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Abstract. Recently, Minimum Cost Multicut Formulations have been
proposed and proven to be successful in both motion trajectory seg-
mentation and multi-target tracking scenarios. Both tasks benefit from
decomposing a graphical model into an optimal number of connected
components based on attractive and repulsive pairwise terms. The two
tasks are formulated on different levels of granularity and, accordingly,
leverage mostly local information for motion segmentation and mostly
high-level information for multi-target tracking. In this paper we argue
that point trajectories and their local relationships can contribute to the
high-level task of multi-target tracking and also argue that high-level
cues from object detection and tracking are helpful to solve motion seg-
mentation. We propose a joint graphical model for point trajectories and
object detections whose Multicuts are solutions to motion segmentation
and multi-target tracking problems at once. Results on the FBMS59 mo-
tion segmentation benchmark as well as on pedestrian tracking sequences
from the 2D MOT 2015 benchmark demonstrate the promise of this joint
approach.

1 Introduction

Several problems in computer vision, such as image segmentation or motion
segmentation in video, are traditionally approached in a low-level, bottom-up
way while other tasks like object detection, multi-target tracking, and action
recognition often require previously learned model information and are therefore
traditionally approached from a high-level perspective.

In this paper, we propose a joint formulation for one such classical high-
level problem (multi-target tracking) and a low-level problem (moving object
segmentation).

Multi-target tracking and motion segmentation are both active fields in com-
puter vision [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. These two problems are clearly re-
lated in the sense that their goal is to determine those regions that belong to
the same moving object in an image sequence.

We argue that these interrelated problems can and should be addressed
jointly so as to leverage the advantages of both. In particular, the low-level
information contained in point trajectories and in their relation to one another
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form important cues for the high-level task of multi-target tracking. They carry
the information where single, well localized points are moving and can thus help
to disambiguate partial occlusions and motion speed changes, both of which are
key challenges for multi-target tracking. For motion segmentation, challenges
are presented by (1) articulated motion, where purely local cues lead to over-
segmentation and (2) coherently moving objects where motion cues cannot tell
the objects apart. High level information from an object detector or even an
object tracking system is beneficial as it provides information about the rough
object location, extent, and possibly re-identification after occlusion.

Ideally, employing such pairwise information between detections may replace
higher-order terms on trajectories as proposed in [15]. While it is impossible
to tell two rotational or scaling motions apart from only pairs of trajectories,
pairs of detection bounding boxes contain enough points to distinguish their
motion. With sufficiently complex detection models, even articulated motion
can be disambiguated.

To leverage high-level spatial information as well as low-level motion cues
in both scenarios, we propose a unified graphical model in which multi-target
tracking and motion segmentation are both cast in one graph partitioning prob-
lem. As a result, the method provides consistent identity labels in conjunction
with accurate segmentations of moving objects.

We show that this joint graphical model improves over the individual, task
specific models. Our results improve over the state of the art in motion segmen-
tation evaluated on the FBMS59 [11] motion segmentation benchmark and are
competitive on standard multi-target pedestrian tracking sequences [16,6] while
additionally providing fine-grained motion segmentations.

2 Related Work

Combining high-level cues with low-level cues is an established idea in computer
vision and has been used successfully e.g. for image segmentation [17]. Similarly,
motion trajectories have been used for tracking [18,5] and object detections for
segmenting moving objects [19]. However, our proposed method is substantially
different in that we provide a unified graph structure whose partitioning both
solves the low level problem, here, the motion segmentation task, and the high-
level problem, i.e. the multi target tracking task, at the same time. In that
spirit, the most related previous work is [5], where detectlets, small tracks of
detections, are classified in a graphical model that, at the same time, performs
trajectory clustering. While we draw from the motivation provided in [5], the key
difference to our approach is that we cast both, motion segmentation and multi-
target tracking, as clustering problems, allowing for the direct optimization of
the Minimum Cost Multicuts [20,21]. Thus, we perform bottom-up segmentation
and tracking in a single step.

In [22], tracking and video segmentation are also approched as one problem.
However, their appoach employs CRFs instead of Minimum Cost Multicuts, is
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built upon temporal superpixels [23] instead of point trajectories and strongly
relies on unary terms on these superpixels learned using support vector machines.

In computer vision, Minimum Cost Multicut Formulations have been mainly
applied to image segmentation [24,25,26,27]. Exceptiontions are [14] applying
this model to motion segmentation and [28] applying it to pedestrian tracking.
In [28], Minimum Cost Multicuts have shown to provide a suitable alterna-
tive to network flow approaches [29,30]. The clustering nature of minimum cost
multicuts avoids the explicit non-maximum suppression step which is a crucial
ingredient in disjoint path formulations such as [29,30].

Different approaches towards solving this combinatorial problem of linking
the right detection proposal over time use integer linear programming [31,32],
MAP estimation [33], or continuous optimization [34]. In these approaches, the
complexity usually needs to be reduced by either applying non-maximum sup-
pression or pre-grouping detections into tracklets [2,3,4,5,6,7,8,9].

As [35,36,15,37,10,11,12,13,14], we cast motion segmentation as a problem
of grouping dense point trajectories. Most of these related approaches employ
the spectral clustering paradigm to generate segmentations, while recently [14]
have shown the advantages of casting the motion trajectory segmentation as a
minimum cost multicut problem.
The approaches of [38,39,35,11,37] base their segmentations on pairwise affinities
while [15,40,41] model higher order motions by different means. In our approach,
we do not make use of any higher order motion models. In fact, much of the
information these terms carry is already contained in the detections we are using,
such that we can leverage this information with pairwise terms.

3 Joint Multicut Problem Formulation

Here, we describe the proposed joint high-level - low-level Minimum Cost Multi-
cut Problem formulation which we want to jointly apply to multi-target tracking
and moving object segmentation. Our aim is to build a graphical model repre-
senting detection and point trajectory nodes and their relationships between one
another in a simple, unified way such that the Multicut Problem on this graph
directly yields a joint clustering of these high-level and low-level nodes into an
optimal number of motion segments and according object tracks.

We define an undirected graph G = (V,E), where V = {V high, V low} is
composed of nodes vhigh ∈ V high representing high-level entities (detections), and
nodes vlow ∈ V low representing fine-grained, low-level entities (point trajectories)
as depicted in Fig. 1 (b).

To represent the three different types of pairwise relations between these
nodes, we define three different kinds of edges. The edge set E = {Ehigh, Elow, Ehl}
consists of edges ehigh ∈ Ehigh defining the pairwise relations between detections
(depicted in cyan in Fig. 1 (b)). These can provide pairwise information com-
puted from strong, very specific object features, reflected in the real-valued edge
costs cehigh . The edges elow ∈ Elow represent pairwise relations between point tra-
jectories (depicted in black in Fig. 1 (b)). The according costs celow are mostly
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V high

V low

(a) high-level and low-level entities (b) proposed graph (c) feasible Multicut

Fig. 1. (a) While pedestrian detections, here drawn as bounding boxes, represent
frame-wise high-level information, point trajectories computed on the same sequence
represent spatio-temporal low-level cues. Both can be represented as vertices in a joint
graphical model (b). The optimal decomposition of this graph into connected com-
ponents yields both a motion trajectory segmentation of the sequence as well as the
tracking of moving objects represented by the detections (c).

based on local information. The edges ehl ∈ Ehl represent the pairwise relations
between these two levels of granularity (depicted in magenta in Fig. 1 (b)). The
Minimum Cost Multicut Problem on this graph defines a binary edge labeling
problem:

min
y∈{0,1}E

∑
ehigh∈Ehigh

cehighyehigh +
∑

elow∈Elow

celowyelow +
∑

ehl∈Ehl

cehlyehl (1)

subject to y ∈ MC,

where MC is the set of exactly all edge labelings y ∈ {0, 1}E that decompose
the graph into connected components. Thus, the feasible solutions to the op-
timization problem from Eq. 1 are exactly all partitionings of the graph G. In
the optimal case, each partition describes either the entire backgroud or exactly
one object throughout the whole video at two levels of granularity: the tracked
bounding boxes of this object and the point trajectories of all points on the ob-
ject. In Fig. 1 (c), the proposed solution to the Multicut problem on the graph
in Fig. 1 (b) contains four clusters: one for each pedestrian tracked over time,
and two background clusters in which no detections are contained.

Formally, the feasible set of all multicuts of G can be defined by the cycle

inequalities [20] ∀C ∈ cycles(G),∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ , making the optimiza-

tion problem APX-hard [42]. Yet, the benefit of this formulation is that (1) it
contains exactly the right set of feasible solutions, and (2) if pe denotes the prob-
ability of an edge e ∈ E to be cut, then an optimal solution of the Minimum Cost
Multicut Problem with the edge weights computed as ce = logit(pe) = log pe

1−pe

is a maximally likely decomposition of G. Note that the logit function generates
real valued costs ce such that trivial solutions are avoided.
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3.1 Pairwise Potentials

In this section, we describe the computation of the pairwise potentials ce we
use in our model. Ideally, one would like to learn terms from training data.
However, since the available training datasets for motion segmentation as well
as for multi-target tracking are quite small , we choose to rather define intuitive
pairwise terms whose parameters have been validated on training data.

Low-level Nodes and Edges In our problem setup, low-level information for
motion segmentation and multi-target tracking is built upon point trajectory
nodes vlow over time and their respective pairwise relations are represented by
edge costs celow .

Low-level Nodes vlow: Motion Trajectory Computation A motion trajectory is
a spatio-temporal curve that describes the long-term motion of a single tracked
point. We compute the motion trajectories according to the method proposed in
[11]. For a given point sampling rate, all points in the first video frame having
some underlying image structure are tracked based on large displacement optical
flow [43] until they are occluded or lost.

The decision about ending a trajectory is made by considering the consistency
between forward and backward optical flow. In case of large inconsistencies, a
point is assumed to be occluded in one of the two frames. Whenever trajectories
end, new trajectories are inserted to maintain the desired sampling rate.

Trajectory Edge Potentials clowe The edge potentials celow between point tra-
jectories vlowi and vlowj are all computed from low-level image and motion in-

formation. Motion distances dm(vlowi , vlowj ) are computed from the maximum
motion difference between two trajectories during their common life-time as
in [11]. Additionally, we compute color and spatial distances dc(vlowi , vlowj ) and

dsp(vlowi , vlowj ) between each pair of trajectories with a common life-time and
spatial distances for trajectories without temporal overlap as in [14] and com-
bine them non-linearly to z := clowe = max(θ̄0 + θ1d

m + θ2d
c + θ3d

sp, θ0 + θ1d
m).

The model parameters θ are set as in [14]. These costs can be mapped to cut
probabilities pe by the logistic function

pe =
1

1 + exp(−z)
. (2)

High-level Nodes and Edges The high-level nodes vhigh we consider repre-
sent object detections. Since these build upon strong underlying object models,
the choice of the object detector is task dependent. While our experiments on
the pedestrian tracking sequences make use the Deformable Part Model (DPM)
person detector [44], our experiments on the FBMS59 dataset [11] employ a
generic object detector (LSDA) [45] which is trained for a wide range of object
classes as well as the more specific faster R-CNN [46]. Details on the specific
detectors and resulting vertex sets V high are given in the experimental section
(Sec. 4).
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Detection Edge Potentials chighe Depending on the employed object detector
and the specific task, a variety of different object features could potentially be
used to compute high-level pairwise potentials. In our setup, we compute the
high-level pairwise terms on simple features based on the intersection over union
(IoU) of bounding boxes. On the pedestrian tracking sequences, the high-level
part of our graph is built as in [28]. More details for edges in Ehigh will be
specified in the experimental section (Sec. 4).

Pairwise Potentials chle between High-level and Low-level Nodes We
assume, the safest information we can draw from any kind of object detection
represented by a node vhighi is its spatio-temporal center position posvhigh

i
=

(xvhigh
i

, yvhigh
i

, tvhigh
i

)> and size (wvhigh
i

, hvhigh
i

)>. Ideally, the underlying object

model allows to produce a tentative frame-wise object segmentation or template
Tvhigh

i
of the detected object. Such a segmentation template can provide far

more information than the bounding box alone. Potentially, a template indicates
uncertainties and enables to find regions within each bounding box, where points
most likely belong to the detected object. For point trajectory nodes vlowj , the

spatio-temporal location (xvlow
j

(t), yvlow
j

(t))> is the most reliable property.

Thus, it makes sense to compute pairwise relations between detections and
trajectories according to their spatio-temporal relationship, computed from the
normalized spatial distance

dsp(vhighi , vlowj ) = 2

∥∥∥∥∥∥∥∥


x
v
high
i

−x
vlow
j

(t)

w
v
high
i

y
v
high
i

−y
vlow
j

(t)

h
v
high
i


∥∥∥∥∥∥∥∥ for t = tvhigh

i
(3)

and the template value at the trajectory position Tvhigh
i

(xvlow
j

(t), yvlow
j

(t)). If a

trajectory passes through a detected object in a frame t, it probably belongs to
that object. If it passes far outside the objects bounding box in a certain frame,
it is probably not part of this object.

Thus, we compute edge cut probabilities pehl from the above described mea-
sures as

pehlij =


1− Tvhigh

i
(xvlow

j
(t), yvlow

j
(t)), if Tvhigh

i
(xvlow

j
(t), yvlow

j
(t)) > 0.5

1, if dsp(vhighi , vlowj ) > σ

0.5, otherwise

(4)

using an application dependent threshold σ.

3.2 Solving Minimum Cost Multicut Problems

The Minimum Cost Multicut problem defined by the integer linear program in
Eq. (1) is APX-hard [42]. Still, instances of sizes relevant for computer vision can
potentially be solved to optimallity or within tight bounds using branch and cut
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[25]. However, finding the optimal solution is not necessary for many real world
applications. Recently, the primal heuristic proposed by Kernighan and Lin [47]
has shown to provide very reasonable results on image and motion segmenta-
tion tasks [27,14]. Alternative heuristics were in [48,49]. In our experiments, we
employ [47] because of its computation speed and robust behavior.

4 Experiments

We evaluate the proposed Joint Multicut Formulation on both motion segmen-
tation and multi-target tracking applications. First, we show our results on the
FBMS59[11] motion segmentation dataset containing sequences with various ob-
ject categories and motion patterns. Then, tracking and motion segmentation
performance will be evaluated on three standard multi-target pedestrian track-
ing sequences. Last, we evaluate the tracking performance on the 2D MOT 2015
benchmark [50].

4.1 Motion Segmentation Dataset

The FBMS59[11] motion segmentation dataset consists of 59 sequences split
into a training set of 29 and a test set of 30 sequences. The videos are of varying
length (19 to about 500 frames) and show diverse types of moving objects such
as cars, persons and different types of animals.

To exploit the Joint Multicut model for this data, the very first question
is how to obtain reliable detections in a video sequence without knowing the
category of the object of interest. Here, we evaluate on detections from two
different methods : Large Scale Detection through Adaptation (LSDA) [45] and
the Faster R-CNN [46].

Large Scale Detection through Adaptation The LSDA is a general object detec-
tor, trained to detect 7602 object categories [45]. In our experiments, we directly
use the code and model deployed with their paper. It operates on a set of ob-
ject proposals, which is produced by selective search [53]. The selective search
method operates on hierarchical segmentations, which means that we obtain a
segmentation mask for each detection bounding box. This segmentation provides
a rough spatial and appearance estimation of the object of interest.

To better capture the moving objects in the video, we additionally gener-
ate selective search proposals from optical flow images and pass them to the
LSDA framework. Example results for the detections and according frame-wise
segmentations are given in Fig. 2 (top).

Faster R-CNN Faster R-CNN is an object detector that integrates a region
proposal network with the Fast R-CNN [54] network. It achieves state-of-the-
art object detection accuracy on several benchmark datasets including PASCAL
VOC 2012 and MS COCO with only 300 proposals per image [46]. In our exper-
iments, we directly used the code and model deployed with their paper.
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Fig. 2. Examples of the object detections and according segmentations. Top: LSDA
detections on images from FBMS59 sequences [11]. The first row shows the best 20
detections. The second row shows three exemplary selective search proposals and third
row visualizes the average segmentation of all proposals. Bottom: The corresponding
faster R-CNN detections. The first row shows the best 20 detections with a minimum
detection score of 0.2. The second row shows three exemplary segmentations from
deepLab [51,52] on these detections and third row visualizes the average segmentation.

On the detections, we generate segmentation proposals using DeepLab [51,52],
again by directly using their implementation. Example results for the detections
and according frame-wise segmentations are given in Fig. 2 (bottom).

Evaluation Fig. 3(a) shows the achieved recall over the number of detections
for LSDA [45] and faster R-CNN [46] for different thresholds on the intersection
over union (IoU) on the FBMS59 [11] training set. For the higher thresholds, the
performance of LSDA is improved when proposals from optical flow images are
used (LSDA+OF) and for IoU ≥ 0.9, this setup yields best recall. However, for
smaller IoU thresholds, faster R-CNN yields highest recall even without consid-
ering optical flow. The comparison of the segment mask proposals from selective
search (for LSDA) and deepLab (for faster R-CNN) (Fig. 3 b(b)) shows the po-
tential benefit of DeepLab. The visual comparison on the examples given in Fig.
2 shows that the selective search segmentation proposals selected by LSDA are
more diverse than the DeepLab segmentations on the faster R-CNN detection.
However, the overall localization quality is worse. We further evaluate detections
from both methods in the Joint Multicut model.
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compare the recall for three different
IoU thresholds 0.9, 0.7, and 0.5.

(b) The Variation of Information for
the proposed object masks over the
number of detections (lower is better).

Fig. 3. Evaluation of the detection and segment proposals on the annotated frames
of the FBMS59 [11] training set.

Implementation Details In our graphical model, high-level nodes represent de-
tections from either of the above described methods. For both detectors, we use
the same setup. First, we select the most confident detections 1. From those, we
discard some detections according to the statistics of their respective segmenta-
tions. Especially masks from the selective search proposals sometimes only cover
object outlines or leak to the image boundaries. Thus, if such a mask covers less
than 20% of its bounding box or more than 60% of the whole image area, the
respective detections are not used as nodes in our graph.

The pairwise terms between detections are computed from the IoU and the
normalized distances dsp of their bounding boxes

dsp(vhighi , vhighj ) = 2

∥∥∥∥∥∥∥∥


x
v
high
i

−x
v
high
j

w
v
high
i

+w
v
high
j

y
v
high
i

−y
v
high
j

h
v
high
i

+h
v
high
j


∥∥∥∥∥∥∥∥ ,

where posvhigh
i

, wvhigh
i

, and hvhigh
i

are defined as in Eq. (3). For all pairs of detec-

tions within one frame and in neighboring frames, the pseudo cut probability is
computed as

pehighij
=


1− 1

1+exp(20∗(0.7−IoU(vhigh
i ,vhigh

j )))
, if IoU(vhighi , vhighj ) > 0.7

1

1+exp(5∗(1.2−dsp(vhigh
i ,vhigh

j )))
, if dsp(vhighi , vhighj ) > 1.2

0.5, otherwise

(5)

The parameters have been set such as to produce reasonable results on the
FBMS59 training set. Admittedly, parameter optimization on the training set
might further improve our results.

1 above a threshold of 0.47 for LSDA and 0.97 for faster R-CNN - on a scale between
0 and 1.
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Training set (29 sequences) Test set (30 sequences)

P R F O P R F O

SC [11] 85.10% 62.40% 72.0% 17/65 79.61% 60.91% 69.02% 24/69
SC + Higher Order [15] 81.55% 59.33% 68.68% 16/65 82.11% 64.67% 72.35% 27/69
MCe [14] 86.73% 73.08% 79.32% 31/65 87.88% 67.7% 76.48% 25/69

MCe + det. (LSDA) 86.43% 75.79% 80.7617% 31/65 - - - -
JointMulticut (LSDA) 86.43% 75.79% 80.7634% 31/65 87.46% 70.80% 78.25% 29/69

MCe + det. (f. R-CNN) 83.46% 79.46% 81.41% 35/65 - - - -
JointMulticut (f. R-CNN) 84.85% 80.17% 82.44% 35/65 84.52% 77.36% 80.78% 35/69

Table 1. Results on the FBMS-59 dataset on training (left) and test set (right). We
report P: average precision, R: average recall, F: F-measure and O: extracted objects
with F ≥ 75%. All results are computed for sparse trajectory sampling at 8 pixel
distance.

The pairwise terms cehl are computed from pehl as defined in Eq. (5) with
σ = 2. This large threshold accounts for the uncertainty in the bounding box
localizations.

frame 80 100 120 . . . 540 560 580

M
C

e[
1
4
]

J
o
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t
M
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Fig. 4. Comparison of the proposed Joint Multicut model and the multicut on trajec-
tories (MCe) [14] on the marple6 sequence of FBMS59. While with MCe the segmen-
tation breaks between the shown frames, the tracking information from the bounding
box subgraph helps our joint model to segment the two men throughout the sequence.
Additionally, static, consistently detected objects like the car in the first part of the se-
quence are segmented as well. As these are not annotated, this causes over-segmentation
on the FBMS59 benchmark evaluation.
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Fig. 5. Comparison of the proposed Joint Multicut model and the multicut on trajec-
tories (MCe) [14] on the horses06 sequence of FBMS59.

Results Our results are given in Tab. 1. The motion segmentation considering
only the trajectory information from [14] performs already well on the FBMS59
benchmark. However, the Joint Multicut model improves over the previous state
of the art for both types of object detectors. Note that not only the baseline
method of [14] is outperformed with quite a margin on the test set - also the
motion segmentation based on higher-order potentials [15] can not compete with
the proposed joint model.

To assess the impact of the joint model components, we evaluate not only the
full model but also its performance if pairwise terms between detection nodes
are omitted (denoted by MCe + detections). For LSDA detections, this result
is pretty close to the Joint Multicut model, implying that the pairwise informa-
tion we currently employ between the bounding boxes is quite weak. However,
for the better localized faster R-CNN detections, the high-level pairwise terms
contribute significantly to the overall performance of the joint model.

Qualitative examples of the motion segmentation and object tracking results
using the faster R-CNN detections are given in Fig. 4 and 5. Due to the detection
information and the repulsive terms between those object detections and point
trajectories not passing through them, static objects like the car in the marple6
sequence (yellow cluster) can be segmented. The man approaching the camera in
the same sequence can be tracked and segmented (green cluster) throughout the
sequence despite the scaling motion. Similarly, in the horses sequence, all three
moving objects can be tracked and segmented through strong partial occlusions.

Since the ground truth annotations are sparse and only contain moving ob-
jects, this dataset was not used to quantitatively evaluate the multi-target track-
ing performance.
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4.2 Multi-Target Tracking Data

First, we evaluate the tracking performance of our Joint Multicut model on the
publicly available sequences: TUD-Campus, TUD-Crossing [16] and ParkingLot
[6]. These sequences have also been used to evaluate the Subgraph Multicut
method [28] and therefore allow for direct comparison to the only previous mul-
ticut approach to multi-target tracking.

To assess the quality of the motion segmentation of the joint approach, we an-
notated the sequences TUD-Campus and ParkingLot with ground truth segmen-
tations of all pedestrians in every 20th frame. For the TUD-Crossing sequence,
such annotations have been previously published by [55].

Implementation Details To allow for direct comparison to [28], we compute all
high-level information, i.e. the detection nodes vhigh ∈ V high, edges ehigh ∈ Ehigh,
and their costs cehigh exactly as reported in [28] with only one difference: the
Subgraph Multicut models from [28] employs not only pairwise but also unary
terms which our proposed Joint Multicut model does not require. We omit these
terms.

In [28], DPM-based person detections [44] are used. To add robustness and
enable the computation of more specific pairwise terms, these detections are
grouped to small, overlapping tracklets of length 5 as in [16] without applying
any Non-Maximum Suppression. Since tracklets are computed in every frame,
the same detections can be part of several (at most 5) tracklets.

Pairwise terms between the tracklets are computed from temporal distances,
normalized scale differences, speed, spatio-temporal locations and dColorSIFT
features [56], combined non-lineraly as in [28].

To compute pairwise terms cehl
ij

between trajectory and tracklet nodes as

described in Sec. 3.1, we compute the average pedestrian shape from the shape
prior training data provided in [57] (see Fig. 6 (a)). For every detection bbxk,
Tbbxk

denotes the pedestrian template shifted and scaled to the kth bounding
box position and size. The tracklet information allows to determine the walking
direction of the pedestrian, such that the template can be flipped accordingly. For
every detection bbxk with k = {1, . . . , 5} of a tracklet vhighi , the cut propability
p(bbxk, v

low
j ) to a trajectory node vlowj is computed according to Eq. (5) with

σ = 1.2.
A trajectory node vlowj is linked to a tracklet node vhighi coexisting in a

common frame with an edge cost

cehl
ij

=

5∑
k=1

logit(p(bbxk, v
low
j )). (6)

Fig. 6 (b) visualizes the edges between tracklets and point trajectories.

Evaluation Metrics The pedestrian motion segmentation is evaluated with
the metrics precision (P), recall (R), f-measure(F) and number of retrieved ob-
jects (O) as proposed for the FBMS59 motion segmentation benchmark [11]. To
evaluate the tracking performance, we use standard CLEAR MOT as evalua-
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(a) Mean pedestrian
shape template

(b) Trajectory-Tracklet edges:
For every pair of trajectories
and tracklets, an edge is in-
serted if the trajectory either
hits a bounding box template
or passes sufficiently far out-
side the bounding box.

tracklet

trajetories

Fig. 6. The average pedestrian shape template and the trajectory-tracklet edges.

D P R F O

TUD-Campus

SC [11] 0.80% 71.67% 47.28% 56.97% 2/8
MCe [14] 0.80% 58.94% 59.68% 59.31% 3/8

MCe + det. 0.80% 73.93% 58.67% 65.43% 3/8
Tracklet MC + traj. 0.80% 85.15% 66.40% 74.61% 5/8
JointMulticut 0.80% 75.67% 61.97% 68.13% 3/8

TUD-Crossing

SC [11] 0.85% 67.92% 20.16% 31.09% 0/15
MCe [14] 0.85% 43.78% 38.53% 40.99% 1/15

MCe + det. 0.85% 67.34% 57.33% 61.93% 3/15
Tracklet MC + traj. 0.85% 63.10% 57.45% 60.14% 5/15
JointMulticut 0.85% 62.10% 64.65% 63.35% 8/15

ParkingLot

SC [11] 1.01% 77.06% 14.79% 24.81% 0/15
MCe [14] 1.01% 58.97% 18.14% 27.75% 0/15

MCe + det. 1.01% 74.51% 63.52% 68.47% 5/15
Tracklet MC + traj. 1.01% 77.54% 53.16% 63.01% 4/15
JointMulticut 1.01% 72.62% 66.93% 69.66% 7/15

Table 2. Motion Segmentation on the Multi-Target Tracking sequences. We report
D: average region density, P: average precision, R: average recall, F: F-measure and
O: extracted objects with F ≥ 75%. All results are computed for sparse trajectory
sampling at 8 pixel distance.

tion metrics. Additionally, we report mostly tracked (MT), partly tracked (PT),
mostly lost (ML) and fragmentation (FM).

Results The evaluation of the motion segmentations on these three pedestrian
tracking sequences produced by the Joint Multicut model is given in Tab. 2. To
assess the importance of the model parts, we not only evaluate the full Joint
Model but also the performance of the Multicut formulation when not consid-
ering pairwise terms between trajectories (Tracklet MC + traj.) as well as the
performance when omitting the pairwise terms between tracklet nodes (MCe
+ det.).On the important f-measure and the number of segmented object, the
proposed Joint Multicut model improves over the previous state-of-the-art in
motion segmentation on the pedestrian sequences.

Quantitative results on the pedestrian tracking task are given in Tab. 3.
Again, we evaluate the importance of the model parts (denoted by MCe + det.
and Tracklet MC + traj.). The comparison confirms that the full, joint model
performs better than any of its parts.
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frame 20 40 60 80 100

Fig. 7. Results of the proposed Joint Multicut model on the TUD-crossing sequence.

Compared to the state of the art, the proposed method improves the recall
on all three datasets. The general tendency is a decrease in the number of false
negatives, while the number of false positives is higher than in [28].

Rcll Prcsn FAR GT MT PT ML FP FN IDs FM MOTA MOTP MOTAL

TUD-Campus

Frakiadaki et al.[5] 50.4 57.5 1.89 8 3 2 3 134 178 3 11 12.3 70.1 12.9
Milan et al. [22] 32.6 82.4 0.35 8 1 3 4 25 242 0 1 25.6 72.9 25.6
Subgraph MC [28] 83.8 99.3 0.03 8 5 2 1 2 58 0 1 83.3 76.9 83.3
Tracklet MC + traj.90.3 94.5 0.27 8 6 1 1 19 35 0 0 85.0 77.1 85.0
MCe [14] + det. 82.5 93.7 0.28 8 5 2 1 20 63 3 2 76.0 77.4 76.7
JointMulticut 87.5 98.4 0.07 8 5 2 1 5 45 1 0 85.8 77.0 86.0

TUD-Crossing

Frakiadaki et al.[5] 75.8 82.3 0.90 13 7 5 1 180 267 13 17 58.3 73.1 59.3
Milan et al. [22] - - 0.2 13 3 7 3 37 456 15 16 53.9 72.8 -
Subgraph MC [28] 82.0 98.8 0.05 13 8 3 2 11 198 1 1 80.9 78.0 81.0
Tracklet MC + traj. 85.4 97.7 0.11 13 9 4 0 22 161 5 11 82.9 76.9 83.3
MCe [14] + det. 92.5 83.3 1.01 13 12 1 0 204 83 14 5 72.7 77.2 73.8
JointMulticut 85.5 97.7 0.11 13 9 4 0 22 160 2 9 83.3 77.3 83.4

ParkingLot

Subgraph MC [28] 96.1 95.4 0.45 14 13 1 0 113 95 5 18 91.4 77.4 91.5
Tracklet MC + traj. 96.6 93.6 0.66 14 13 1 0 164 85 9 13 89.5 76.9 89.9
MCe [14] + det. 96.8 88.6 1.23 14 13 1 0 307 79 6 15 84.1 77.0 84.3
JointMulticut 96.6 94.9 0.52 14 13 1 0 129 85 6 15 91.1 77.2 91.3

Table 3. Tracking result on multi-target tracking sequences.

A qualitative result is given in Fig. 7 for the TUD-crossing sequence. The
bounding boxes overlayed on the image sequence are, for every frame and cluster,
the ones with the highest detection score. These were also used for the tracking
evaluation. The second row shows all clustered bounding boxes and the third row
visualizes the trajectory segmentation. Both detection and trajectory clusters
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look very reasonable. Most persons can be tracked and segmented through partial
and even complete occlusions. Segmentations provide better localizations for the
tracked pedestrians.

4.3 2D MOT 2015

To allow for a comparison to other state-of-the-art multi-target tracking meth-
ods, we evaluate our joint multicut approach on the Multiple Object Tracking
Benchmark 2D MOT 2015 [50]. In this benchmark, detections for all sequences
are provided after Non-Maximum suppression. Thus, the provided detections
are already too sparse for the pregrouping into tracklets that has been employed
in [28]. As a consequence, we use the detections directly as nodes as it is done
for the motion segmentation. The computation of the pairwise terms between
detections and between detections and trajectories need adapted as well.

Implementation Details We compute the cut probabilities between detection
nodes using Deep Matching [58]. Deep Matching is based on a deep, multi-layer
convolutional architecture and performs dense image patch matching. It works
particularly well when the displacement between two images is small.

More concretely, each detection d has the following properties: its spatio-
temporal location (td, xd, yd), scale hd, detection confidence confd and a set of
matched keypointsMd inside the detecion d. Given two detection bounding boxes
d1 and d2, we define MU = |Md1

∪Md2
|, and MI = |Md1

∩Md2
| between the set

Md1
and Md2

. Then the pairwise feature fe between the two detections no more
that 3 frames appart is defined as (f1,minConf, f1 · minConf, f21 ,minConf2),
where f1 = MI/MU and minConf is the minimum detection score between
confd1

and confd2
.

The computation of pairwise terms between detections and trajectories is
performed according to eq. (6) with an undirected template computed as the
average of 6 (a) and its horizontally flipped analogon. The sparseness of the de-
tections also alters the statistics of the graph. Assuming that about 20 bound-
ing boxes have been suppressed for every true detection, we weight the links
between trajectory and detection nodes by factor 20. We are aware that this is
a crude heuristic. Better options would be to learn this factor per sequence type
or (better) to use the detections before Non-Maximum suppression which are
unfortunately not provided.

Results Our final results on the 2D MOT 2015 benchmark are given in table
4. Compared to the state-of-the-art multi-target tracking method [59], we have
an overall improvement in MOTA. Again, we observe a decrease in the number
of false negatives while false positives increase.

FAR MT ML FP FN IDs FM MOTA MOTP

Choi [59] 1.4 12.2% 44% 7,762 32,547 442 823 33.7 71.9
Milan et al. [22] 1.4 5.8% 63.9% 7,890 39,020 697 737 22.5 71.7
JointMulticut 1.8 23.2% 39.3% 10,580 28,508 457 969 35.6 71.9

Table 4. Tracking results on the 2D MOT 2015 benchmark.
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5 Conclusion

This paper proposes a Multicut Model that jointly addresses multi-target track-
ing and motion segmentation so as to leverage the advantages of both. Motion
segmentation allows for precise local motion cues and correspondences that sup-
port robust multi-target tracking results with high recall. Object detection and
tracking allows a more reliable grouping of motion trajectories on the same phys-
ical object. Promising experimental results are obtained in both domains with
a strong improvement over the state of the art in motion segmentation.
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