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Manuel Wüthrich1, Sebastian Trimpe1, Cristina Garcia Cifuentes1, Daniel Kappler1 and
Stefan Schaal1,2

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman
Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current
state by a Gaussian with the mean being an affine function of the measurement. We show that this representation
can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we
investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to
a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader
class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline
some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the
GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement
instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless,
we show that this small change can have a major impact on the estimation accuracy.
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1 Introduction

Decision making requires knowledge of some variables
of interest. In the vast majority of real-world problems,
these variables are latent, i.e. they cannot be observed
directly and must be inferred from available measurements.
To maintain an up-to-date belief over the latent variables,
past measurements have to be fused continuously with
incoming measurements. This process is called filtering and
its applications range from robotics to estimating a commu-
nication signal using noisy measurements (Anderson and
Moore 1979).

1.1 Dynamical Systems Modeling

Dynamical systems are typically modeled in a state-
space representation, which means that the state is chosen
such that the following two statements hold. First, the
current observation depends only on the current state.
Secondly, the next state of the system depends only on the
current state. These assumptions can be visualized by the
belief network shown in Figure 1.

xt−1 xt xt+1

yt−1 yt yt+1

Figure 1. The belief network which characterizes the
evolution of the state xt and the observations yt.
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A stationary system can be characterized by two
functions. The process model

xt = g(xt−1, vt) (1)

describes the evolution of the state xt. Without loss of
generality, we can assume the noise vt to be drawn from
a Gaussian with zero mean and unit variance, since it can
always be mapped onto any other distribution inside of the
nonlinear function g(·). The observation model

yt = h(xt, wt) (2)

describes how a measurement is produced from the current
state. Following the same reasoning as above, we assume
the noise wt to be Gaussian with zero mean and unit
variance. The process and observation models can also be
represented by distributions. The distributional forms of
both models are implied by their functional form

p(xt|xt−1) =

∫
vt

δ(xt − g(xt−1, vt))p(vt) (3)

p(yt|xt) =

∫
wt

δ(yt − h(xt, wt))p(wt) (4)

where δ is the Dirac delta function, and we used the
notation

∫
x
(·) as an abbreviation for

∫∞
−∞(·)dx. While

both representations contain the exact same information,
sometimes one is more convenient than the other.

1.2 Exact Filtering
The desired posterior distribution over the current

state p(xt|y1:t) can be computed recursively from the
distribution over the previous state p(xt−1|y1:t−1). This
recursion can be written in two steps, a prediction step

p(xt|y1:t−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1) (5)

and an update step

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫

xt

p(yt|xt)p(xt|y1:t−1)
. (6)

Kalman (1960) found the solution to these equations
for linear process and observation models with additive
Gaussian noise. However, filtering in nonlinear systems
remains an important area of research. Exact solutions
(Beneš 1981; Daum 1986) have been found for only a
very restricted class of process and observation models. For
more general dynamical systems, it is well known that the
exact posterior distribution cannot be represented by a finite
number of parameters (Kushner 1967). Therefore, the need
for approximations is evident.

Filtering
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Figure 2. A taxonomy of filtering algorithms.

1.3 Approximate Filtering

Approximate filtering methods are typically divided into
deterministic, parametric methods, such as the Unscented
Kalman Filter (UKF) (Julier and Uhlmann 1997) and
the Extended Kalman Filter (EKF) (Sorenson 1960), and
stochastic, nonparametric methods such as the particle filter
(PF) (Gordon et al. 1993). In this paper, we argue that there
is a more fundamental division between filtering methods.

To the best of our knowledge, all existing filtering
algorithms either compute expectations with respect to
the conditional distribution p(xt|y1:t) or with respect to
the joint distribution p(xt, yt|y1:t−1). In Figure 2, we
divide approximate filtering algorithms according this
criterion. The computational power required to numerically
compute expectations with respect to p(xt|y1:t) increases
exponentially with the state dimension, limiting the
use of such methods to low dimensional problems. In
contrast, expectations with respect to the joint distribution
p(xt, yt|y1:t−1) can be computed efficiently, even for
large state dimension. In Section 3, we show how this
fundamental difference arises.

Since conditional expectation methods suffer from the
curse of dimensionality, we focus on joint expecta-
tion methods in this paper. To the best of our knowl-
edge, all such methods approximate the true joint dis-
tribution p(xt, yt|y1:t−1) with a Gaussian distribution
q(xt, yt|y1:t−1) and subsequently condition on yt, which
is easy due to the Gaussian form. This approach is called
the Gaussian Filter (GF), of which the well known EKF
(Sorenson 1960), the UKF (Julier and Uhlmann 1997) and
the Divided Difference Filter (DDF) (Nørgaard et al. 2000)
are instances (Wu et al. 2006; Särkkä 2013; Ito and Xiong
2000). Morelande and Garcia-Fernandez (2013) show that
for nonlinear dynamical systems, Gaussians can yield a
poor fit to the true joint distribution p(xt, yt|y1:t−1), which
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in turn leads to bad filtering performance. To address this
problem, we search for a more flexible representation of the
belief that can accurately capture the dependences in the
dynamical system, while maintaining the efficiency of the
GF.

1.4 Contributions

The first contribution of this article is to provide a new
perspective on the theory underlying Gaussian filtering.
From this new perspective, the posterior belief obtained by
the GF is seen as the solution of a constrained optimization
problem. The objective of this optimization measures how
well the approximate belief fits the exact posterior; and
the constraint restricts the posterior belief to be Gaussian
with the mean being an affine function of the measurement.
This new perspective provides insights into limitations and
possible extensions of the GF. We show that the constraint
on the form of the belief can lead to poor approximations to
the exact posterior. This indicates that more accurate filters
can be obtained by relaxing this constraint.

An analysis how the constraint can be relaxed while
maintaining the computational efficiency of the GF is the
second main contribution of this article. This analysis
provides the basis for generalizations of the GF. We provide
one such generalization, but hope that this analysis will also
stimulate further research in this direction.

The third contribution is one particular generalization of
the GF, which amounts to using a pseudo measurement,
i.e. a nonlinear feature of the original measurement. This
extension is straightforward and can readily be applied
in standard GF implementations. We provide simulation
examples indicating that this simple change can improve
filtering performance significantly. These examples are
chosen to highlight specific properties of the method, to
illustrate the theoretical insights, and to provide intuition
on how the proposed technique can be applied to practical
filtering problems.

While no full-scale robotic filtering example is presented
herein, the results of this paper have already given rise to
practical applications. In (Wüthrich et al. 2016), a method
for robustifying Gaussian filters against outliers using a
pseudo measurement is presented, which is applied to 3D
object tracking using a depth sensor in (Issac et al. 2016).

The present paper is an extension of preliminary results
published in (Wüthrich et al. 2015). The theoretical analysis
has been significantly extended and is now contained in
Sections 6, 7 and 8. Furthermore, two additional simulation
experiments have been added in Sections 9.3 and 9.4 to
further illustrate the practical relevance of the proposed
method.

1.5 Outline

In Sections 2 to 4, we first review existing filtering
methods, in particular the GF. Then, in Section 6, we
view the GF as the solution to a constrained optimization
problem. From this perspective, the GF is seen as a special
case of a potentially much broader class of filters. In Section
7, we analyze how the GF could be generalized. Finally, in
Section 8, we propose one possible extension of the GF, and
show that this generalization coincides with the GF using a
pseudo measurement. Numerical simulations in Section 9
illustrate why using such pseudo measurements instead of
the actual measurement can improve estimation accuracy
significantly.

2 Approximate Prediction

We start out with the distribution p(xt−1|y1:t−1)
computed in the previous time step. The representation of
the beliefs might be parametric, such as a Gaussian, or
it might be nonparametric, e.g. represented by a set of
samples. In any case, the goal is to find the prediction
p(xt|y1:t−1) given the previous belief. When there is no
closed form solution to (5), we have to settle for finding
certain properties of the predicted belief p(xt|y1:t−1)
instead of the full distribution. For all filtering algorithms
we are aware of, these desired properties can be written as
expectations ∫

xt

f(xt)p(xt|y1:t−1). (7)

For instance with f(xt) = xt, we obtain the mean µt,
and with f(xt) = (xt − µt)(xt − µt)>, we obtain the
covariance. These expectations can then be used to find
the parameters of an approximate distribution. A widely
used approach is moment matching, where the moments of
the approximate distribution are set to the moments of the
exact distribution. We will analyze such methods in more
detail below. What is important here is that we are always
concerned with finding expectations of the form of (7).

We substitute (5) in (7) in order to write this expectation
in terms of the last belief and the process model∫

xt

f(xt)p(xt|y1:t−1) =

∫
xt

f(xt)

∫
xt−1

p(xt|xt−1)p(xt−1|y1:t−1).

(8)

Substituting the distributional process model (3) and
solving the integral over xt, which is easy due to the Dirac
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distribution δ, we obtain∫
xt

f(xt)p(xt|y1:t−1) =

∫
xt−1,vt

f(g(xt−1, vt))p(vt)p(xt−1|y1:t−1).

(9)

For certain process models g(·) and functions f(·), it is
possible to find a closed form solution. In general, however,
this integral has to be computed numerically. Since p(vt)
is the Gaussian noise distribution and p(xt−1|y1:t−1) is
the previous belief in the representation of choice, it is
generally possible to sample from these two distributions.
This is crucial since it is a requirement for the application
of Monte Carlo (MC) integration as well as deterministic
integration methods.

Both types of methods approximate (9) by evaluating the
integrand at different points and summing them up

L∑
l=1

wlf(g(xlt−1, v
l
t)) (10)

where L is the number of evaluations. The evaluation points
{(xlt−1, v

l
t)}l and the weights wl depend on the integration

scheme used.

2.1 Monte Carlo Integration

In Monte Carlo integration {xlt−1}l are random samples
drawn from p(xt−1|y1:t−1) and {vlt}l are sampled from
p(vt). The weigts wl = 1/L are uniform. The standard
deviation of an MC estimate, indicating its accuracy, is
proportional to 1√

L
, with L being the number of samples

(Owen 2013; Bishop 2006). A key property of MC methods
is that the accuracy of the estimate does not depend on
the dimension of the variable, in this case xt (Owen 2013;
Bishop 2006).

2.2 Gaussian Quadrature
Another possibility is to use deterministic numerical

integration algorithms, such as Gaussian quadrature
methods. In such methods the weights wl and evaluation
points {(xlt−1, v

l
t)}l are chosen such that the approximation

is exact for polynomial integrands up to some degree. For
instance, the standard unscented transform (UT) (Julier
and Uhlmann 1997) integrates polynomials up to degree
3 exactly and requires 2d+ 1 evaluations, where d is the
state dimension. For an overview of existing Gaussian
quadrature methods we refer the interested reader to (Wu
et al. 2006). What is important here is that the number
of function evaluations of such methods typically scales
linearly or quadratically with the state dimension (Wu et al.
2006).

2.3 Conclusion
Which particular numeric integration method is used to

compute the approximate expectations is inconsequential
for the results presented in this paper. What is important
here, is that the numeric computation of expectations of the
type (7) is tractable, i.e. it does not suffer from the curse of
dimensionality. As we will see shortly, this is unfortunately
not the case in the update step.

3 Approximate Update
The goal of the update step is to obtain an approximation

of the posterior p(xt|y1:t), based on the belief p(xt|y1:t−1),
which has been computed in the prediction step.

3.1 Computation of Conditional Expectations
As for the prediction, when there is no exact solution to

(6), we compute expectations with respect to the posterior∫
xt
r(xt)p(xt|y1:t), where r(·) is an arbitrary function.

We insert (6) to express this expectation in terms of the
observation model and the predicted distribution

∫
xt

r(xt)p(xt|y1:t) =

∫
xt

r(xt)p(yt|xt)p(xt|y1:t−1)∫
xt

p(yt|xt)p(xt|y1:t−1)
. (11)

Both the numerator and the denominator can be written as∫
xt

s(xt)p(yt|xt)p(xt|y1:t−1) (12)

with s(xt) = r(xt) for the numerator and s(xt) = 1 for the
denominator. The update step thus amounts to computing
expectations of the form of (12).

As in the prediction step, we can approximate this
expectation either by sampling, which is used in Sequential
Monte Carlo (SMC) (Gordon et al. 1993; Cappé et al.
2007), or by applying deterministic methods such as
Gaussian quadrature (Kushner and Budhiraja 2000).

There is, however, a very important difference to the
prediction step. We now need to compute the expectation
of a function weighted with p(yt|xt). This typically leads to
the weights p(yt|x(l)

t ) being small at most evaluation points
{x(l)

t }, and the numeric integration therefore becomes very
inaccurate. This problem is well known in importance
sampling (Owen 2013; Bishop 2006). In particle filters, this
effect is known as particle deprivation (Cappé et al. 2007).

Unfortunately, this effect becomes worse with increasing
dimensionality. To see this, consider a simple example with
a predictive distribution p(xt|y1:t−1) = N (xt|0, I) and
observation model p(yt|xt) = N (yt|xt, I). Both the state
and measurement dimensions are equal to D. Computing
the expected weight, i.e. the expected value of the
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likelihood, yields

E[p(yt|xt)] =

∫
xt,yt

p(yt|xt)p(yt|xt)p(xt|y1:t−1)

= (2
√
π)−D

(13)

where E[·] is the expectation operator. That is, the expected
weight decreases exponentially with the dimension D. In
fact, it is well known that the computational demands
of such methods increase exponentially with the state
dimension (Li et al. 2005; Bickel et al. 2008; Owen
2013), i.e. they suffer from the curse of dimensionality.
Thus, methods that rely on the computation of conditional
expectations are restricted to dynamical systems which
either have a simple structure such that expectations can
be computed analytically, or are low dimensional such that
numeric methods can be used.

3.2 Computation of Joint Expectations
There are a number of approaches which avoid

computing such expectations with respect to the conditional
distribution p(xt|y1:t). Instead, these methods find an
approximate posterior while computing only expectations
with respect to the joint distribution∫

xt,yt

d(xt, yt)p(yt, xt|y1:t−1) =

∫
xt,yt

d(xt, yt)p(yt|xt)p(xt|y1:t−1)

(14)

where d(·) is some arbitrary function. Despite the apparent
similarity between (12) and the right-hand side of (14),
these terms are fundamentally different. In (12) the
integration is performed with respect to xt only. The term
p(yt|xt) plays the role of a weighting function, which is
the cause of the computational inefficiency described in
Section 3.1. In (14) however, the integral is taken with
respect to both xt and yt. The term p(yt|xt) is now used for
sampling instead of weighting, which avoids the mentioned
inefficiency.

Inserting the observation model from (4) into the joint
expectation above and solving the integral over yt yields∫

xt,yt

d(xt, yt)p(yt, xt|y1:t−1) =

∫
xt,wt

d(xt, h(xt, wt))p(wt)p(xt|y1:t−1).

(15)

This term has the same form as the expectation in the
prediction step (9). It is an integral of some function with
respect to probability densities that can be sampled. This
allows us to approximate this expectation efficiently, even
for high dimensional states.

3.3 Conclusion

The insight of this section is that numeric computation
of expectations with respect to the conditional distribution
p(xt|y1:t) suffers from the curse of dimensionality,
whereas computing expectations with respect to the joint
distribution p(xt, yt|y1:t−1) is tractable. The drawback of
first approximating the joint distribution p(xt, yt|y1:t−1) is
that we have to fit it for all yt, not just the one observed. This
is the price we have to pay for avoiding the computation of
conditional expectations, which suffers from the curse of
dimensionality, as explained in the previous section.

Note that expectations with respect to the marginals
p(xt|y1:t−1) and p(yt|y1:t−1) are a special case of an
expectation with respect to the joint distribution and can be
computed efficiently as well.

3.4 Notation

In the following theoretical Sections 4-8, we only
consider a single update step. For ease of notation, we
will not explicitly write the dependence on all previous
observations y1:t−1 anymore; it is however implicitly
present in all distributions. All the remaining variables have
the same time index t, which we can thus safely drop. For
example, p(xt, yt|y1:t−1) becomes p(x, y), and p(xt|y1:t)
becomes p(x|y), etc.

It is important to keep in mind that also the parameters
computed in the following sections are time varying, all
computations described in the following are carried out at
each time step.

4 The Gaussian Filter

The advantage in terms of computational complexity of
joint expectation filters over conditional expectation filters
comes at a price: The approximate posterior q(x|y) must
have a functional form such that its parameters can be
computed efficiently from these joint expectations. To the
best of our knowledge, all existing joint expectation filters
solve this issue by approximating the true joint distribution
p(x, y) with a Gaussian distribution

q(x, y) = N
([
x
y

] ∣∣∣ [µx
µy

]
,

[
Σxx Σxy
Σyx Σyy

])
. (16)

The parameters of this approximation are readily obtained
by moment matching, i.e. the moments of the Gaussian are
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set to the moments of the exact distribution

µx =

∫
x

xp(x) (17a)

µy =

∫
y

yp(y) (17b)

Σxx =

∫
x

(x− µx)(x− µx)>p(x) (17c)

Σyy =

∫
y

(y − µy)(y − µy)>p(y) (17d)

Σxy =

∫
x,y

(x− µx)(y − µy)>p(x, y). (17e)

All of these expectations can be computed efficiently for
reasons explained in the previous section.

After the moment matching step, we condition on y to
obtain the desired posterior, which is a simple operation
since the approximation is Gaussian

q(x|y) =

N (x|µx + ΣxyΣ−1
yy (y − µy)︸ ︷︷ ︸

µx|y

,Σxx − ΣxyΣ−1
yy Σ>xy︸ ︷︷ ︸

Σxx|y

). (18)

This approach is called the Gaussian Filter (GF). Widely
used filters such as the EKF (Sorenson 1960) and the UKF
(Julier and Uhlmann 1997) can be seen as instances of
the GF, differing only in the numeric integration method
used for computing the expectations in (17). We refer the
interested reader to (Wu et al. 2006; Särkkä 2013; Ito and
Xiong 2000) for more details on this point of view on
Gaussian filtering.

4.1 Rank-Deficient Covariance Matrix
Equation (18) involves a matrix inverse, which does not

exist if Σyy is rank deficient. While we use the matrix
inverse for notational convenience, it should never be
explicitly computed in an actual implementation. Instead,
µx|y and Σxx|y can be formulated as solutions of linear
systems. As shown in Appendix A, these linear systems
have unique solutions even if Σyy is rank deficient.
This point is particularly important for the ideas in this
paper, since we will augment the measurement vector with
possibly redundant pseudo measurements, which can lead
to a rank-deficient Σyy.

4.2 Approximate Integration Schemes
The EKF solves the integrals (17) by linearizing the

measurement function, and then performing analytic inte-
gration. This approximation does not take the uncertainty

in the estimate into account, which can lead to large errors
and sometimes even divergence of the filter (van der Merwe
and Wan 2003; Ito and Xiong 2000).

Therefore, approximations based on numeric integration
methods are preferable in most cases (van der Merwe and
Wan 2003). Deterministic Gaussian integration schemes
have been investigated thoroughly, resulting in filters
such as the UKF (Julier and Uhlmann 1997), the DDF
(Nørgaard et al. 2000) and the cubature Kalman filter (CKF)
(Arasaratnam and Haykin 2009). Alternatively, numeric
integration can also be performed using Monte Carlo
methods.

5 Problem Statement and Assumptions

While much effort has been devoted to finding accurate
numeric integration schemes for GFs, there seems to
be no joint expectation method using a non-Gaussian
joint approximation q(x, y). The posterior (18), which we
ultimately care about, is therefore Gaussian in the state
x with the mean being an affine function of y. As we
show in the experimental section, this form can be too
restrictive to accurately capture the relationship between
the measurement and the state in nonlinear settings. This
leads to information about the state being discarded and
ultimately to poor filtering performance.

This holds true even if we can compute the integrals
accurately. The problem of a too restrictive parametric
form of the belief is hence separate from the problem of
numeric integration. In this article, we focus on the first
problem and, to simplify analysis, we will assume that
all numeric integrals with respect to the joint distribution
can be computed with high precision. Nevertheless, the
extensions proposed in this article are compatible with any
of the numeric integration methods used in the standard GF.
However, we do not analyze the impact of the integration
inaccuracies on the proposed method.

6 A New Perspective of the Gaussian
Filter

In this section, we investigate whether it is possible to
find a more general form of the approximate posterior
q(x|y) that still allows for efficient computation of the
parameters. To this end, we write the problem of finding the
the approximate distribution as an optimization problem.

6.1 Objective for the Approximate Joint
Distribution

In the GF, the parameters of the Gaussian belief (16) are
found by moment matching. For a Gaussian approximation
q(x, y), moment matching is equivalent to minimizing the
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KL-divergence (Barber 2012)

KLxy[p(x, y)|q(x, y)] =

∫
x,y

log

(
p(x, y)

q(x, y)

)
p(x, y). (19)

Hence, the GF can be understood as minimizing (19)
subject to the constraint that q(x, y) be Gaussian, and
subsequently conditioning on y according to (18). We can
write this formally as

q̂(x, y) = arg min
q

KLxy[p(x, y)|q(x, y)]

q(x, y) ∈
{
N
([
x
y

] ∣∣∣∣µ,Σ)
: µ ∈ Rk, Σ ∈ Rk×k�0

}
q̂(x|y) =

q̂(x, y)∫
x
q̂(x, y)

(20a)

(20b)

(20c)

where k is the sum of the dimensions of x and y, and Rk×k�0

is the set of all real positive semidefinite matrices of size
k × k. Hence, following procedure (20) we will merely
retrieve the equations of the standard GF (17) and (18).
However, from this perspective, the GF can be seen as just
a special case of a potentially much broader class of filters,
obtained by relaxing the constraint (20b). Still, we need
to ensure that q(x, y) has a form such that the subsequent
conditioning (20c) can be carried out in closed form.
Since this requirement is very restrictive, it is desirable to
find an objective which is expressed in the approximate
posterior q(x|y) directly. This would remove the need for
the conditioning step and the associated restriction on the
form of the approximation.

6.2 Objective for the Approximate Posterior
Distribution

The goal is therefore to rewrite the constrained
optimization with subsequent conditioning (20) as a
constrained optimization directly yielding the same
posterior q̂(x|y) as in (20c).

Any joint Gaussian distribution q(x, y) can be written as
a product of a conditional distribution q(x|y) and a marginal
distribution α(y), with α(y) being Gaussian and q(x|y)
being Gaussian in x and the mean being an affine function
in y (Bishop 2006). Conversely, any Gaussian marginal
distribution α(y) and Gaussian conditional distribution
q(x|y) with linear dependence in y will yield a joint
Gaussian distribution q(x, y) = q(x|y)α(y) (Bishop 2006).
Hence, we can substitute q(x, y) by q(x|y)α(y) in (20a) and
jointly optimize for q(x|y) and α(y). The constraint (20b)
on the joint distribution q(x, y) then has to be replaced
by the constraints on q(x|y) and α(y). We thus translated

procedure (20) into an equivalent optimization problem

{q̂(x|y), α̂(y)}
= arg min

q,α
KLxy[p(x, y)|q(x|y)α(y)]

q(x|y) ∈
{
N
(
x

∣∣∣∣A [1y
]
, C

)
: A ∈ Rn×(m+1), C ∈ Rn×n�0

}
α(y) ∈ {N (y|b, B) : b ∈ Rm,B ∈ Rm×m�0 }

(21a)

(21b)

(21c)

where n is the dimension of x and m is the dimension of
y. The new constraints (21b) and (21c) ensure that the joint
distribution q(x, y) = q(y|x)α(y) satisfies constraint (20b).
Therefore, the optimization problem (21) is equivalent to
(20).

The posterior q̂(x|y) is now obtained directly as the
result of a constrained optimization, as desired. However,
the optimization (21a) now has to be performed jointly in
q(x|y) and α(x). Fortunately, the optimization with respect
to these two functions can be carried out independently,
which can be seen by expanding (21a),

KLxy[p(x, y)|q(x|y)α(y)] = (22)∫
x,y

log

(
p(x, y)

α(y)

)
p(x, y)−

∫
x,y

log (q(x|y)) p(x, y).

Only the second term depends on the posterior q(x|y),
which we are interested in. Therefore we can get rid of α(y)
in the optimization problem and finally obtain

q̂(x|y) = arg min
q

J[q]︷ ︸︸ ︷∫
x,y

− log (q(x|y)) p(x, y)

q(x|y) ∈
{
N
(
x

∣∣∣∣A [1y
]
, C

)
: A ∈ Rn×(m+1), C ∈ Rn×n�0

}
.

(23a)

(23b)

We have thus found a constrained optimization problem
which yields the GF equations (17) and (18) as the solution.
This point of view will serve as the basis for generalizations
of the GF by relaxing (23b) in Section 7. Before, we
will look at the new objective (23a) in some more detail
and make connections to alternative objective functions
commonly used in filtering. We emphasize, however, that
using (23a) as an objective is mainly justified by the fact
that it yields the GF equations, and not by the following
interpretations.
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6.3 Connection to Assumed Density Filtering
Above we showed that the GF minimizes the KL-

divergence (19) between the exact joint distribution p(x, y)
and the approximate joint distribution q(x, y). However,
what we are ultimately interested in is the fit between the
exact posterior p(x|y) and the approximate posterior q(x|y)

KLx [p(x|y)|q(x|y)] =

∫
x

log

(
p(x|y)

q(x|y)

)
p(x|y). (24)

This objective is used in assumed density filtering
(ADF) (Maybeck 1979; Murphy 2012) and expectation
propagation (Minka 2001). A drawback of such methods
is their restriction to models where (24) can be optimized
analytically. Approximating the integral (24) numerically
is intractable in general since it requires the computation of
expectations of the form of (11). Despite their differences in
computational requirements, we shall make the connection
here between the new objective (23a) and the commonly
used objective (24).

By adding and subtracting log (p(x|y)) in the integrand,
and making use of the product rule p(x, y) = p(x|y)p(y),
the objective function in (23a) can be rewritten as

J [q] =

∫
y

∫
x

log

(
p(x|y)

q(x|y)

)
p(x|y)p(y)

−
∫
x,y

log (p(x|y)) p(x, y)

︸ ︷︷ ︸
c

.
(25)

Using the definition of the KL-divergence (24), we can
hence write the objective as

J [q] = Ey [KLx [p(x|y)|q(x|y)]] + c (26)

where E[·] is the expectation operator, and c does
not depend on q(x|y) and is therefore irrelevant.
Hence, minimizing (23a) is equivalent to minimizing the
expectation of the KL-divergence (24).

This means that the GF avoids computing the intractable
conditional expectations in (24) by taking the expectation
with respect to y. This leads to the objective (23a), where
only expectations with respect to the joint distribution
p(x, y) have to be computed.

6.4 Information Theoretic Interpretation
The Shannon information content of an outcome z is

defined as − log p(z) (MacKay 2003). It can be interpreted
as a measure of how surprised we are to observe z, given
that we believe p(z) to be the density of z. Similarly,
− log q(x|y) is the degree of surprise when observing x,
given that we have previously observed y and believe

q(x|y) to be the conditional density. A good state estimator
should be as little surprised as possible if some oracle were
to reveal the real state. Hence, it makes intuitively sense to
minimize the expected degree of surprise

Exy[− log q(x|y)] =

∫
x,y

− log q(x|y)p(x, y) (27)

which is identical to (23a).

6.5 Properties of the Objective
Further arguments why J [q] in (23a) is a sensible

objective are presented in the following.
First of all, if the approximate distribution q(x|y) is

flexible enough in y, then minimizing J [q] is equivalent to
minimizing (24) for each y separately, and we retrieve ADF.
This is easy to see for a discrete variable y. Following (26),
J [q] can be written as∑

i

KLx [p(x|y = i)|q(x|y = i)] p(y = i) + c. (28)

If there is no constraint linking q(x|y = k) and q(x|y = l)
for any k 6= l, then we can optimize each of the summands
independently with respect to q(x|y = i), and we retrieve
(24). A similar argument can be made for continuous y.
In practice, the approximate distribution q(x|y) will of
course belong to some parametric family of distributions,
and hence be subject to constraints in y. Nevertheless, this
argument indicates that the more we relax the constraint
(23b) in y, the closer we can expect the solution of (23a)
to be to the solution of ADF.

If we remove the constraints in x as well, then the
unconstrained minimum of (24) can be attained, which is at
q(x|y) = p(x|y). Hence, if we were able to optimize (23a)
without any constraints, then we would retrieve the exact
posterior.

7 Conditions for Generalizations of the
Gaussian Filter

We have seen that the more we relax the constraint (23b),
the closer we get to the solution of ADF (24) and to the
exact posterior p(x|y). Therefore, we would like to find
a family of distributions {q(x|y, θ)}, with parameters θ ∈
Θ, which is more general than (23b), but still allows for
efficient optimization of (23a).

Unfortunately, this is a very difficult problem. In this
section, we merely outline a few conditions that such a
parametric family of distributions would have to fulfill. In
Section 8, we shall then give one concrete example leading
to a straightforward generalization of the GF.
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7.1 General Conditions

First of all, for the objective (23a) to be well defined,
we require that q(x|y, θ) > 0 for all x and y for which
p(x, y) > 0. Since p(x, y) is problem specific, and we
would like to find a filtering algorithm which can be applied
to any system, we require that q(x|y, θ) > 0 everywhere.
This condition can be enforced by requiring the distribution
to be of the form

q(x|y, θ) = c(y, θ)eu(x,y,θ) (29)

with c(y, θ) > 0.

Secondly, q(x|y, θ) has to integrate to one in x since it
is a probability distribution. This condition can be met by
setting c(y, θ) = 1/

∫
x
eu(x,y,θ), assuming that the integral

exists. We can now write the approximate distribution as

q(x|y, θ) =
eu(x,y,θ)∫
x
eu(x,y,θ)

(30)

where u(·) can be any function such that
∫
x
eu(x,y,θ) is finite

for all y and all θ ∈ Θ.

7.2 Conditions for Efficiency

The question we will address in the following is what
u(·) has to look like in order to obtain an efficient filtering
algorithm.

The first condition for efficiency is that the objective
function (23a) has to be convex in the parameters θ of the
approximate distribution (30). We therefore have to pick
u(·) such that inserting (30) into (23a) yields an objective

J [q] =

∫
y

log

∫
x

eu(x,y,θ)

 p(y)

−
∫
x,y

u(x, y, θ)p(x, y).

(31)

which is convex in θ.

Given that (31) is convex, we can in principle find the
optimal parameters by setting its derivative to zero, and
solving for θ. We will now follow this procedure to see
whether we need more conditions on u(·) to hold, in order
to be able to find the optimal θ.

Setting the derivative of (31) with respect to θ to zero, we
obtain a sufficient condition for optimality∫
x,y

∂u(x, y, θ)

∂θ
p(x, y)

=

∫
y

∂

∂θ
log

∫
x

eu(x,y,θ)

 p(y) (32a)

=

∫
y

1∫
x

eu(x,y,θ)

∂

∂θ

∫
x

eu(x,y,θ)p(y) (32b)

=

∫
y

1∫
x

eu(x,y,θ)

∫
x

eu(x,y,θ) ∂u(x, y, θ)

∂θ
p(y) (32c)

where we applied the chain rule in the step from (32a) to
(32b), and from (32b) to (32c).

The left-most term in (32c) can be moved inside the
integral, and by comparison with (30), we finally obtain∫

x,y

∂u(x, y, θ)

∂θ
p(x, y)

=

∫
y

∫
x

∂u(x, y, θ)

∂θ
q(x|y, θ)

 p(y).

(33)

Before this system of equations can be solved, all integrals
have to be computed. The integral over x on the right-hand
side of (33) is an expectation with respect to the parametric
approximation. Since the integrand depends on unknown
parameters, this inner integral cannot be approximated
numerically. Therefore, u(·) has to be chosen such that
there is a closed form solution.

In general, the outer integral over y cannot be solved
in closed form since p(y) can have a very complex form,
depending on the dynamical system at hand. However,
expectations with respect to p(y) can be efficiently
approximated numerically, as discussed in Section 3.

Numeric integration is only possible if the integrand
depends on no other variable than the ones we integrate out.
Therefore, we require u(·) to be such that, after analytically
solving the inner integral over x, all the dependences on θ
can be moved outside of the integral over y.

On the left-hand side of (33), we evaluate an expectation
with respect to p(x, y). Again, depending on the form
of the observation model (2) and the process model (1),
it is often not possible to find a closed form solution,
but numerical expectations with respect to p(x, y) can be
computed efficiently. To allow for numerical integration,
u(·) must be such that all the dependences on θ can be
moved outside of the integral over x and y.

Finally, after computing the integrals, we have to solve
the system of equations (33) in order to find the optimal
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θ. Therefore, u(·) should be such that this solution can be
found efficiently.

It is not clear how the most general q(x|y, θ) complying
with the above desiderata can be found. Nevertheless, this
discussion can guide the search for more general belief
representations than the affine Gaussian that still leave the
efficiency of the GF intact. The following section provides
an example.

8 The Feature Gaussian Filter
We have seen that any approximate distribution with

some required properties can be written in the form of
(30). The objective is now to find a function u(·) such
that we obtain an efficient filtering algorithm, i.e. such
that the conditions from Section 7 are satisfied. To obtain
some inspiration, we can first find out to which u(·) the
family of distributions used in the GF (23b) corresponds.
By comparing (30) with (23b), we find

u(x, y,A,C) =

− 1

2

(
x−A

[
1
y

])>
C−1

(
x−A

[
1
y

])
.

(34)

Next, we generalize this function without violating any
of the conditions outlined in Section 7.2. While different
ways are conceivable, we propose a straightforward
generalization by allowing for nonlinear features in the
measurement

u(x, y,A,C) =

− 1

2
(x−Aφ(y))

>
C−1 (x−Aφ(y)) .

(35)

This generalization is mathematically very similar to the
generalization of linear regression using features (Bishop
2006).

Inserting (35) into (30) leads to an approximate
distribution which is Gaussian in x, but can have nonlinear
dependences on y

q(x|y,A,C) = N (x|Aφ(y), C). (36)

Because this approximation complies with the desiderata
from Section 7.2, as we show next, the parameters can
be optimized efficiently. We refer to the resulting filtering
algorithm as the Feature Gaussian Filter (FGF).

8.1 Solving for A
The derivative of u(·) with respect to A is

∂u(x, y,A,C)

∂A
= C−1(x−Aφ(y))φ(y)>. (37)

As required, the inner integral in (33) can be solved in
closed form since the approximate distribution is Gaussian

in x ∫
x

∂u(x, y,A,C)

∂A
q(x|y,A,C) = 0. (38)

Inserting these results into (33), we can solve for A

A = E[xφ(y)>]E[φ(y)φ(y)>]−1. (39)

8.2 Solving for C
The matrix C is constrained to be positive definite, such

that the approximate distribution (36) is Gaussian. As it
turns out, the unconstrained optimization yields a positive
definite matrix. Thus, there is no need to take this constraint
into account explicitly.

The derivative with respect to C−1 is

∂u(x, y,A,C)

∂C−1
= −1

2
(x−Aφ(y))(x−Aφ(y))>. (40)

As before, the inner integral in (33) can be solved in closed
form since the approximate distribution is Gaussian in x∫

x

∂u(x, y,A,C)

∂C−1
q(x|y,A,C) = −1

2
C. (41)

Inserting these results into (33), we can solve for C

C = E[(x−Aφ(y))(x−Aφ(y))>]. (42)

8.3 Connection to the Gaussian Filter
For a feature of the form

φ(y) =

[
1

ϕ(y)

]
(43)

we can see by comparing (35) to (34) that the FGF is
equivalent to the GF using a pseudo measurement ŷ =
ϕ(y).

To show how the FGF equations (39) and (42) reduce to
the GF equations (17) and (18), we insert φ(y) = [1, ŷ>]>

into (39)

A =
[
µx − ΣxŷΣ−1

ŷŷ µŷ ΣxŷΣ−1
ŷŷ

]
(44)

with the parameters µ(·) and Σ(·) as defined in (17). The
mean of the approximate posterior (36) is now

Aφ(y) = µx + ΣxŷΣ−1
ŷŷ (ŷ − µŷ). (45)

Inserting this result into (42), we obtain the covariance

C = Σxx − ΣxŷΣ−1
ŷŷ Σ>xŷ. (46)

Clearly, these equations correspond to the GF equations
(18). In particular, with a feature φ(y) = [1, y>]>, we
retrieve the standard GF.
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Algorithm 1 Gaussian Filter {g(·), h(·)}
Require: p(xt−1|y1:t−1), yt
Ensure: q(xt|y1:t)

1: q(xt|y1:t−1) = predictg(p(xt−1|y1:t−1))
2: q(xt|y1:t) = updateh(q(xt|y1:t−1), yt)
3: Return q(xt|y1:t)

Algorithm 2 Feature Gaussian Filter {g(·), h(·), ϕ(·)}
Require: p(xt−1|y1:t−1), yt
Ensure: q(xt|y1:t)

1: q(xt|y1:t−1) = predictg(p(xt−1|y1:t−1))

2: ĥ(·) = ϕ(h(·)), ŷt = ϕ(yt)
3: q(xt|y1:t) = updateĥ(q(xt|y1:t−1), ŷt)
4: Return q(xt|y1:t)

8.4 Implementation
The FGF could be implemented by computing A as

in (39) and C as in (42). In general, the expectations
would have to be computed using some numeric integration
method, as for the standard GF. Alternatively, an existing
implementation of the standard GF can be adapted to
implement a FGF with only minor changes.

Implementing a GF requires the specification of a
process model (1) and a measurement model (2). The GF’s
prediction and update steps are fully determined by those
models, and are then applied to the current belief and
measurement to compute a new belief at each time step,
see Algorithm 1.

As shown in Section 8.3, the FGF is equivalent to
the standard GF using a pseudo measurement ŷ = ϕ(y),
which is obtained by applying a feature function ϕ(·) to
the physical measurement y. The corresponding pseudo
measurement model ĥ(x,w) = ϕ(h(x,w)) is obtained by
composition of the same feature function and the original
measurement model. We obtain a FGF from a standard GF
by replacing the model h(·) with ĥ(·) and the measurements
y with ŷ, see Algorithm 2. Hence, to implement an FGF,
we can simply implement our favorite GF treating ĥ(·)
as the actual measurement model, and ŷ as the actual
measurement.

In Section 9, we illustrate how this simple change in
implementation can have major effects on the estimation
accuracy of the filtering algorithm. We also provide code
for a GF that uses Monte Carlo integration and the
corresponding FGF.∗

8.5 Related Approaches
Applying nonlinear transformations to the physical

sensor measurements before feeding them into a GF is
not uncommon in robotics and other applications (Daum

and Fitzgerald 1983; Vaganay et al. 1993; Durrant-Whyte
1996; Rotella et al. 2014). While these transformations
are often motivated from physical insight or introduced
heuristically, we provide a different interpretation. We see
using a measurement feature ϕ(y) as a means of giving
more flexibility to the approximate posterior q(x|y), which
allows it to fit the exact posterior p(x|y) more accurately.

8.6 The More Features the Better?
The analysis above suggests that adding features will

never decrease filtering accuracy.

8.6.1 Redundant Features At first sight, it might be
somewhat surprising that there is no problem with using
several features containing the same information, i.e. which
are a function of the same measurement. One might be
tempted to think that by doing so, one biases the filter
towards this measurement. This is, however, not the case.
The more features are in the feature vector, the more
expressive the belief (36) and the better the fit (23a) to the
exact posterior p(x|y). This is mathematically equivalent
to using more features in linear regression, where more
features always provide a better fit to the data.

To illustrate that the FGF is capable of using redundant
features, consider the very simple case of a feature that
creates a copy of the measurement

ŷ = ϕ(y) :=

[
y
y

]
. (47)

In this case, the FGF will yield precisely the same result as
if there were no duplicate of the measurement in the feature.

In the following we perform the FGF calculations
by hand to provide some intuition why this happens.
The posterior mean is given by (45). As explained in
Section 4.1, in an actual implementation, matrix inverses
are not computed explicitly. The right-most product of (45)
can be written as the solution of the system[

Σyy Σyy
Σyy Σyy

] [
α
β

]
=

[
y − µy
y − µy

]
(48)

which yields the constraint

Σyy(α+ β) = y − µy. (49)

Solving for the FGF mean (45), we obtain

µx +
[
Σxy Σxy

] [ α
Σ−1
yy (y − µy)− α

]
= (50)

µx + ΣxyΣ−1
yy (y − µy) (51)

∗Code is available at https://git-amd.tuebingen.mpg.
de/amd-clmc/python_gaussian_filtering
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which is the same we would get with only one copy of
the original measurement y. We could reason the same
way about the covariance. Hence, adding a copy of a
measurement or of a measurement feature does not affect
the filtering result. Please note that the above calculation is
just for illustration, it will be performed automatically by
the filter.

8.6.2 Overfitting An important question is whether the
FGF suffers from overfitting in the same way linear
regression suffers from overfitting when too many features
are used (Bishop 2006). In linear regression, the objective
is to fit a function to a finite set of points. It is not
desirable to fit the points perfectly since this would lead
to poor generalization of the function. Here, the situation
is fundamentally different. The objective is to fit an
approximate distribution q(x|y) to the exact distribution
p(x|y). The more accurately we are able to fit the exact
posterior, the better. Hence, there can be no overfitting.

In practice, however, the numeric integration methods in
the filter use of course a finite number of samples. Hence,
when the number of features is too large with respect to the
number of samples used in the numeric integration, then the
FGF can suffer from overfitting. Fortunately, we can always
generate more samples to offset overfitting, while in linear
regression the size of the dataset is fixed.

8.7 Feature Selection
There are two ways of selecting features. We can use

some generic features in y, such as monomials, without
looking at the structure of the problem in detail. If we
require even better accuracy, we can hand-design a feature
for the specific problem at hand. Ideally, one would choose
a feature which maps the measurement to a representation
which relates to the state linearly.

In Section 9, we give examples of both types of features.
We show that the filtering accuracy can be improved
significantly by using an appropriate feature.

9 Simulation Examples Illustrating the
Benefit of Measurement Features

As the previous analysis suggests, it is beneficial to
augment the measurement with nonlinear features since this
gives the approximation more flexibility to fit the exact
distribution. In this section, we illustrate this effect in
four examples, which are abstractions of relevant filtering
problems in robotics. We opt to present small examples
to provide insight into specific important aspects of the
proposed method, and to give some intuition on how it
can be applied to practical filtering problems. A full-scale
experimental application is presented in Issac et al. (2016),
where a particular type of FGF is used for 3D object
tracking using a depth camera.

We implemented the GF using Monte Carlo for the
required integrals and the FGF as in Algorithm 2. The code
for all the simulations is publicly available, see footnote in
the previous section. In the two first examples, it is possible
to solve the integrals analytically, so we present here the
exact results rather than the approximate ones.

The first two examples use monomials as features and
illustrate why using such features can have a major impact
on the estimation accuracy. The last two examples illustrate
how features can be designed for specific systems. Another
example of a designed feature is (Wüthrich et al. 2016), in
which the authors derive a feature in order to handle fat-
tailed measurement models.

9.1 Estimation of Sensor Noise Magnitude
The measurement process (2) of a dynamical system can

often be represented by a nonlinear observation model with
additive noise

h(x,M,w) = h̃(x) +Mw (52)

where h̃ is a nonlinear function of the system state, and
the matrix M determines the magnitude of the sensor noise
(recall thatw is Gaussian with zero mean and unit variance).
Often, the sensor standard deviation (i.e. the matrix M )
is not precisely known, or it may be time varying due to
changing sensor properties and environmental conditions. It
is then desirable to estimate the noise matrix M alongside
the state x. In the following, we show that this is not
possible with the standard GF, but can be achieved with the
FGF.

We define an augmented state x̂ := (x;m), where m is
a column vector containing all the elements of the noise
matrix M . The observation model in distributional form is
p(y|x̂) = p(y|x,m) = N (y|h̃(x),MM>). The state x and
the parameters m stem from independent processes, and
we therefore have p(x̂) = p(x)p(m). Let us now apply the
standard GF to this problem by computing the parameters
in (17). In particular, we compute the covariance between
the augmented state and the measurement

Σx̂y =∫
x,m,y

[
x− µx
m− µm

]
(y − µy)>p(y|x,m)p(x)p(m). (53)

The integral over y can be solved easily since p(y|x,m) is
Gaussian,

Σx̂y =

∫
x,m

[
x− µx
m− µm

]
(h̃(x)− µy)>p(x)p(m). (54)

Interestingly, the second factor does not depend on m.
Therefore, the integral over m is solved easily and yields
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Σx̂y =

∫
x

[
x− µx
µm − µm

]
(h̃(x)− µy)>p(x) (55a)

=

[
Σxy

0

]
. (55b)

As a result, there is no linear correlation between the
measurement y and the parameters m. Inserting this result
into (18) shows that the innovation corresponding to m is
zero. The corresponding part of the covariance matrix does
not change either. The measurement has hence no effect on
the estimate of m. It will behave as if no observation had
been made. This illustrates the failure of the GF to capture
certain dependences in nonlinear dynamical systems.

In contrast, if a nonlinear feature in the measurement y
is used, the integral over y in (53) will not yield h̃(x), but
instead some function depending on both x and m. This
dependence allows the FGF to infer the desired parameters,
as is shown next.

In the remainder of the paper, we are considering several
time steps again, and will thus reintroduce the time indices,
which we dropped earlier.

Numerical example. For the purpose of illustrating the
theoretical argument above, we use a small toy example.
We consider a single sensor, where all quantities in (52),
including the standard deviation Mt, are scalars. Since
we are only interested in the estimate of Mt, we choose
h̃(xt) = 0. The observation model (52) simplifies to

yt = h(Mt, wt) = Mtwt. (56)

Choosing a simple process model

Mt = g(Mt−1, vt) = Mt−1 + 0.1vt (57)

the dynamical system (1), (2) is fully defined. Recall that
we defined the noise vt and wt to be drawn from Gaussians
with zero mean and unit variance.

This example captures the fundamental properties of the
FGF as pertaining to the estimation of sensor noise intensity
Mt. The same qualitative effects hold for multivariate
systems (52) for the reasons stated above.

In Figure 3, we show the simulation result of a
single update step. The true density in grayscale was
computed numerically for the purpose of comparison. It
would, of course, be too expensive to use in a filtering
algorithm. The overlaid orange contour lines show the
approximate conditional distribution q(Mt|yt) obtained
with the standard GF. No matter what measurement yt is
obtained, the posterior q(Mt|yt) is the same. The GF does
not react to the measurements at all.

The true conditional distribution p(Mt|yt) depends on
yt, which means that the measurement does in fact

Figure 3. Simulation of a single update step with prior
p(Mt) = N (Mt|5, 1), and observation model (56). The
density (white for large values) represents the true posterior
p(Mt|yt). The overlaid contour lines show the approximate
posterior q(Mt|yt) of the GF in orange and of the FGF in blue.

contain information about the state Mt. However, the
approximation q(Mt|yt) made by the GF is not expressive
enough to capture this information, which results in a very
poor fit to p(Mt|yt).

As explained in Section 8.3, the standard GF is
the special case of the FGF with the feature φ(yt) =
[1, yt]

>. Let us take the obvious next step and add a
quadratic term to the feature φ(yt) = [1, yt, y

2
t ]>. The

resulting approximation is represented by the blue contour
lines in Figure 3. Clearly, q(xt|yt) now depends on
the measurement yt, which allows the FGF to exploit
the information about the state xt contained in the
measurement. The approximation q(xt|yt) of the FGF has
a more flexible form, which allows for a better fit of the true
posterior.

To analyze actual filtering performance, we simulate
the dynamical system and the two filters for 1000 time
steps. The results are shown in Figure 4. As expected, the
standard GF does not react in any way to the incoming
measurements. The FGF, on the other hand, is capable
of inferring the state Mt from the measurements yt, as
suggested by the theoretical analysis above.

Insights. While it was convenient to simulate a very simple
system for illustration purposes, it is important to note that
the theoretical argument given above applies to realistic,
nonlinear and multivariate systems. We showed that it is
not possible to infer the sensor noise magnitude using a
standard GF, a problem which can be solved by using a
nonlinear measurement feature. This result could be useful
for any filtering problem where the sensor accuracy is not
precisely known, or varies over time.
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Figure 4. Simulation of the system (56), (57) for 1000 time
steps. The simulated noise parameter Mt is shown in black,
together with the mean and standard deviation of the
estimates obtained with the GF (orange) and the FGF (blue).

9.2 Nonlinear Observation Model
In this section, we investigate how the theoretical

benefit of adding nonlinear features translates into
improved filtering performance for systems with nonlinear
observation models. To clearly illustrate the difference of
GF and FGF, we choose a simple system with a strong
nonlinearity (step function).

The process model and the observation model are given
by

xt = g(xt−1, vt) = xt−1 + vt (58)
yt = h(xt, wt) = xt + wt + 50H(xt) (59)

where H(·) is the Heaviside step function.
In Figure 5, we plot the true conditional density

p(xt|yt) with overlaid orange contour lines of the
approximate conditional distribution q(xt|yt) obtained
using the standard GF. The contour lines reflect the
restrictions on the posterior of the GF (23b). The mean
of the approximate density q(xt|yt) is an affine function
of the measurement yt. For nonlinear observation models,
this coarse approximation can lead to loss of valuable
information contained in the measurement yt.

The approximate density q(xt|yt) obtained using a
feature φ(yt) = [1, yt, y

2
t , y

3
t ]>, which is represented by

the blue contour lines in Figure 5, fits the true posterior
much better. This illustrates that nonlinear features allow
for approximate posteriors with much more elaborate
dependences on yt.

Figure 6 shows how this difference translates to filtering
performance. When xt is far away from zero, the
nonlinearity has no effect: the system behaves like a linear
system. The density plot in this regime would be centered
at a linear part of the distribution, and both filters would
achieve a perfect fit. Both the standard GF and the FGF are

Figure 5. Simulation of a single update step with prior
p(xt) = N (xt|0, 5), and observation model (59). The density
(white for large values) represents the true posterior p(xt|yt).
The overlaid contour lines show the approximate posterior
q(xt|yt) of the GF in orange and of the FGF in blue.

x
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t

-15
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5

Figure 6. Simulation of the system (58), (59) for 200 time
steps. The simulated state xt is shown in black, together with
the mean and standard deviation of the estimates obtained
with the GF (orange) and the FGF (blue).

therefore optimal in that case. When the state is close to
zero, however, the advantage of the FGF becomes apparent.
Its tracking performance is good even when the state is
close to the nonlinearity of the observation model, due
to more flexibility in yt of the posterior approximation
q(xt|yt).

Insights. This simulation shows that using a measurement
feature can greatly improve filtering performance. Based
on the theoretical analysis and this example, we believe
that it is plausible that using measurement features can
also significantly improve accuracy for systems with more
realistic nonlinearities.
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Figure 7. We want to estimate the state xt = [x
[1]
t , x

[2]
t ]>

using range rt and bearing γt measurements.

9.3 Measurement in Polar Coordinates
Suppose we want to estimate the 2D position xt of an

object, using distance rt and the bearing γt measurements,
see Figure 7. Such measurements are for example generated
by sonar and radar sensors (Durrant-Whyte 1996; Julier and
Uhlmann 1997; Karlgaard and Schaub 2006).

We define the process model to be linear Gaussian in
Cartesian coordinates

xt = g(xt−1, vt) = xt−1 + vt (60)

and the observation model is given by[
rt
γt

]
= h(xt, wt) =[

||xt||
arctan(x

[2]
t , x

[1]
t )

]
+

[
0.01 0

0 0.02π

]
wt

(61)

where the superscripts index the vector elements. The
nonlinear function applied to xt is the coordinate
transformation from Cartesian to polar coordinates. The
standard deviation of the process model is about two orders
of magnitude larger than the one of the sensor. Such a
configuration can occur for instance when we dispose of
a sensor which is accurate, but provides measurements
at a low rate. During the large time difference between
two measurements, the object might move quite far, which
implies a large standard deviation in the process model.

It is not uncommon in the filtering literature to transform
measurements of this type back to Cartesian coordinates
before filtering, see e.g. (Durrant-Whyte 1996). This
corresponds to using the measurement feature

ϕ(rt, γt) =

[
cos(γt)
sin(γt)

]
rt. (62)

Intuitively, this makes the task of the filter easier since the
relation between the transformed measurement and the state
is simpler. We show that this technique can indeed improve
performance significantly for parts of the state space by
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Figure 8. Simulation of the system (60), (61) for 100 time
steps. The simulated state xt is shown in black, together with
the mean and standard deviation of the estimates obtained
with the GF (orange) and the cartesian-FGF (blue).

allowing the approximate posterior to fit the exact posterior
more accurately.

Furthermore, the analysis in this paper suggests that
it is not necessary to choose between one measurement
representation or the other. We can simply stack both of
them, and the filter will automatically weight them.

Figure 8 shows that using the measurement feature (62)
(we refer to this filter as cartesian-FGF) can significantly
improve filtering accuracy. The gain in accuracy is the
greatest when the object is close to zero in at least one of
the axes. This is because the measurement function (61) is
highly nonlinear in this area.

To understand this difference in estimation accuracy, we
show the relationship between the state dimension x

[2]
t

and the angle γt in Figure 9. The fit obtained using the
standard GF is suboptimal due to the nonlinearity of the
coordinate transformation in the observation model (61).
This nonlinearity can be partly canceled by using the feature
(62), which allows the cartesian-FGF to fit the posterior
more accurately. It is important to note that it is not possible
to cancel the nonlinearity in (61) perfectly, because the
noise is added in polar coordinates. For small noise variance
however, we can expect the cancellation to work well.

Insights. We have shown that using the measurement
feature (62) can improve the estimation accuracy when
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Figure 9. A visualization of the dependence between x[2]t and
γt in a single update step. The first state dimension x[1]t = 1 is
fixed, and the prior is p(x[2]t ) = N (x

[2]
t |1, 1). The density plot

(white for large values) represents the true posterior p(x[2]t |γt)
with overlaid contour lines of the approximate conditional
distribution q(x[2]t |γt) of the GF (orange) and the
cartesian-FGF (blue).

the object is close to zero. However, when the object is
further away from zero, the improvement vanishes. More
generally, the benefits of a particular feature depend on
the parameters of the problem at hand, and on the state
the system is currently in. While using a particular feature
might improve estimation accuracy for one particular
configuration, it could potentially worsen accuracy in a
different configuration. Hence, the question arises which
feature mapping should be used for a particular problem.

Fortunately, we can just stack all the features and
the original measurements, and the filter will weight
them automatically. The filter will autonomously pick the
features which allow it to best represent the posterior belief
in the particular configuration it is in. As discussed in
Section 8.6.2, as long as the numeric integration method
is accurate enough, there will be no overfitting.

We illustrate this effect in Figure 10, where we compare
the cartesian-FGF to an FGF using monomials as features.
We see that using monomials of degree 2 only seems to
improve the filtering accuracy slightly. In this case, the best
measurement representation is clearly (62). The filter which
combines all features and the original measurement (all-
FGF) performs equally well since it automatically picks the
best representation.

9.4 2-Link Planar Robot
In this simulation, we look at the problem of estimating

the joint angles of a robot given information about the end-
effector pose. This problem is practically relevant, because
the joint readings can be unreliable due to noisy sensors,
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Figure 10. The boxplots represent the distribution of the
tracking error. Each data point is the error at one time step of
the simulation of the system (60), (61). The GF uses the plain
observation [rt, γt]

>, the cartesian-FGF uses the feature (62),
the monomial-FGF uses monomials of degree 2, and the
all-FGF uses a feature vector combining all these features.

x
[1]
t

1.5m

x
[2]
t

1m

(y[3], y[4])

Figure 11. Kinematics of a two link manipulator. The state
xt = (x

[1]
t , x

[2]
t ) consists of the joint angles, and the

measurement yt of the end-effector position.

drift, cable stretch, or poor calibration. We therefore seek
to obtain a more accurate estimate of the joint angles by
incorporating a sensor which yields measurements of the
end-effector pose. This sensor might be a camera on the
robot, which performs SLAM, it might be an external
camera which detects the position of the end-effector, or
it could be an IMU which is mounted on the end-effector.
For instance, we might want to estimate the configuration
of the neck of a humanoid robot using the joint sensors as
well as the head-mounted camera.

The relation between end-effector pose and joint-angles
is highly nonlinear, which means that the GF is not able
to exploit all the available information. To illustrate this
problem, we simulate the two-link robot in Figure 11. The
state xt consists of the joint angles, and the transition model
is linear Gaussian

xt = g(xt−1, vt) = xt−1 + 0.1πvt. (63)
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Figure 12. Simulation of the system (63), (64), (65) for 100
time steps. We plot the mean errors and standard deviations of
the estimates obtained using invl(·) as feature (orange), using
invr(·) as feature (green) and using both features (blue).

We receive noisy measurements of the joint angles[
y

[1]
t

y
[2]
t

]
= xt + 0.2π

[
w

[1]
t

w
[2]
t

]
(64)

and relatively accurate measurements of the end-effector
position [

y
[3]
t

y
[4]
t

]
= hfwd(xt) + 0.01

[
w

[3]
t

w
[4]
t

]
(65)

where hfwd are the forward kinematics of the robot.
An obvious candidate for a feature are the inverse

kinematics. There are however two solutions, as shown in
Figure 11. We will denote the solution with the elbow on
the left side by invl(·) and the solution with the elbow on
the right side by invr(·). We could apply either of these two
as features to the position measurements.

In Figure 12, we show the filtering performance using
the two features. Not surprisingly, the filter using invl(·) as
feature (green) performs well as long as the robot actually
has its elbow bent towards the left side. However, when the
robot switches to the right sided configuration at around
60 s, this feature does not yield good estimates anymore,
and the filter using invr(·) (orange) starts performing
well. Fortunately, we can simply filter using both features,
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Figure 13. The boxplots represent the distribution of the
tracking error. Each data point is the error at one time step of
the simulation of the system (63), (64), (65). The GF uses the
plain observation yt, the left-FGF uses invl(·), the right-FGF
uses invr(·), the left-right-FGF uses both invl(·) and invr(·)
and the monomial-FGF uses monomials of degree 2 as
features. Finally, the all-FGF combines all of the above
features.

which yields good performance everywhere (blue). The
filter automatically assigns more weight to the feature
invl(·) when the robot is in a configuration where the
elbow is pointing to the left, because it allows to fit
the exact posterior accurately. Conversely, the filter will
automatically use the feature invr(·) to fit the exact
posterior well when the elbow is pointing towards the right.

In Figure 13, we compare the estimation accuracy
using different features. In this example, using monomials
of degree 2 already improves estimation accuracy
significantly. A further improvement can be obtained using
the problem-specific features, i.e. the inverse kinematics.
As in the previous example, using all features at once yields
an estimation accuracy which is at least as good as the filters
using the individual features.

Insights. This example provides some intuition how the
insights from this paper can be applied to larger, more
realistic problems. It shows that using generic measurement
features, here monomials, can improve estimation accuracy
significantly. By using problem-specific features which
approximately cancel the non-linearity in the observation
model, we can typically further improve accuracy. This
example also shows that it is possible to combine
different features which are complementary. The filter will
automatically assign weight to the features necessary for
approximating the exact posterior well.

10 Discussion
The key insight in this article is that the GF can be

understood as the solution to a constrained optimization
problem. From this new perspective, the GF is seen as a
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special case of a much broader class of filters obtained
by relaxing the constraint on the form of the approximate
posterior.

On this basis, we outlined some conditions which
potential generalizations have to satisfy in order to maintain
the properties which make the GF computationally efficient.

We proposed one particular, straightforward generaliza-
tion which corresponds to filtering with a pseudo mea-
surement. Extending an existing GF implementation in this
manner is trivial. Nevertheless, we showed that this small
change can have a major impact on the estimation accuracy.

The simulations provided in this article are abstractions
of realistic problems, they serve to illustrate the theoretical
concepts, and to provide intuition on how these could
be applied to practical filtering problems. The ideas in
this paper are not intended to solve one concrete filtering
problem, but rather to provide a theoretical basis for future
research. In fact, these insights have already given rise to
practical filtering algorithms in (Wüthrich et al. 2016) and
(Issac et al. 2016). The first reference proposes to use a
measurement feature for robustifying GFs against outliers.
The second one applies this idea to 3D object tracking using
a depth sensor, which provides measurements contaminated
with outliers.

Directions
One interesting direction of future work is to attempt

to further relax the constraint on the form of the
approximation, without violating the conditions which
ensure computational efficiency. For instance, could we
allow for an approximate belief where not just the mean,
but also the covariance depends on the measurement?

Explicitly taking the inaccuracy of the numerical
integration method into account is another interesting
direction for future work. Doing so would be necessary
to guarantee that our belief in fact approximates the exact
posterior well, even when the numeric approximation is not
perfect. An analysis based on learning theory (Vapnik 1995)
might make sense. We would expect a trade-off between
the number of samples in the numeric integration and the
complexity of the form of the belief. For the FGF, this
would mean that the more samples we use in the numeric
integration, the more features we can use simultaneously
without overfitting.
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Appendix A: Posterior Mean and
Covariance as Solutions of a Linear System

Recall the GF posterior

q(x|y) =

N (x|µx + ΣxyΣ−1
yy (y − µy)︸ ︷︷ ︸

µx|y

,Σxx − ΣxyΣ−1
yy Σ>xy︸ ︷︷ ︸

Σxx|y

).

(18 revisited)

The posterior mean can be formulated as the solution of the
linear system

µx|y = µx + Σxya

Σyya = y − µy
variables: µx|y, a

(66a)
(66b)
(66c)

where we have introduced an auxiliary vector a of the same
size as y. Similarly, we can find the posterior covariance by
solving

Σxx|y = Σxx − ΣxyA

ΣyyA = Σ>xy

variables: Σxx|y, A

(67a)

(67b)

(67c)

where we have introduced the auxiliary matrix A of
appropriate dimensions.

These systems can be passed to any linear solver, since
there exists a unique solution for µx|y and Σxx|y , even when
Σyy is degenerate, as we will prove in the following.

A.1 Relation between Σyy and Σxy

Before we start with the proof, it is necessary to uncover
the relation between Σyy and Σxy . As we show in this
section, there exist orthogonal matricesU and V , a diagonal
matrix D with nonnegative entries, and some arbitrary
matrix B, such that

Σxy = BVDU> (68)

Σyy = UDDU>. (69)
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To see this, let us write the full covariance matrix as the
product [

Σxx Σxy
Σyx Σyy

]
=

[
B
C

] [
B
C

]>
(70)

=

[
BB> BC>

CB> CC>

]
. (71)

It is always possible to find matrices B and C which satisfy
(70), because the matrix on the left hand side is positive
semidefinite. We can hence write

Σxy = BC> (72)

Σyy = CC>. (73)

Applying the singular value decomposition C = UDV >,
(68) and (69) follow.

A.2 Proof of Unique Mean
For convenience, let us define

y′ = U>(y − µy). (74)

Substituting (74), (68) and (69) in (66), and using the fact
that U−1 = U>, we can obtain an equivalent system

µx|y = µx +BV a′

Da′ = y′

a′ = DU>a

variables: µx|y, a, a′

(75a)
(75b)

(75c)
(75d)

where we have introduced an additional auxiliary vector a′.
To show that there exists a unique solution for µx|y , it is
sufficient to show that there exists a unique solution for a′.
Since D is diagonal, it is easy to see that (75b) and (75c)
imply that

a′i =

{
0 if Dii = 0

y′i/Dii otherwise.
(76)

Hence, if a solution exists, it is unique. It remains to
be shown that (76) is indeed a solution to (75). Clearly,
(76) satisfies (75a) and (75c) if µx|y and a are chosen
appropriately.

However, for (76) to satisfy (75b), it is necessary that

y′i = 0 ∀i : Dii = 0. (77)

y′ is a function (74) of the measurement y and therefore a
random variable. To show that y′i = 0 holds with probability
one, it is sufficient to show that y′i is concentrated at 0, i.e.
that it has zero mean and variance. From (74) it is clear that

the mean of y′ is zero, and for the covariance we have

Σy′y′ =

∫
y′
y′y′>p(y′) (78)

=

∫
y

U>(y − µy)
(
U>(y − µy)

)>
p(y) (79)

= U>ΣyyU = DD (80)

where we have used (74), (17d) and (69). Hence, y′i has
mean zero and variance D2

ii. In particular, if Dii = 0 then
y′i has variance zero, which implies that (77) holds with
probability one. This, in turn, implies that (76) is the unique
solution to (75), which concludes the proof.

A.2.1 Effect of Numeric Approximations: In practice,
(17d) can usually not be solved in closed form, and
Σyy is approximated as explained in Section 4. The
above argument still applies, as long as the approximate
covariance spans the same column space as the exact
covariance, a requirement which was always fulfilled in our
experiments. A detailed analysis of the conditions under
which a given approximation method could fail to correctly
estimate the column space of Σyy is beyond the scope of
this paper.

A.3 Proof of Unique Covariance
Substituting (68) and (69) in (67), and using the fact that

U−1 = U>, we can obtain an equivalent system

Σxx|y = Σxx −BV A′

DA′ = DV >B>

A′ = DU>A

variables: Σxx|y, A,A
′

(81a)

(81b)

(81c)
(81d)

where we have introduced an additional auxiliary matrix
A′. To show that there is a unique solution for Σxx|y , it is
sufficient to show that there is a unique solution for A′. The
proof here is simpler than the one for the mean, because the
posterior covariance of a Gaussian does not depend on the
measurement obtained, there are hence no random variables
involved.

It can easily be verified that the unique solution to (81b)
and (81c) is

A′ij =

{
0 if Dii = 0

[V >B>]ij otherwise.
(82)

The unique solution Σxx|y is easily obtained from the
unique solution of A′ using (81a), which concludes the
proof.
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