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Abstract

We state a combinatorial optimization problem whose
feasible solutions define both a decomposition and a node
labeling of a given graph. This problem offers a common
mathematical abstraction of seemingly unrelated computer
vision tasks, including instance-separating semantic segmen-
tation, articulated human body pose estimation and multiple
object tracking. Conceptually, the problem we state gener-
alizes the unconstrained integer quadratic program and the
minimum cost lifted multicut problem, both of which are NP-
hard. In order to find feasible solutions efficiently, we define
two local search algorithms that converge monotonously to
a local optimum, offering a feasible solution at any time. To
demonstrate their effectiveness in tackling computer vision
tasks, we apply these algorithms to instances of the prob-
lem that we construct from published data, using published
algorithms. We report state-of-the-art application-specific
accuracy for the three above-mentioned applications.

1. Introduction and Related Work
In this article, we state a combinatorial optimization prob-

lem whose feasible solutions define both a decomposition
and a node labeling of a given graph (Fig. 1). This problem
that we call the minimum cost node labeling lifted multicut
problem, NL-LMP, generalizes the NP-hard unconstrained
integer quadratic program, UIQP, that has been studied in-
tensively in the context of graphical models [14], and also
generalizes the NP-hard minimum cost lifted multicut prob-
lem, LMP [16]. Unlike solutions of pure node labeling prob-
lems such as the UIQP, solutions of the NL-LMP can assign
neighboring nodes with the same label to distinct compo-
nents, and neighboring nodes with distinct labels to the same
component. Unlike in pure decomposition problems such as
the LMP, the cost of assigning nodes to the same component
or distinct components can depend on node labels.

In order to find feasible solutions of the NL-LMP effi-
ciently, we define and implement two local search algorithms

(a) Decomposition (b) Node Labeling

Figure 1: This article studies an optimization problem whose
feasible solutions define both a decomposition (a) and a node
labeling (b) of a given graph G = (V,E). A decomposition
of G is a partition Π of the node set V such that, for every
V ′ ∈ Π, the subgraph of G induced by V ′ is connected. A
node labeling of G is a map f : V → L from its node set V
to a finite, non-empty set L of labels.

that converge monotonously to a local optimum, offering a
feasible solution at any time. These algorithms do not com-
pute lower bounds. They output feasible solutions without
approximation certificates. Hence, they belong to the class
of primal feasible heuristics for the NL-LMP. The first algo-
rithm we define and refer to as alternating Kernighan-Lin
search with joins and node relabeling, KLj/r, is a general-
ization of the algorithm KLj of Keuper et al. [16] and of
Iterated Conditional Modes (ICM). The second algorithm
we define and refer to as joint Kernighan-Lin search with
joins and node relabeling, KLj∗r, is a generalization of KLj
that transforms a decomposition and a node labeling jointly.
Both algorithms build on work of Kernighan and Lin [15].

Toward applications, the NL-LMP offers a common math-
ematical abstraction of seemingly unrelated computer vision
tasks, including multiple object tracking, instance-separating
semantic segmentation and articulated human body pose
estimation. For these three applications, the abstraction is
introduced below and described in more detail in the later
sections. Also for these three applications, benchmark data
sets and feasible solutions found by our algorithms, we re-
port state-of-the-art application-specific accuracy.
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Multiple object tracking [3, 4, 6, 9, 17, 22, 24, 35, 36] can
be seen as a task requiring two classes of decisions: For ev-
ery point in an image, one needs to decide whether this point
depicts an object or background. For every pair of points that
depict objects, one needs to decide if the object is the same.
Tang et al. [31, 32] abstract this task as a graph decomposi-
tion and node labeling problem w.r.t. a finite graph whose
nodes are bounding boxes and w.r.t. 01-labels indicating
that a bounding box depicts an object or background. Tang
et al. solve the graph decomposition and the node labeling
problem separately. By applying our proposed algorithms
to the joint problem of [32], we obtain more accurate tracks
for the multiple object tracking benchmark [21] than any
published work.

Instance-separating semantic segmentation [7, 8, 20, 27,
28, 29, 37, 38] can be seen as a task requiring two classes of
decisions: To every point in an image, one needs to assign
a label that identifies a class of objects (e.g. human, car,
bicycle, etc.). For every pair of points of the same class, one
needs to decide if the object is the same. Kroeger et al. [19]
state this problem as a multi-terminal cut problem w.r.t. a (su-
per)pixel adjacency graph of the image. We generalize their
problem to larger feasible sets. While Kroeger et al. [19]
show qualitative results, we apply our algorithms to instances
of the problem from the KITTI [11] and Cityscapes [7]
benchmarks, obtaining more accurate results for Cityscapes
than any published work.

Articulated human body pose estimation can be seen as a
task requiring two classes of decisions: For every point in
an image, one needs to decide whether it depicts a part of
the human body. For every pair of points that depict body
parts, one needs to decide if they belong to the same body.
Pishchulin et al. [25] and Insafutdinov et al. [13] abstract
this problem as a graph decomposition and node labeling
problem w.r.t. a finite graph whose nodes are putative detec-
tions of body parts and w.r.t. labels that idenfity body part
classes (head, wrist, etc.) and background. By substantially
reducing the running time for this task compared to their
branch-and-cut algorithm (that computes also lower bounds),
we can tackle instances of the problem with more nodes.
This allows us to obtain more accurate pose estimates for the
MPII Human Pose Dataset [2] than any published work.

2. Problem
In this section, we define the minimum cost node labeling

lifted multicut problem, NL-LMP. Sections 2.1–2.3 offer
an intuition for its parameters, feasible solutions and cost
function. Section 2.4 offers a concise and rigorous definition.
Section 2.5 discusses special cases.

2.1. Parameters

Any instance of the NL-LMP is defined with respect to the
following parameters:

• A connected graph G = (V,E) whose decompositions
we care about, e.g. the pixel grid graph of an image.

• A graph G′ = (V,E′) with E ⊆ E′. This graph can
contain as edges pairs of nodes that are not neighbors
in G. It defines the structure of the cost function.

• A digraph H = (V,A) that fixes an arbitrary orienta-
tion of the edges E′. That is, for every edge {v, w} of
G′, the graph H contains either the edge (v, w) or the
edge (w, v). Formally, H is such that for all v, w ∈ V :

{v, w} ∈ E′ ⇔ (v, w) ∈ A ∨ (w, v) ∈ A (1)
(v, w) /∈ A ∨ (w, v) /∈ A (2)

• A finite, non-empty set L called the set of (node) labels

• The following functions whose values are called costs:

– c : V × L → R. For any node v ∈ V and any
label l ∈ L, the cost cvl is payed iff v is labeled l.

– c∼ : A × L2 → R. For any edge vw ∈ A and
any labels ll′ ∈ L2, the cost c∼vw,ll′ is payed iff v
is labeled l and w is labeled l′ and v and w are in
the same component.

– c6∼ : A × L2 → R. For any edge vw ∈ A and
any labels ll′ ∈ L2, the cost c6∼vw,ll′ is payed iff v
is labeled l and w is labeled l′ and v and w are in
distinct components.

2.2. Feasible Set

v we

xv1
xv2
xv3

xw1

xw2

xw3
yvw

Every feasible solution of the NL-
LMP is a pair (x, y) of 01-vectors
x ∈ {0, 1}V×L and y ∈ {0, 1}E′

.
More specifically, x is constrained
such that, for every node v ∈ V ,
there is precisely one label l ∈ L
with xvl = 1. y is constrained so
as to well-define a decomposition of G by the set {e ∈
E | ye = 1} of those edges that straddle distinct compo-
nents. Formally, (x, y) ∈ XV L×YGG′ with XV L and YGG′

defined below.

• XV L ⊆ {0, 1}V×L, the set of all characteristic func-
tions of maps from V to L, i.e., the set of all x ∈
{0, 1}V×L such that

∀v ∈ V :
∑
l∈L

xvl = 1 . (3)

For any x ∈ X , any v ∈ V and any l ∈ L with xvl = 1,
we say that node v is labeled l by x.

• YGG′ ⊆ {0, 1}E′
, the set of all characteristic functions

of multicuts of G′ lifted from G [1]. For any y ∈ YGG′

and any e = {v, w} ∈ E′, ye = 1 indicates that v
and w are in distinct components of the decomposition



of G defined by the multicut {e′ ∈ E | ye′ = 1} of G.
Formally, YGG′ is the set of all y ∈ {0, 1}E′

that satisfy
the following system of linear inequalities:

∀C ∈ cycles(G)∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (4)

∀{v, w} ∈ E′ \ E ∀P ∈ vw-paths(G) :

y{v,w} ≤
∑
e∈P

ye (5)

∀{v, w} ∈ E′ \ E ∀C ∈ vw-cuts(G) :

1− y{v,w} ≤
∑
e∈C

(1− ye) . (6)

2.3. Cost Function

For every x ∈ {0, 1}V×L and every y ∈ {0, 1}A×L2

, a
cost ϕ(x, y) ∈ R is defined by the form

ϕ(x, y) =
∑
v∈V

∑
l∈L

cvl xvl

+
∑
vw∈A

∑
ll′∈L2

c∼vw,ll′ xvl xwl′ (1− y{v,w})

+
∑
vw∈A

∑
ll′∈L2

c 6∼vw,ll′ xvl xwl′ y{v,w} . (7)

2.4. Definition

We define the NL-LMP rigorously and concisely in the
form of a linearly constrained binary cubic program.

Definition 1 For any connected graph G = (V,E), any
graph G′ = (V,E′) with E ⊆ E′, any orientation H =
(V,A) of G′, any finite, non-empty set L, any function c :
V × L → R and any functions c∼, c6∼ : A × L2 → R, the
instance of the minimum cost node-labeling lifted multicut
problem (NL-LMP) with respect to (G,G′, H, L, c, c∼, c6∼)
has the form

min
(x,y)∈XV L×YGG′

ϕ(x, y) . (8)

2.5. Special Cases

Below, we show that the NL-LMP generalizes the UIQP.
This connects the NL-LMP to work on graphical models with
second-order functions and finitely many labels. In addition,
we show that NL-LMP generalizes the LMP, connecting the
NL-LMP to recent work on lifted multicuts. Finally, we
show that the NL-LMP is general enough to express subgraph
selection, connectedness and disconnectedness constraints.

2.5.1 Unconstrained Integer Quadratic Program

Definition 2 For any graph G′ = (V,E′), any orientation
H = (V,A) of G′, any finite, non-empty set L, any c :

V × L→ R and any c′ : A× L2 → R, the instance of the
UIQP with respect to (G′, H, L, c, c′) has the form

min
x∈XV L

∑
v∈V

∑
l∈L

cvl xvl +
∑
vw∈A

∑
ll′∈L2

c′vw,ll′ xvl xwl′ .

(9)

Lemma 1 For any graph G′ = (V,E′), any instance
(G′, H, L, c, c′) of the UIQP and any x ∈ XV L, x is a solu-
tion of this instance of the UIQP iff (x, 1E′) is a solution of
the instance (G′, G′, H, L, c, c′, c′) of the NL-LMP.

PROOF Without loss of generality, we can assume that G′

is connected. (Otherwise, we add edges between nodes
v, w ∈ V as necessary and set c′vw,ll′ = 0 for any l, l′ ∈ L.)

For any x ∈ XGL, the pair (x, 1E′) is a feasible solution
of the instance of the NL-LMP because the map 1E′ : E′ →
{0, 1} : e 7→ 1 is such that 1E′ ∈ YG′G′ .

Moreover, (x, 1E′) is a solution of the instance of the NL-
LMP iff x is a solution of the instance of the UIQP because,
for c 6∼ = c∼, the form (7) of the cost function of the NL-LMP
specializes to the form (9) of the cost function of the UIQP.

2.5.2 Minimum Cost Lifted Multicut Problem

Definition 3 [1] For any connected graph G = (V,E), any
graph G′ = (V,E′) with E ⊆ E′ and any c′ : E′ → R, the
instance of the minimum cost lifted multicut problem (LMP)
with respect to (G,G′, c′) has the form

min
y∈YGG′

∑
e∈E′

c′eye . (10)

Lemma 2 Let (G,G′, c′) be any instance of the LMP. Let
(G,G′, H, L, c, c∼, c6∼) be the instance of the NL-LMP with
the same graphs and such that

L = {1} c = 0 c∼ = 0 (11)

∀(v, w) ∈ A : c 6∼vw,11 = c′{v,w} . (12)

Then, for any y ∈ {0, 1}E′
, y is a solution of the instance

of the LMP iff (1V×L, y) is a solution of the instance of the
NL-LMP.

PROOF Trivially, y is a feasible solution of the instance of
the LMP iff (1V×L, y) is a feasible solution of the instance of
the NL-LMP. More specifically, y is a solution of the instance
of the LMP iff (1V×L, y) is a solution of the instance of the
NL-LMP because, for any x ∈ XV L, the cost function (7)
of the NL-LMP assumes the special form below which is
identical with the form in (10).

ϕ(x, y)
(3),(11)

=
∑
vw∈A

c6∼vw,11y{v,w}
(12)
=
∑
e∈E′

c′eye . (13)



2.5.3 Subgraph Selection

Applications such as [13, 25, 31, 32] require us to not only
decompose a graph and label its nodes but to also select a
subgraph. The NL-LMP is general enough to model subgraph
selection. To achieve this, one proceeds in two steps: Firstly,
one introduces a special label ε ∈ L to indicate that a node is
not an element of the subgraph. We call these nodes inactive.
All other nodes are called active. Secondly, one chooses a
large enough c∗ ∈ N, a c† ∈ N0 and c∼, c6∼ such that

∀vw ∈ A∀l ∈ L \ {ε} : c∼vw,lε = c∼vw,εl = c∗ (14)

c 6∼vw,lε = c 6∼vw,εl = 0 (15)

∀vw ∈ A : c∼vw,εε = c† . (16)

By (14), inactive nodes are not joined with active nodes
in the same component. By (15), cutting an inactive node
from an active node has zero cost. By (16), joining inactive
nodes has cost c†, possibly zero. Choosing c† large enough
implements an additional constraint proposed in [31] that
inactive nodes are necessarily isolated. It is by this constraint
and by a two-elementary label set that [31] is a specialization
of the NL-LMP.

2.5.4 (Dis-)Connectedness Constraints

Some applications require us to constrain certain nodes to be
in distinct components. One example is instance-separating
semantic segmentation where nodes with distinct labels nec-
essarily belong to distinct segments [19]. Other applications
require us to constrain certain nodes to be in the same com-
ponent. One example is articulated human body pose esti-
mation for a single human in the optimization framework of
[25] where every pair of active nodes necessarily belongs to
the same human. Another example is connected foreground
segmentation [23, 26, 30, 34] in which every pair of distinct
foreground pixels necessarily belongs to the same segment.

The NL-LMP is general enough to model a combination of
connectedness constraints and disconnectedness constraints
by sufficiently large costs: In order to constrain distinct
nodes v, w ∈ V with labels l, l′ ∈ L to be in the same
component, one introduces an edge (v, w) ∈ A, a large
enough c∗ ∈ N and costs c� such that c�vw,ll′ = c�vw,l′l = c∗.
In order to constrain distinct nodes v, w ∈ V with labels
l, l′ ∈ L to be in distinct components, one introduces an
edge (v, w) ∈ A, a large enough c∗ ∈ N and costs c∼ such
that c∼vw,ll′ = c∼vw,l′l = c∗. Constraining nodes with the
same label to the same component constrains the feasible
decompositions to be |L|-colorable, For |L| = 2 in particular,
a constrained NL-LMP specializes to the MAX-CUT problem.

3. Algorithms
In this section, we define two local search algorithms that

compute feasible solutions of the NL-LMP efficiently. Both

algorithms attempt to improve the current feasible solution
recursively by transformations. One class of transformations
alters the node labeling of the graph by replacing a single
node label. A second class of transformations alters the de-
composition of the graph by moving a single node from one
component to another. A third class of transformations alters
the decomposition of the graph by joining two components.

As proposed by Kernighan and Lin [15] and generalized
to the LMP by Keuper et al. [16], a local search is carried out
not over the set of individual transformations of the current
feasible solution but over a set of sequences of transforma-
tions. Complementary to this idea, we define and implement
two schemes of combining transformations of the decompo-
sition of the graph with transformations of the node labeling
of the graph. This leads us to define two local search algo-
rithms for the NL-LMP.

3.1. Encoding Feasible Solutions

To encode feasible solutions (x, y) ∈ XV L×YGG′ of the
NL-LMP, we consider two maps: A node labeling λ : V → L
that defines the xλ ∈ XV L such that

∀v ∈ V ∀l ∈ L : xλvl = 1 ⇔ λ(v) = l , (17)

and a so-called component labeling µ : V → N that defines
the yµ ∈ {0, 1}E′

such that

∀{v, w} ∈ E′ : yµ{v,w} = 0 ⇔ µ(v) = µ(w) . (18)

3.2. Transforming Feasible Solutions

To improve feasible solutions of the NL-LMP recursively,
we consider three transformations of the encodings λ and µ:

For any node v ∈ V and any label l ∈ L, the transforma-
tion Tvl : LV → LV : λ 7→ λ′ changes the label of the node
v to l, i.e.

∀w ∈ V : λ′(w) :=

{
l if w = v

λ(w) otherwise
. (19)

For any node v ∈ V and any component index m ∈ N,
the transformation T ′vm : NV → NV : µ 7→ µ′ changes the
component index of the node v to m, i.e.

∀w ∈ V : µ′(w) :=

{
m if w = v

µ(w) otherwise
. (20)

For any component indices m,m′ ∈ N, the transforma-
tion T ′mm′ : NV → NV : µ 7→ µ′ puts all nodes currently in
the component indexed by m into the component indexed by
m′, i.e.

∀w ∈ V : µ′(w) :=

{
m′ if µ(w) = m

µ(w) otherwise
. (21)



Not every component labeling µ is such that yµ ∈ YGG′ .
In fact, yµ is feasible if and only if, for every m ∈ µ(V ),
the node set µ−1(m) is connected in G. For efficiency,
we allow for transformations (20) whose output µ′ violates
this condition, as proposed in [16]. This happens when an
articulation node of a component is moved to a different
component. In order to repair any µ′ for which yµ is infeasi-
ble, we consider a map R : NV → NV : µ′ 7→ µ such that,
for any µ′ : V → N and any distinct v, w ∈ V , we have
µ(v) = µ(w) if and only if the exists a vw-path in G along
which all nodes have the label µ′(v). We implement R as
connected component labeling by breadth-first-search.

3.3. Searching Feasible Solutions

We now define two local search algorithms that attempt to
improve an initial feasible solution recursively, by applying
the transformation defined above. Initial feasible solutions
are given, for instance, by the finest decomposition of the
graph G that puts every node in a distinct component, or by
the coarsest decomposition of the graph G that puts every
node in the same component, each together with any node
labeling. We find an initial feasible solution for our local
search algorithm by first fixing an optimal label for every
node independently and by then solving the resulting LMP,
i.e., (8) for the fixed labels x ∈ XV L, by means of greedy
agglomerative edge contraction [16].

KLj/r Algorithm. The first local search algorithm we
define, alternating Kernighan-Lin search with joins and node
relabeling, KLj/r, alternates between transformations of the
node labeling and transformations of the decomposition. For
a fixed decomposition, the labeling is transformed by Func. 1
which greedily updates labels of nodes independently. For a
fixed labeling, the decomposition is transformed by Func. 2,
without those parts of the function that are written in green,
i.e., precisely the algorithm KLj of [16]. (All symbols that
appear in the pseudo-code are defined above, except the
iteration counter t, cost differences δ,∆, and 01-vectors α
used for bookkeeping, to avoid redundant operations.)

KLj∗r Algorithm. The second local search algorithm
we define, joint Kernighan-Lin search with joins and node
relabeling, KLj∗r, transforms the decomposition and the
node labeling jointly, by combining the transformations (19)–
(21) in a novel manner. It is given by Func. 2, with those
parts of the function that are written in green.

Like the alternating algorithm KLj/r, the joint algorithm
KLj∗r updates the labeling for a fixed decomposition (calls
of Func. 1 from Func. 2). Unlike the alternating algorithm
KLj/r, the joint algorithm KLj∗r updates the decomposition
and the labeling also jointly. This happens in Func. 3 that is
called from KLj∗r, with the part that is written in green.

Func. 3 looks at two components V := µ−1(m) and
W := µ−1(′m) of the current decomposition. It attempts to
improve the decomposition as well as the labeling by moving

Function 1: (∆, λ′) = update-labeling(µ, λ)

λ0 := λ ∆ := 0 t := 0
repeat

choose (v̂, l̂) ∈ argmin
(v,l)∈V×L

ϕ(xTvl(λt), yµt)− ϕ(xλt , yµt)

δ := ϕ(xTv̂l̂(λt), yµt)− ϕ(xλt , yµt)
if δ < 0

λt+1 := Tv̂l̂(λt)
∆ := ∆ + δ
t := t+ 1

else
return (∆, λt)

a node from V to W or from W to V and by simultaneously
changing its label. As proposed by Kernighan and Lin [15],
Func. 3 does not make such transformations greedily but first
constructs a sequence of such transformations greedily and
then executes the first k with k chosen so as to decrease the
objective value maximally. KLj/r constructs a sequence of
transformations analogously, but the node labeling remains
fixed throughout every transformation of the decomposition.
Thus, KLj∗r is a local search algorithm whose local neigh-
borhood is strictly larger than that of KLj/r.

Function 2: (∆′, µ′, λ′) = update-lifted-multicut(µ, λ)

µ0 := µ t := 0
(δ, λ0) := update-labeling(µ0, λ)
let α0 : N→ {0, 1} such that α0(N) = 1
repeat

∆ := 0 µt+1 := µt λt+1 := λt
let αt+1 : N→ {0, 1} such that αt+1(N) = 0

for each {m,m′} ∈
(
µ(V )
2

)
if αt(m) = 0 ∧ αt(m′) = 0

continue
(δ, µt+1, λt+1) := update-2-cut(µt+1, λt+1,m,m

′)
if δ < 0

αt+1(m) := 1 αt+1(m′) := 1 ∆ := ∆ + δ
for each m ∈ µ(V )

if αt(m) = 0
continue

m′ := 1 + maxµ(V ) (new component)
(δ, µt+1, λt+1) := update-2-cut(µt+1, λt+1,m,m

′)
if δ < 0

αt+1(m) := 1 αt+1(m′) := 1 ∆ := ∆ + δ
(δ, λt+1) := update-labeling(µt+1, λt+1)
∆ := ∆ + δ
if yµt+1 /∈ YGG′

µt+1 := R(µt+1) (repair heuristic)
∆ := ϕ(xλt+1 , yµt+1)− ϕ(xλ0 , yµ0)

t := t+ 1
while ∆ < 0



Our C++ implementation computes cost differences in-
crementally and solves the optimization problem over trans-
formations by means of a priority queue, as described in
detail in the supplement. The time and space complexities
are identical to those of KLj and are established in [16], as
transformations that take linear time in the number of labels
take constant time in the size of the graph.

Function 3: (∆′, µ′, λ′) = update-2-cut(µ, λ,m,m′)

µ0 := µ λ0 := λ t := 0
if µ−1(m′) = ∅

V0 := µ−1(m)
else

V0 := {v ∈ µ−1(m) | ∃w ∈ µ−1(m′) : {v, w} ∈ E}
if µ−1(m) = ∅

W0 := µ−1(m′)
else

W0 := {w ∈ µ−1(m′) | ∃v ∈ µ−1(m) : {v, w} ∈ E}
let α : N→ {0, 1} such that α(N) = 1
while Vt ∪Wt 6= ∅

δ := δ′ :=∞
if Vt 6= ∅

choose (v̂, l̂) ∈ argmin
(v,l)∈Vt×L

ϕ(xTvl(λt), yT
′
vm′ (µt))−
ϕ(xλt , yµt)

δ := ϕ(xTv̂l̂(λt), yT
′
v̂m′ (µt))− ϕ(xλt , yµt)

if Wt 6= ∅
choose (ŵ, l̂) ∈ argmin

(w,l)∈Wt×L
ϕ(xTwl(λt), yT

′
wm(µt))−
ϕ(xλt , yµt)

δ′ := ϕ(xTŵl̂(λt), yT
′
ŵm(µt))− ϕ(xλt , yµt)

if δ ≤ δ′
µt+1 := T ′v̂m′(µt) (move node v̂ to component m′)
λt+1 := Tv̂l̂(λt) (label node v̂ with label λ̂)
α(v̂) := 0 (mark v̂ as inactive)

else
µt+1 := T ′ŵm(µt) (move node ŵ to component m)
λt+1 := Tŵl̂(λt) (label node ŵ with label λ̂)
α(ŵ) := 0 (mark ŵ as inactive)

Vt+1 := {v ∈ V |µt+1(v) = m ∧ α(v) = 1∧
∃{v, w} ∈ E : µt+1(w) = m′}

Wt+1 := {w ∈ V |µt+1(w) = m′ ∧ α(w) = 1∧
∃{v, w} ∈ E : µt+1(v) = m}

t := t+ 1
t̂ := min argmin

t′∈{0,...,t}
ϕ(xλt′ , yµt′ )− ϕ(xλ0 , yµ0)

∆1 := ϕ(xλt̂ , yµt̂)− ϕ(xλ0 , yµ0)
∆2 := ϕ(xλ0 , yT

′
mm′ (µ))− ϕ(xλ0 , yµ0) (join m and m′)

if min{∆1,∆2} ≥ 0
return (0, µ, λ)

else if ∆1 < ∆2

return (∆1, µt̂, λt̂)
else

return (∆2, Tmm′(µ), λ)

4. Applications

We show applications of the proposed problem and algo-
rithms to three distinct computer vision tasks: articulated
human body pose estimation, multiple object tracking, and
instance-separating semantic segmentation. For each task,
we set up instances of the NL-LMP from published data,
using published algorithms.

4.1. Articulated Human Body Pose Estimation

We turn toward applications of the NL-LMP and the algo-
rithms KLj/r and KLj∗r to the task of estimating the articu-
lated poses of all humans visible in an image. Pishchulin et
al. [25] and Insafutdinov et al. [13] approach this problem
via a graph decomposition and node labeling problem that
we identify as a special case of the NL-LMP with c6∼ = 0
and with subgraph selection (Section 2.5.3). We relate their
notation to ours in the supplement. Nodes in their graph are
putative detections of body parts. Labels define body part
classes (head, wrist, etc.). In our notation, xvl = 1 indicates
that the putative detection v is a body part of class l, and
yvw = 1 indicates that the body parts v and w belong to
distinct humans. The test set of [13] consists of 1758 such
instances of the NL-LMP.

To tackle these instances, Insafutdinov et al. define and
implement a branch-and-cut algorithm in the integer linear
programming software framework Gurobi. We refer to their
published C++ implementation as B&C.

Cost and time. In Fig. 2, we compare the convergence of
B&C (feasible solutions and lower bounds) with the conver-
gence of our algorithms, KLj/r and KLj∗r (feasible solutions
only). Shown in this figure is the average objective value
over the test set w.r.t. the absolute running time. Thanks to
the lower bounds obtained by B&C, it can be seen from this
figure that KLj/r and KL+r arrive at near optimal feasible
solutions after 10−1 seconds, five orders of magnitude faster
than B&C. This result shows that primal feasible heuristics
for the NL-LMP, such as KLj/r and KLj∗r, are practically
useful in the context of this application.

Application-specific accuracy. In Tab. 1, we compare
feasible solutions output by KLj/r and KLj∗r after conver-
gence with those obtained by B&C after at most three hours.
It can be seen from this table that the feasible solutions output
by KLj/r and KLj∗r have lower cost and higher application-
specific accuracy (Acc) on average. KLj∗r yields a lower
average cost than KLj/r with slightly higher running time.
The fact that lower cost does not mean higher application-
specific accuracy is explained by the application-specific
accuracy measure that does not penalize false positives.

The shorter absolute running time of KLj/r and KLj∗r
allows us to increase the number of nodes from 150, as in
[13], to 420. It can be seen from the last two rows of Tab. 1
that this increases the application-specific accuracy by 4%.
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Figure 2: Convergence of B&C, KLj/r and KLj∗r in an appli-
cation to the task of articulated human body pose estimation.

|V | Alg. AP Mean cost Mean time [s] Median time [s]

[13] 65.5 -3013.30 9519.26 308.28

KLj/r 66.5 -3352.74 0.033 0.03115
0

KLj∗r 66.6 -3419.07 0.119 0.100

KLj/r 70.6 -6184.36 0.098 0.053

42
0

KLj∗r 70.6 -6608.53 0.534 0.254

Table 1: Comparison of B&C [13], KLj/r and KLj∗r in an
application to the task of human body pose estimation.

4.2. Instance-Separating Semantic Segmentation

We turn toward applications of the NL-LMP and the al-
gorithms KLj/r and KLj∗r to the task of instance-separating
semantic image segmentation. We state this problem here
as an NL-LMP whose nodes correspond to pixels in a given
image, and whose labels define classes of objects (human,
car, bicycle, etc.). In our notation, xvl = 1 indicates that the
pixel v shows an object of class l, and yvw = 1 indicates
that the pixels v and w belong to distinct objects.

Specifically, we apply the algorithms KLj/r and KLj∗r
to instances of the NL-LMP for the task of instance-
separating semantic segmentation posed by the KITTI [11]
and Cityscapes [7] benchmarks. For KITTI, we construct
instances of the NL-LMP from data published by Uhrig
et al. [33] as described in detail in the supplement. For
Cityscapes, we construct instances of the NL-LMP as follows.
For costs c�, we again use data of Uhrig et al. [33]. For
costs c, we use a ResNet-50 [12] network with dilated con-
volutions [5]. We train the network in a fully convolutional
manner with image crops (768 px·512 px) subjected to mini-
mal data augmentation (horizontal flips). More details are in
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Figure 3: Convergence of KLj/r and KLj∗r in an application
to the task of instance-separating semantic segmentation.

Data Algorithm AP AP50%

KITTI validation [11] KLj/r 50.5 82.9
KLj∗r 50.3 82.4

KITTI test [11] [33] 41.6 69.1
KLj∗r 43.6 71.4

Cityscapes validation [7] KLj/r 11.3 26.8
KLj∗r 11.4 26.1

Cityscapes test [7] MCG+R-CNN [7] 4.6 12.9
[33] 8.9 21.1
KLj∗r 9.8 23.2

Table 2: Comparison of KLj/r and KLj∗r in an application
to the task of instance-separating semantic segmentation.

the supplement.
Cost and time. In Fig. 3, we compare the convergence

of KLj/r and KLj∗r. Shown in this figure w.r.t. the absolute
running time are the average objective values over the KITTI
and Cityscapes validation sets, respectively. It can be seen
from this figure that KLj/r converges faster than KLj∗r. Both
algorithms are practical for this application but not efficient
enough for video processing in real-time.

Application-specific accuracy. In Tab. 2, we compare
feasible solutions output by KLj/r and KLj∗r after conver-
gence with the output of the algorithm of Uhrig et al [33].
It can be seen from this table that the application of KLj/r
and KLj∗r improves the application-specific average preci-
sion, AP and AP50%. The AP of feasible solutions output by
KLj∗r for the Cityscapes test set is higher than that of any
published algorithm. A higher AP is reported by Kirillov et
al. [18], who use the model and algorithms proposed in this
paper with improved pairwise c� and unary c costs.



Method MOTA ↑ MOTP ↑ FAF ↓ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw ↓ Frag↓ Hz ↑ Detector

[10] 41.0 74.8 1.3 11.6% 51.3% 7896 99224 430 963 1.1 Public
[17] 42.9 76.6 1.0 13.6% 46.9% 5668 97919 499 659 0.8 Public
[6] 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6 Public

[32] 46.3 75.7 1.1 15.5% 39.7% 6373 90914 657 1114 0.8 Public
KLj/r 47.6 78.5 1.0 17.0% 40.4% 5844 89093 629 768 8.3 Public
KLj∗r 47.6 78.5 0.98 17.0% 40.4% 5783 89160 627 761 0.7 Public

Table 3: Comparison of the algorithms KLj/r and KLj∗r in an application to the task of multiple object tracking.

4.3. Multiple Object Tracking

We turn toward applications of the NL-LMP and the al-
gorithms KLj/r and KLj∗r to the task of multiple object
tracking. Tang et al. [31] approach this problem via a graph
decomposition and node labeling problem that we identify as
a special case of the NL-LMP with two labels and subgraph
selection (Sec. 2.5.3). We relate their notation to ours rigor-
ously in the supplement. Nodes in their graph are putative
detections of persons. In our notation, xvl = 1 indicates that
the putative detection v is active, and yvw = 1 indicates that
the putative detections v and w are of distinct persons. For
the test set of the multiple object tracking benchmark [21],
Tang et al. construct seven such instances of the NL-LMP.

To tackle these large instances, in [32] Tang et al. solve
the subgraph suppression problem first and independently,
by thresholding on the detections scores, and then solve the
minimum cost multicut problem for the remaining subgraph
by means of the algorithm KLj of [16], without re-iterating.
Here, we apply to the joint NL-LMP the algorithms KLj/r
and KLj∗r and compare their output to that of [32] and of
other top-performing algorithms [6, 10, 17]. We use the
same data as in [32], therefore the performance gain is due
to our algorithms that solve the full problem [31].

Cost and time. The convergence of the algorithms KLj/r
and KLj∗r is shown in Fig. 4. It can be seen from this figure
that KLj/r converges faster than KLj∗r.

Application-specific accuracy. We compare the feasible
solutions output by KLj/r and KLj∗r to the state-of-the-art
for the benchmark [21]. To this end, we report in Tab. 3 the
standard CLEAR MOT metric, including: multiple object
tracking accuracy (MOTA), multiple object tracking preci-
sion (MOTP), mostly tracked object (MT), mostly lost (ML)
and tracking fragmentation (FM). MOTA combines identity
switches (ID Sw), false positives (FP) and false negatives
(FN) and is most widely used. Our feasible solutions are
published also at the benchmark website unser the names
NLLMP (KLj/r) and NLLMPj (KLj∗r). It is can be seen
from Tab. 3 that the feasible solutions obtained by KLj/r and
KLj∗r rank first in MOTA and MOTP. Compared to [32],
KLj/r and KLj∗r reduce the number of false positives and
false negatives. The average inverse running time per frame
of a video sequence (column “Hz” in the table) is better for

10−2 10−1 100 101 102 103 104

−1.54

−1.54

·106

Running time [s]

O
bj

ec
tiv

e
V

al
ue KLj/r

KLj∗r

Figure 4: Convergence of the algorithms KLj/r and KLj∗r in
an application to the task of multiple object tracking.

KLj/r by a margin than for any other algorithm. Overall,
these results show the practicality of the NL-LMP in conjunc-
tion with the local search algorithms KLj/r and KLj∗r for
applications in multiple object tracking.

5. Conclusion

We have stated the minimum cost node labeling lifted
multicut problem, NL-LMP, an NP-hard combinatorial op-
timization problem whose feasible solutions define both a
decomposition and a node labeling of a given graph. We have
defined and implemented two local search algorithms, KLj/r
and KLj∗r, that converge monotonously to a local optimum,
offering a feasible solution at any time. We have shown appli-
cations of these algorithms to the tasks of articulated human
body pose estimation, multiple object tracking and instance-
separating semantic segmentation, obtaining state-of-the-art
application-specific accuracy. We conclude that the NL-LMP
is a useful mathematical abstraction in the field of computer
vision that allows researchers to apply the same optimization
algorithm to diverse computer vision tasks. To foster collab-
oration between the fields of computer vision and combina-
torial optimization, we make our code publicly available at
https://github.com/bjoern-andres/graph
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