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Abstract— One of the central problems in computer vision
is the detection of semantically important objects and the
estimation of their pose. Most of the work in object detection
has been based on single image processing and its performance
is limited by occlusions and ambiguity in appearance and
geometry. This paper proposes an active approach to object
detection by controlling the point of view of a mobile depth
camera. When an initial static detection phase identifies an
object of interest, several hypotheses are made about its class
and orientation. The sensor then plans a sequence of view-
points, which balances the amount of energy used to move with
the chance of identifying the correct hypothesis. We formulate
an active M-ary hypothesis testing problem, which includes
sensor mobility, and solve it using a point-based approximate
POMDP algorithm. The validity of our approach is verified
through simulation and experiments with real scenes captured
by a kinect sensor. The results suggest a significant improvement
over static object detection.

I. INTRODUCTION

With the rapid progress of robotics research, the utility
of autonomous robots is no longer restricted to controlled
industrial environments. The focus has shifted to high-level
interactive tasks in complex environments. The effective
execution of such tasks requires the addition of semantic
information to the traditional traversability representation of
the environment. For example, a household robot needs to
be able to detect an object of interest among those scattered
on a dining table. For manipulation, it needs to estimate the
object’s pose accurately.

One of the central problems in computer vision, object de-
tection and pose estimation, historically has been addressed
with the assumption that the position of the sensing device is
fixed [1], [2], [3]. However, occlusions, variations in light-
ing, and imperfect object models in realistic environments
decrease the accuracy of single-view object detectors.
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Active perception approaches circumvent these issues by
utilizing appropriate sensing settings to gain more informa-
tion about the scene. A large body of research in sensor
management [4] presents a structured approach to controlling
the degrees of freedom in sensor systems and satisfying
operational constraints while achieving the task objectives.
However, most of the work either assumes a simplified model
for the detection process [5], [6] or avoids the problem
altogether and concentrates on estimating a target’s state after
its detection [7], [8], [9].

This paper is a step towards bridging the gap between
the research in sensor management and the recent advances
in 3D object detection enabled by the advent of low cost
RGB-D cameras and open-source point cloud libraries [10].
Rather than placing the burden of providing perfect results
on a static detector, the sensor can move to increase the
confidence in its detection. We consider the following prob-
lem. A mobile sensor has access to the models of several
objects of interest. Its task is to determine which, if any, of
the objects of interest are present on a cluttered table and to
estimate their poses. The sensor has to balance the detection
accuracy with the time spent observing the objects. The
problem can be split into a static detection stage followed by
a planning stage to determine a sequence of points of view,
which minimize the mistakes made by the observer.

The rest of the paper is organized as follows. The next
section provides an overview of related approaches to active
object detection and summarizes our contribution. In section
III we draw up hypotheses about the class and orientation
of an unknown object and formulate the active detection
problem precisely. Section IV describes our approach to
static detection using a depth camera. In section V we discuss
the generation of an observation model, which is used in a
Bayesian framework to assign a confidence measure on the
hypotheses. Section VI presents a formalism, which allows
testing the hypotheses based on the sensor’s observations and
selecting a sequence of view-points to balance the sensing
time with the decision accuracy. Implementation details are
discussed in Section VII. Finally, in section VIII we present
simulation results and discuss the validity of our approach.

II. RELATED WORK

The approaches in sensor management [4], [11] can be
classified according to sensor type into mobile (sensors have
dynamic states) and stationary (sensors have fixed states).
Also, the targets of interest might be mobile or stationary.
The process of choosing sensor configurations may quantify
the utility of the next configuration only (myopic) or may
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optimize over a sequence of future sensor configurations
(non-myopic). Finally, the objective may be to identify a
target and estimate its state or simply improve the state
estimate of a detected target.

The earliest work in active perception can be attributed to
Bajscy [12], [13]. It was focused on 3D position estimation
through control of the sensor’s intrinsic parameters. Pito’s
1999 paper [14] addresses the next best view problem as
one that maximizes information gain by increasing spatial
resolution. The movement of the sensor is constrained to a
circle centered around the object of interest.

The work that is closest to ours [15] uses a mobile sensor
to classify stationary objects on a table and estimate their
poses. Static detection is performed using SIFT matching.
An object’s pose distribution is represented with a Gaussian
mixture. The authors use a myopic strategy to reduce the
differential entropy in the pose and class distributions. This
work differs from ours in that the sensor has models of all the
objects so the detection is never against background. More-
over, by formulating hypotheses about an object’s identity
and by choosing a small discrete space for the possible sensor
poses, we are able to plan non-myopically.

Velez and coworkers [16], [17] consider the problem
of detecting doorways, while a mobile sensor is traveling
towards a fixed goal point. The unknown state of a candi-
date detection is binary: ”present” or ”not present”. Stereo
disparity and plane fitting are used for pose estimation. An
entropy field is computed empirically for all view-points in
the workspace and is used to myopically select locations with
high expected information gain. The authors assume that the
static detector provides sufficiently accurate pose estimates
and do not optimize them during the planning.

In our work we use a depth sensor, which validates the
assumption that the position estimate of a stationary object
is accurate and does not need to included in the optimiza-
tion objective. However, the orientation estimates can be
improved through active planning. Inspired by the work on
hypothesis testing [18], we introduce a rough discretization
of the space of orientations so that the hidden object state
takes on several values, one for ”object not present” and the
rest for ”object present” with a specific orientation. As a post-
processing step, the rough orientation estimate is used to seed
a robust alignment procedure, which provides an accurate
pose estimate. In our previous work we considered a dual
hypothesis problem aimed at model completion [19].

Karasev et al. [20] plan the path of a mobile sensor for
visual search of an object in an otherwise known and static
scene. The problem statement is different from ours but the
optimization is surprisingly similar. The authors hypothesize
about the pose of the object and minimize the probability of
an incorrect decision. Since different object locations need
to be considered, the optimization is intractable. Instead,
a mathematical model of the sensing process is used to
maximize the conditional entropy of the next measurement.

A lot of the work in sensor management assumes a fixed
sensor position, which simplifies the problem considerably
because the trade-off between minimizing movement energy

and maximizing view-point informativeness is avoided [8],
[21]. Often, the action selection process is myopic. In
contrast, we consider a mobile sensor, include the detection
process in the optimization, and use non-myopic planning.
Golovin and Krause [22] showed that myopic planning for an
adaptively submodular objective function is merely by a con-
stant factor worse than the optimal strategy. Unfortunately,
the objective in our formulation is not adaptively submodular
and even with a fixed sensor state, a myopic strategy can
perform arbitrarily worse than the optimal policy [18].

The contributions of this paper are two-fold. Firstly, we
introduce the idea of implicit pose estimation in 3D ob-
ject detection by utilizing a vocabulary tree-based partial
view matching. In addition to detecting the object’s class
this approach allows us to retrieve a course pose estimate.
Moreover, relying on partial views helps in scenarios in
which the object of interest is either partially occluded or in
contact with another object. Secondly, we introduce a formal
hypothesis testing framework to improve upon the static
detection results by moving the sensor to more informative
view-points. Our non-myopic planning approach weights the
benefit of gaining more certainty about the correct hypothesis
against the physical cost of moving the sensor.

III. PROBLEM FORMULATION

Let the table surface be represented by a bounded set T ⊂
R2. Let B0 be the possibly infinite set of all object classes
that may appear on the table. We assume that each object
class has a single model associated with it and use the words
model and class interchangeably. Instances are drawn from
B0 at random and are placed uniformly on the table surface.
For simplicity we assume that the objects have a random yaw
and no pitch or roll so that their poses are in SE(2). The
extension of our framework to the SE(3) case is immediate.

Consider a mobile depth sensor, whose position and
orientation at time t are xt = (xpt , x

r
t ) ∈ SE(3). Let Ω

represent the state of the static environment, which includes
factors such as scene geometry, lighting, occlusion, etc. At
time t, the depth sensor can obtain a point cloud Qt ⊂
R3 from the scene which is visible from xt according to
Qt = φ(xt,Ω). The first task of the sensor is to split Qt
into separate surfaces (segmentation) and associate them with
either new or previously observed objects (data association).
These procedures are not the focus of our paper but we
mention briefly how we perform them in Subsection VII-A.
We assume that they estimate the object positions accurately.

The sensor has access to a database of size L1 < ∞ of
object models B1 ⊂ B0 and a subset B2 = {C1, . . . , CL2} ⊆
B1 of them are designated as objects of interest. The task of
the sensor is to detect all objects from B2, which are present
on the table and to estimate their pose as quickly as possible.
Note that the detection is both against known objects from
B1 and unknown background from B0 \B1.

We are interested in choosing a sequence of view-points
for the mobile sensor, which has an optimal trade-off be-
tween energy used to move and number of incorrect classifi-
cations. Doing this with respect to all objects simultaneously
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results in a complex joint optimization problem. Instead, we
treat the objects independently and process them sequentially,
which simplifies the task to choosing a sequence of sensor
poses with respect to a single object.

Further, we restrict the motion of the sensor to a sphere
S2(ρ) of radius ρ, centered at the location of the object. The
sensor’s orientation is fixed so that it points at the centroid
of the object. We denote this space of sensor poses by V (ρ)
and refer to it as a viewsphere. A sensor pose x ∈ V (ρ) is
called a viewpoint. As a result, we only need to plan for a
sequence of viewpoints. At a high-level planning stage we
assume that we can work with a fully actuated model of the
sensor dynamics so that for any two poses x1, x2 ∈ V (ρ),
there exists a control u1,2 ∈ U , which takes the sensor from
x1 to x2. At time t the sensor can either move and make
one more observation or decide on the class and orientation
of the unknown object and retire.

As mentioned in Section II, the space of object orientations
is discretized sparsely as Θ = {r1, . . . , rN} ⊂ SO(2). Thus,
the hidden variables in the single object optimization are the
object class Y ∈ B2 and the object orientation R ∈ Θ. The
sensor needs to decide between M = L2N + 1 hypotheses:

H0 : the object does not belong to B2,
Hi : the object is of class cl(Hi) := Cmod(i,L2) ∈ B2

with orientation or(Hi) := r(i−cl(Hi))/L2
∈ Θ for

i = 1, . . . , L2N

In order to measure how well the task has been carried out
we introduce the following costs:

Λij = cost for deciding on Hi, when Hj is correct

=


d(or(Hi), or(Hj)) cl(Hi) = cl(Hj) ∈ B2

Λfn cl(Hi) 6= cl(Hj) ∈ B2

Λfp cl(Hi) ∈ B2, cl(Hj) ∈ B1 \B2

0 if i = j

c(x1, x2) = dSE(3)(x
1, x2) + c0 = cost of moving from x1

to x2 on the sphere and taking another observation

where dSE(3)(·, ·) is a metric on SE(3), c0 > 0 is a fixed
measurement cost, Λfp and Λfn are costs for making false
positive and false negative mistakes respectively, and d(·, ·)
is a cost for an incorrect orientation estimate, when the class
is correct.

Problem 1 (Active Object Detection): Given an object
with random class Y ∈ B0 and orientation R ∈ SO(2) on
the table T n SO(2), let j∗(Y,R) denote the index of the
hypothesis with the same class and closest orientation. The
objective of the mobile sensor is to find a stopping time τ ,
a sequence of viewpoints x0, . . . , xτ−1, and a decision rule
δ(Q1:τ ) ∈ {0, . . . ,M − 1} which minimize the cost:

EQ1:τ ,Y,R

{τ−1∑
t=0

c(xt, xt−1) + Λδ(Q1:τ ),j∗(Y,R)

}
. (1)

Remark 1: The first term in (1) captures the energy spent
moving, while the second term is a weighted probability of

making a mistake. To see this suppose that all decision costs
are equal, i.e. D := d(or(Hi), or(Hj)) = Λfn = Λfp,∀i, j.
Then:

EQ1:τ ,

Y,R

{
Λδ(Q1:τ ),j∗(Y,R)

}
= EQ1:τ ,

Y,R

{
D1δ(Q1:τ )6=j∗(Y,R)

}
= DP(δ 6= j∗),

which is the probability that decision δ(Q1:τ ) is incorrect.
Our approach to solving the active object detection prob-

lem consists of two stages. First, we use a vocabulary tree
to perform static detection in 3D. Since the detection scores
are affected by sensor noise and occlusions we don’t use
them directly. Instead, we use a probabilistic framework
to maintain the hypotheses about the detection outcome.
In the second stage, we use non-myopic planing to select
better viewpoints for the static detector and to update the
probabilities of the hypotheses.

IV. STATIC OBJECT DETECTION

This section details our static recognition procedure. We
use a modified 3D version of a vocabulary tree [23], which is
trained using the models in B1. A training database is gener-
ated by extracting a set of templates for each modelM∈ B1.
To represent random clutter we add composite models to B1,
each of which consist of several common tabletop objects
such as a collection of bottles, bowls, vases, etc. A view-
sphere V (ρ) is centered around M and is discretized into
a set of viewpoints VG(ρ) = {v1(ρ), . . . , vG(ρ)} ⊂ V (ρ).
A simulated depth sensor is used to extract a pointcloud
template from every viewpoint. Thus, our training database
is the set D = {Pg,l | g = 1, . . . , G, l = 1, . . . , L1}
of templates. Features, which describe the local surface
curvature are extracted for each template as described below
and are used to train a vocabulary tree. Given a query
pointcloud at test time, we extract a set of features and
use the vocabulary tree to find the template from D, whose
features match those of the query the closest.

A. Feature Extraction

First, it is necessary to identify a set of keypoints for
each template P ∈ D, at which to compute local surface
descriptors. Most 3D features are some variation of surface
normal estimation, which makes them very sensitive to noise.
As a result, using a unique keypoint estimator is prone
to errors. To avoid this, we extract a set of keypoints
KP by sampling the pointcloud P uniformly. Computing
the keypoints over the entire surface accounts for global
appearance and reduces noise sensitivity.

Next, neighboring points within a fixed radius of every
keypoint are used to compute Fast Point Feature Histograms
[24]. The same number of local features is computed at
every keypoint since the radius of the support region is fixed.
The features are then filtered using a pass-through filter to
eliminate badly conditioned ones, which gives the final set
{f}kp associated with kp ∈ KP . The keypoint extraction is
shown in Fig 1.
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Fig. 1. A query surface (white) with keypoints (blue) extracted using
uniform sampling is shown on the left. The best surface returned by the
vocabulary tree is shown on the right.

B. Vocabulary Tree Training

The sets of features
⋃
kp∈KP{f}kp associated with each

template P ∈ D are used to train the vocabulary tree. Instead
of performing unsupervised clustering on the features, we
associate cluster centers with a feature from each of the
L1 models in B1. After the first set of nodes in the tree
is specified, the rest of the cluster centers are computed via
hierarchical k-means clustering. During the tree construction,
the feature relevance at node i is determined by weighting
it with weight wi based on entropy:

wi = ln

(
η

ηi

)
,

where η is the total number of documents (GL1) in the tree
and ηi is the number of documents which have a descriptor
vector passing through node i. The weights are used in
the retrieval phase to weight the database descriptors while
calculating the relevance score.

C. Vocabulary Tree Performance

Given a query pointcloud Q at test time, we compute
keypoints and extract features using the procedure from
IV-A. The features are quantized using the words of the
vocabulary tree to create a document descriptor vector q.
Descriptor vectors dP are computed in a similar manner for
all templates P ∈ D. The query descriptor is propagated
down the tree by comparing it with the k cluster centers and
choosing the closest one through a nearest neighbor search.
The descriptor vectors from the tree are ranked according to a
relevance score s(q, dP), which is the normalized difference
between the query and a database vector:

s(q, dP) =

∥∥∥∥ dP
‖dP‖

− q

‖q‖

∥∥∥∥
The document dP with the lowest relevance score indicates
the best matching template from the database.

The performance of the static detector was evaluated by
using the templates D as queries to construct a confusion
matrix (See Fig. 2). If the retrieved template matches the
model of the query it is considered correct regardless of the
viewpoint.
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Fig. 2. Confusion matrix for all classes in the vocabulary tree. A class is
formed from all views associated with an object.

V. OBSERVATION MODEL

We would like to use a Bayesian framework to maintain
probabilities for the object hypotheses. This requires statis-
tics about the operation of the sensor for different object
classes, orientations, and viewpoints. Instead of using the
segmented pointcloud Qt as the observation of the sensor,
we take the output of the vocabulary tree. As a result, we deal
with the space of possible vocabulary tree outputs rather than
the space of all possible pointclouds. Moreover, this includes
the operation of the vision algorithm in the sensor statistics.

Given a query pointcloud Qt suppose that the vocabulary
tree returns template Pg,l as the top match. Assume that the
models in the training database are indexed so that those from
B2 have a lower l index than those from B1 \ B2. We take
the linear index of the closest match Pg,l as the observation
if the match is an object of interest. Otherwise, we record
only the model index l, ignoring the viewpoint g:

Zt =

{
(l − 1)G+ g, if l ≤ L2

L2G+ (l − L2), if l > L2,∀g ∈ {1, . . . , G}.

This makes the observation space one dimensional. Given a
sensor pose x ∈ V (ρ) and an object hypothesis Hi, we need
to approximate the data likelihood of Zt:

hxi (z) := P(Zt = z | x,Hi)

The function h is called the observation model of the
static detector. It can be obtained off-line since it only
depends on the characteristics of the sensor and the vision
algorithm. Ideally, the sensing and detection processes should
be abstracted to obtain a closed-form representation of h but
this is a daunting task for a depth sensor and a vocabulary
tree. Instead, we learn a histogram approximating h using
the training dataset B1.

The viewsphere is discretized into a set of viewpoints
X (ρ) ⊂ V (ρ), which will be used in the planning phase.
It need not be the same as the set VG(ρ) used to train the
vocabulary tree. We generated 50 random environments from
the models in B1 for each of the 7 hypotheses and used a
simulated depth sensor to obtain scores from the vocabulary
tree for a set X (ρ) of 42 viewpoints.
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VI. ACTIVE HYPOTHESIS TESTING

In this section we provide a dynamic programming for-
mulation for the single object optimization problem in (1).
As mentioned earlier, we restrict the possible sensor poses
to a discrete set X (ρ) of viewpoints on the viewsphere
V (ρ) centered at the unknown object. The state at time t
consists of the sensor pose xt ∈ X (ρ) and the information
state, summarized by the sufficient statistic consisting of the
probabilities for each hypothesis:

pi(t) = P(Hi | Z1 = z1, . . . , Zt = zt, x0:t) ∈ [0, 1],

where z1:t are the observations from the vocabulary tree.
Suppose that at time t the state is (xt, p(t)) and the sensor
decides to continue observing by moving to a new viewpoint
xt+1 ∈ X (ρ). The new observation zt+1 is used to update
the probabilities of the hypotheses according to Bayes’ rule:

p(t+ 1) = T (p(t), xt+1, zt+1), with ith component:
pi(t+ 1) = P(Hi | z1:(t+1), x0:(t+1))

=
P(Zt+1 = zt+1 | xt+1, Hi)P(Hi | z1:t, x0:t)

P(Zt+1 = zt+1 | xt+1)

=
h
xt+1

i (zt+1)pi(t)∑M−1
j=0 h

xt+1

j (zt+1)pj(t)
, ∀i = 0, . . . ,M − 1

using the assumption of independence of successive obser-
vations. Supposing that τ is fixed for a moment, the terminal
cost of the dynamic program can be derived after the latest
observation zτ has been incorporated in the posterior:

Jτ (xτ , p(τ)) = min
δ∈{0,...,M−1}

EY,RΛδ,j∗(Y,R)

= min
δ∈{0,...,M−1}

M−1∑
j=0

Λδ,jpj(τ)

The intermediate stage costs for t = 0, . . . , (τ − 1) are:

Jt(xt, p(t)) = min
v∈X (ρ)

{
c(xt, v)+

EZt+1
Jt+1(v, T (p(t), v, Zt+1))

}
Letting τ be random again and t go to infinity we get the
following infinite-horizon dynamic programming equation:

J(x, p) = min

{
min

δ∈{0,...,M−1}

M−1∑
j=0

Λδjpj , (2)

min
v∈X (ρ)

c(x, v) + EZ{J(v, T (p, v, Z))}
}
,

which is well-posed by Propositions 9.8 and 9.10 in [25].
Equation (2) gives an intuition about the relationship between
the cost functions c(·, ·), Λij and the stopping time τ . If
at time t, the expected cost of making a mistake given by
minδ∈{0,...,M−1}

∑M−1
j=0 Λδjpj(t) is smaller than the cost of

taking one more measurement, the sensor stops and chooses
the minimizing hypothesis; otherwise it continues measuring.

We resort to numerical approximation techniques, which
work well when the state space of the problem is sufficiently

small. The decision rule δ(·) can be replaced by a set of sink
states A = {a0, . . . , aM−1} such that if the sensor goes to
state ai, it decides on hypothesis Hi and remains there for
the rest of time. Then, for s1, s2 ∈ X (ρ) ∪ A the cost of
movement and the state transition function become:

c′(s1, p, s2) =


c(s1, s2), s1, s2 ∈ X (ρ)∑M−1
j=0 pjΛs2,j , s1 ∈ X (ρ), s2 ∈ A

0, s1 = s2 ∈ A
∞, otherwise

T ′(p(t), st+1,zt+1) =

{
T (p(t), st+1, zt+1), st+1 ∈ X (ρ)

p(t), st+1 ∈ A

We can rewrite (2) into the usual Bellman optimality equa-
tion for a POMDP:

J(s, p) = min
s′∈X (ρ)∪A

{
c′(s, p, s′) + EZ{J(s′, T ′(p, s′, Z)}

}
We use a point-based POMDP algorithm [26], [27], which
approximates optimally reachable belief spaces in order to
solve the problem efficiently and obtain an approximate
stationary policy µ̂ : X (ρ) ∪A× [0, 1]M → X (ρ) ∪A.

VII. IMPLEMENTATION DETAILS

The previous sections developed a procedure for making
a decision about the class and orientation of a single object.
In this section we present the details of using this procedure
to process all objects on the table as quickly as possible.

A. Segmentation and data association

The points Qt received from the scene are clustered
according to Euclidean distance by using a Kd-tree. An
occupancy grid representing the 2D table surface is main-
tained in order to associate the clustered surfaces with new
or previously seen objects. The centroid of a newly obtained
surface is projected to the table and compared with the
occupied cells. If the new centroid is close enough to an
existing object, the surface is associated with that object and
the cell is indexed by the existing object ID. Otherwise, a
new object with a unique ID is instantiated.

B. Coupling between objects

The optimization in Problem 1 is with respect to a single
object but while executing it, the sensor can obtain surfaces
from other objects within its field of view. We have the
sensor turn towards the centroid and update the hypotheses’
probabilities of every visible object. The turning is required
because the observation model was trained only for a sensor
facing the centroid of the object. Removing this assumption
requires more training data and complicates the observation
model approximation significantly. The energy used for these
turns is not included in the optimization in (1).

The scores obtained from the vocabulary tree are not
affected significantly by scaling. This allows us to vary
the radius ρ of the viewsphere in order to ease the sensor
movement and to update hypotheses for other objects within
the field of view. The radius is set to 1 meter by default but
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if the next viewpoint is not reachable, its can be adapted to
accommodate obstacles and the sensor dynamics. Algorithm
1 summarizes the complete hypothesis testing framework.

Algorithm 1 Active Object Detection
1: Input: Initial sensor pose x0 = (xp0, x

r
0) ∈ SE(3), object models of

interest B2, vector of priors p(0) ∈ [0, 1]M for the M hypotheses
2: Output: Decisions δ ∈ {0, . . . ,M − 1} for every object on the table
3: Priority queue pq ← ∅
4: Current object ID k∗ ← unassigned
5: for t = 0 to ∞ do
6: Obtain a point cloud: Qt ← φ(xt,Ω)
7: Cluster Qt and update the table occupancy grid
8: for every undecided object k seen in Qt do
9: Rotate the sensor so that xrt faces the centroid of k

10: Get viewsphere radius: ρ← ‖xpt − centroid(k)‖
11: Get closest viewpoint: vk ← arg min

v∈Xk(ρ)
‖xpt − v‖

12: Obtain a point cloud: Qk ← φ(xt,Ω)
13: Get vocabulary tree score zk using Qk
14: Update probabilities for object k: pk ← T (pk, vk, zk)
15: if k /∈ pq then
16: Insert k in pq according to probability k ∈ B2, i.e. 1− pk0
17: if k∗ is unassigned then
18: if pq is not empty then
19: k∗ ← pq.pop()
20: else . All objects seen so far have been processed.
21: if whole table explored then
22: break
23: else
24: Move sensor to an unexplored area and start over
25: xt+1 ← µ̂(vk

∗
, pk
∗
)

26: if xt+1 = ai ∈ A then
27: δk

∗ ← i, k∗ ← unassigned, Go to line 18

28: Move sensor to xt+1

VIII. PERFORMANCE EVALUATION

Object models, constructed using the kinect fusion algo-
rithm from PCL, were used to construct B0. The performance
of the static and the active detectors were compared on
synthetic scenes obtained from B0. The results are summa-
rized in Subsection VIII-A. In Subsection VIII-B, the active
framework was evaluated on several real scenes from a lab
environment captured with a kinect sensor.

We used a subset of 10 models from B0 and 2 clutter
models to define B1. Templates were extracted from them
and were used to train the vocabulary tree. A single object of
interest was used: B2 = {Handlebottle}. The space of object
yaws was discretized into 6 bins to formulate hypotheses
about the detections:

H0 = The object is not a Handlebottle
Hi = The object is a Handlebottle with yaw (i− 1)60 deg

for i = 1, . . . , 6

A. Static versus active object detection

Fourteen synthetic scenes with 5 objects each were con-
structed from the models in B0. The objects were chosen so
that there were 10 instances of each hypothesis. The active
detection algorithm was used with a simulated depth sensor
to make decisions. Twenty five repetitions with different
starting sensor poses were carried out for very object. The

score from the vocabulary tree after the first observation was
recorded as the decision of the static detector. The results are
summarized in Fig. 3. The first seven rows of the confusion
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Fig. 3. Confusion matrix comparing the performance of the static and the
active object detectors. The columns show the true hypotheses associated
with each detection. The first 7 rows present the decisions made by the static
detector. The last 7 rows show the decisions made by the active detector

matrix show the decisions of the static object detector, while
the results from the active framework are shown in the last
seven rows. There is a marked improvement in the results
when the active detection module is used.

B. Experiments with real scenes

Several real scenes were captured from our lab using a
kinect sensor and the fusion algorithm from PCL (See Fig.
4(a)). With B2 and B1 the same as before, the sensor’s task
was to detect any Handlebottles on the table and estimate
their orientation. The opreration of the active detection algo-
rithm is exemplified in Fig. 4(b). Since the object orientations
in a real scene are not discretized a refinement step is needed
if the algorithm detects an object of interest, i.e. decides
on Hi, i > 0. Then, the last observed pointcloud is aligned
with the database template, which corresponds to Hi using
an iterative closest point algorithm. Thus, the final decision
includes both a class and a continuous pose estimate.

The algorithm colors the pointcloud clusters based on its
current understanding of them. Objects, which have been
seen but not processed yet are colored red. The object, which
is currently under evaluation is colored yellow. Once the
system makes a decision about an object, it is colored green if
it is of interest, i.e. in B2, and blue otherwise. Fig. 4(c) shows
a detected Handlebottle in the scene. The active framework
chose hypothesis H3, which corresponds to a yaw of 120◦.
The model associated with H3 is overlaid on the scene before
the orientation refinement. As you can see the two objects are
already very close and the alignment procedure will produce
a good continuous orientation estimate.

IX. CONCLUSION

We consider the problem of detection and pose estimation
of semantically important objects versus background using a
depth camera. Regardless of the quality of an object detector,
the results from static recognition are affected adversely
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(a) Real scene captured using kinect fusion (b) Our algorithm’s interpretation of the scene (c) The object of interest is detected

Fig. 4. The active detection framework is applied to a real scene. An object is colored green if the algorithm decides it is of interest (in B2) and
blue otherwise. Hypothesis 3 (Handlebottle with yaw 120◦) was chosen for the green object in Fig. 4(b). The model associated with H3 is overlaid on
the scene in Fig. 4(c) before the final orientation refinement. See the attached video or http://www.seas.upenn.edu/˜atanasov/ICRA2013_
ActivePerception.mp4 for more details.

by occlusions, lighting, and scene variations. To address
these issues we formulate hypotheses about the class and
orientation of an unknown object and propose a soft detection
strategy, in which the sensor moves to increase its confidence
in the correct hypothesis. A non-myopic planning framework
is used to balance the amount of energy spent for sensor
motion with the benefit of decreasing the probability of
incorrect decision. We demonstrated through simulation that
our active detection framework outperforms static detection
significantly. Additionally, we tested the algorithm on several
real scenes and obtained very promising results.

In future, work we plan to carry out additional real-world
experiments in order to reproduce the analysis performed
in simulation. On the theoretical side, we would like to
investigate the effect of introducing sensor dynamics in the
active M-ary hypothesis testing problem in order to obtain a
suboptimal policy with performance guarantees.
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