PF-UCLT or whose self-
measurement/observation data is never lost in case of the MMG-
O approach, is able to maintain its position estimate accuracy
when one or more teammates fail to communicate. This partic-
ularly highlights the robustness of both the approaches in the
case of permanent communication loss. It is also interesting to
observe that when OMNI4 is “disconnected” (loses commu-
nication), OMNI1 slightly improves its own position estimate
accuracy (mean error reduces from 0.100 to 0.093 m in the case
of PF-UCLT and from 0.64 to 0.62 m in the case of MMG-
O approach) while OMNI4’s position accuracy reduces drasti-
cally (mean error increases from 1.40 to 2.76 m in the case of
PF-UCLT and from 0.187 to 2.153 m in the case of MMG-O
approach). The main reason behind it is that OMNI4’s mea-
surements are extremely noisy. Such a phenomenon highlights
a beneficial feature of both approaches. The position estimates
of the robots with highly noisy measurements improve quite
significantly in the presence of robots with less noisy measure-
ments, while at the same time the position accuracy of the latter
robots is only slightly compromised.

The accuracy of the ball’s position estimate degrades with
the number of robots losing communication. This is simply due
to the fact that with less communications, there are less object
observation measurements. The ball is not only completely un-
observed by OMNI1 for extended periods of time but also, when
visible, far fewer teammates are able to provide the object ob-
servation measurements to OMNI1. Therefore, the information
gain on the ball’s position estimate is stunted. This eventually
leads to an increase in the overall mean error of the ball position
estimation w.r.t. an increase in the number of failed robots.

2) Temporary Communication Failure: The following three
situations were experimented under the scenario of temporary
communication failure.

One Failed Robot: Communication loss between OMNI2
and OMNI1 (80–120 s).
Two Failed Robots: Communication loss between OMNI2
and OMNI1 (80–112 s), OMNI3 and OMNI1 (85–120 s).
Three Failed Robots: Communication loss between OMNI2
and OMNI1 (80–112 s), OMNI3 and OMNI1 (85–120 s),
OMNI4 and OMNI1 (92–128 s).

Plots in Fig. 7 present the results of this scenario.
Similar to the previous scenario, the mean errors in the po-

sition estimates of all the robots and the ball are comparatively
lower in the case of MMG-O method than the PF-UCLT, al-
though both methods were able to effectively localize the robots
and track the ball. An important observation in this scenario is
the stability of errors. With the increase in the number of failed
robots, the mean and median errors of all the robots and the ball
position estimates change only slightly (0%–10%). This means
that both the unified methods, MMG-O and PF-UCLT, were
robust to temporary communication failures and were able to
recover the temporarily “disconnected” robot’s localization esti-
mates, once they got “reconnected” (regained communication).

3) Vision Failure Scenarios: The rest of the two scenar-
ios involve permanent and temporary vision failure with the
same situations as previously described in the communication-
related scenarios. The only difference in the vision-related fail-
ure scenario is that the odometry measurements from the team-

Fig. 8. Real Robot Experiment: Estimation error comparison between online
PF-UCLT and offline MMG-O methods in the situation of permanent vision
failure.

Fig. 9. Real Robot Experiment: Estimation error comparison between online
PF-UCLT and offline MMG-O methods in the situation of temporary vision
failure.

mate robots were always available. Therefore, contrary to the
communication-failure scenarios, the “faulty” robots (i.e., the
robots which lose camera vision) in the vision-failure scenarios
were still attempted for localization using only odometry and
their large estimation errors were considered in the statistics. In
the communication-failure scenarios, the disconnected time pe-
riods were not considered in the error statistics. Through Figs. 8
and 9, we find that the results in vision failure scenarios are
very similar to those of communication failure scenarios with
slightly higher position estimation errors in the localization due
to the aforementioned issue of having different time periods of
the error statistics. Fig. 9 also confirms that our method recov-
ers the “faulty” robot localizations and object tracking estimates
after their vision system is restored.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach for unified coop-
erative robot localization and object tracking (UCLT) in a mul-
tirobot scenario. The approach is based on a PF and designed
for real-time applications. After formulating the online UCLT
problem, we presented a recursive Bayesian filter solution and
then described a standard PF-based method for it. Subsequently,
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we introduced our approach, the PF-UCLT method, describing
in detail its complete algorithm. In it, a new concept of sub-
particles and a rearranging technique for them was introduced.
Through rigorous experiments on a large number of simulated
datasets we showed that the PF-UCLT method

1) implicitly performs cooperative localization through a
mutually observed common object and significantly im-
proves the localization of the robot and its teammates,
which would have been much poorer if using only a map
or landmark-based localization for the robots;

2) simultaneously, the cooperatively estimated object posi-
tion is also significantly improved in comparison to a
weighted or simple average of individually tracked object
positions by each robot;

3) reduces the exponentially growing computational and
space requirements of a standard PF-based method to lin-
ear w.r.t. the number of robots in the team. Consequently,
in order to maintain a given level of accuracy in the state
estimates it does not require an increase in the number
of particles, and needs only a linearly growing number of
subparticles w.r.t. the number of robots. This was achieved
through a novel subparticle rearranging technique, which
in turn was possible by exploiting the underlying proper-
ties of conditional and mutual independence of the mea-
surements. This also demonstrates how complexity can be
reduced in other PF-based estimation algorithms that tend
to be computationally expensive.

Through extensive experiments on a real-robot dataset, we
showed that the PF-UCLT method

1) performs not only significantly better than an online EKF-
based method designed to solve the same problem, but
also very similar to an offline nonlinear least squares
minimization-based method designed as a full-state tra-
jectory optimizer. Since PF-UCLT is designed as an on-
line estimator for real-realtitime applications, this result
is quite significant;

2) is robust to communication and sensor failures to the
extent that the state estimates of the robots that do not
lose their communication or vision remain unaffected in
the presence of defective teammate robots. Moreover, the
method recovers the state estimates of the defective robots
in case their communication or vision gets restored.

Thus, we conclude that our unified framework for cooperative
estimation provides unique advantages over ad hoc multiple es-
timation methods. Through careful exploitation of conditional
and mutual independences in measurements we could take ad-
vantage of a PF-based estimator to construct such a unified
framework. One limitation of our framework is that it currently
assumes a known landmark-based map of the environment.
However, in scenarios, such as indoor office spaces and factory
floors, where building a landmark-based map is easily possible,
our unified framework is applicable in a straightforward man-
ner. Additionally, the mutually observed tracked objects in those
scenarios must be ascertained beforehand and their models must
be available to all robots. Within this context, an interesting ex-
tension of our framework would be to dynamically include or
exclude mutually observed tracked objects from the estimated
state space depending on their visibility periods. Furthermore,

based on their experience, robots could learn which tracked
objects are more useful to use within our unified framework.
On the other hand, in scenarios, e.g., search and rescue, where
it is hard to predefine models for mutually observed tracked
objects, our framework could leverage the possibility of us-
ing one of the robot teammates as a mutually observed object.
Finally, in scenarios of feature-based maps, our method will
require careful adaptation. One approach would be to consider
either individual features or semantically segmented sets of fea-
tures as static landmarks. However, the increased state-space
dimension would remain a major challenge in such a map rep-
resentation.

The novelties of our PF-UCLT method also give rise to several
new threads of possible future developments. This includes the
following:

1) considering inter-robot measurements;
2) tracking of multiple objects;
3) performing cooperative SLAM and object tracking, to

name but a few.
Although the PF-UCLT method can be used to track multi-

ple objects, it is not yet scalable w.r.t. the number of objects.
The complexity would grow exponentially in such case. Similar
complexity issues can be foreseen by adding interrobot mea-
surements to this problem.

APPENDIX

PROOF OF SUBPARTICLE REARRANGEMENT WITH MAXIMUM

LIKELIHOOD IN THE PF-UCLT ALGORITHM

In a PF, the empirical density

p̂M
t (xt) =

M∑
m=1

w
[m ]
t δx [m ]

t
(xt) (11)

is a discrete estimate of the posterior density pt(xt) =
p(xt |z1:t ,u1:t), where δx [m ]

t
(xt) denotes the Dirac delta mass

located at x[m ]
t . M denotes the total number of particles.

In the update step derivation of PF-UCLT, using the prop-
erties of conditional and mutual independence and the concept
of subparticles, the weight of a particle was obtained as the
following product:

w
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t ∝
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)
(12)

where N is the number of robots, L is the number of static
and known landmarks, and o represents the tracked object. rn

denotes the nth robot.
Let
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Using (12)–(14) we can rewrite the empirical posterior density
(11) as

p̂M
t (xt) =

M∑
m=1

( (
N∏

n=1

w
[m ],rn

t δx [m ] , rn
t

(xrn
t )

)

(
w

[m ],o
t δx [m ] , o

t
(xo

t )
) )

. (15)

In Algorithm 1, we introduced a rearranging method for the
subparticles which was possible not only due to the mutual and
conditional independences in the involved variables but also be-
cause the rearrangement did not change the distribution of the
predicted particle set. The intuition behind the rearrangement is
that grouping the best subparticles provides a higher possibility
for the good subparticles and eventually for the better parti-
cles to be retained after the resampling step. Furthermore, we
also show that for all possible rearrangements of the subparti-
cles, the proposed rearrangement will result in the maximum
of the empirical posterior density given by 15. As this density
is essentially a sum of products (SOP), where each product is
a result of grouped subparticle weights, the assertion that the
rearrangement results in the maximum posterior density is true
if the following proposition is proved.

Proposition:
Consider a set A = {a1 , a2 , . . . , aM } and a set B =

{b1 , b2 , . . . , bM }, such that
1) ai, bi ∈ R+ , where 1 ≤ i ≤M ; i,M ∈ N+ ;
2) a1 ≥ a2 ≥ a3 ≥ · · · ≥ aM ;
3) b1 ≥ b2 ≥ b3 ≥ · · · ≥ bM .
The SOP combination (a1b1 + a2b2 + · · · + aM bM ) is the

maximum for all other possible SOP combinations. The sum-
mands of an SOP are obtained by multiplying an element of the
set A by any element of the set B, such that each element from
both sets is used once and only once.

Proof: Assume the proposition does not hold, and assume
|A| = |B| > 1 (in the case |A| = |B| = 1 there is no choice to
be made). Now choose two pairs out of the optimal assign-
ment: (ai, bj ) and (ak , bh) for which ai ≥ ak , but bj ≤ bh .
If the proposition does not hold, then such an assignment
must exist. The optimal SOP would then be aibj + akbh + c,
for a certain constant c given by the remaining part of the
SOP. Now consider the alternative SOP aibh + akbj + c. If
the proposition indeed does not hold, the following must be
true: aibj + akbh + c ≥ aibh + akbj + c. However, if we rear-
range the inequality, we find (ai − ak )(bj − bh) ≥ 0, which is
true if and only if ai = ak or bj = bh (since ai − ak ≥ 0 and
bj − bh ≤ 0). Therefore, if the successions are not ordered, we
can always find an assignment switch that will increase the value
of the SOP. Hence, we conclude that the successions must be
ordered in order to maximize the SOP. �
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