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Abstract— An approach for distributed and event-based state
estimation that was proposed in previous work [1] is analyzed
and extended to practical networked systems in this paper.
Multiple sensor-actuator-agents observe a dynamic process,
sporadically exchange their measurements over a broadcast
network according to an event-based protocol, and estimate the
process state from the received data. The event-based approach
was shown in [1] to mimic a centralized Luenberger observer
up to guaranteed bounds, under the assumption of identical
estimates on all agents. This assumption, however, is unrealistic
(it is violated by a single packet drop or slight numerical
inaccuracy) and removed herein. By means of a simulation
example, it is shown that non-identical estimates can actually
destabilize the overall system. To achieve stability, the event-
based communication scheme is supplemented by periodic (but
infrequent) exchange of the agents’ estimates and reset to their
joint average. When the local estimates are used for feedback
control, the stability guarantee for the estimation problem
extends to the event-based control system.

I. I NTRODUCTION

Event-based algorithms have recently received a lot of
attention in the controls community (see recent overview
articles [2]–[5]). With event-based methods, data is transmit-
ted between the components of a control systems only when
certainevents indicate that new data is required, for example,
to meet some control specification. This is in contrast to
traditional control systems, where communication between
sensors, actuators, and controllers usually occurs at prede-
termined, periodic time instants. Event-based strategiesare
especially attractive when many components are connected
over a shared network, such as in networked control systems
(NCSs) [6] or cyber-physical systems [7].

In this paper, we analyze and extend the distributed and
event-based state estimation method that was proposed in
[1] for NCSs such as in Fig. 1, where multiple sensor-
actuator-agents exchange data over a common bus. In that
approach, the event-based estimator consists of a switching
Luenberger-type observer implemented on each agent of the
NCS, in combination with a threshold-based event generation
mechanism, which triggers when local sensor measurements
are sent over the bus, see Fig. 2. The estimators are updated
with data received from the bus, and since all agents have
access to this data and run the same estimation algorithm,
the agents’ state estimates are basically the same. They
capture the common information in the network, and their
predictions are used by the event generator for the triggering
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Fig. 1. Networked control system. Multiple control agents (each with an
embedded computer, sensors (S) and actuators (A)) are distributed along
a dynamic system. Each agent estimates the state of the dynamic system,
computes local control inputs, and decides when to communicatewith the
other units over a common bus network.

decision: a measurement is broadcast only if the prediction
of this measurement is not accurate enough. Accordingly,
new measurement data is communicatedonly when needed.

Stability of this event-based estimation method in the
sense of bounded estimation errors is proven in [1] under
the assumption of (exactly) identical estimates on all agents.
Clearly, this is an unrealistic assumption since even a single
packet drop, different initial conditions, or slight differences
in the numerical computations may cause some estimates to
differ. Therefore, removing this assumption and establishing
the stability of the event-based estimation scheme under non-
ideal circumstances is essential for any practical implemen-
tation.

Herein, we study the case of non-identical estimates by
introducing a (bounded) disturbance signal on each agent’s
estimate. The disturbances are independent of each other
and may hence cause the agents’ estimates to differ. Firstly,
we show by means of a simulation example that inter-agent
differences in the estimates can actually destabilize the sys-
tem. Secondly, we propose a simple synchronous averaging
mechanism to circumvent this, and establish stability of the
inter-agent error and thus the overall estimation system (in
the sense of bounded errors for bounded disturbances).

When the event-based state estimate on each agent is used
for feedback control (as indicated in Fig. 2 in gray), one has
a distributed event-based control system. This architecture
was successfully used in [1] to balance a cube on one of
its edges. We formally establish stability of the closed-loop
control system in this paper by straightforward extension of
the analysis for the estimation problem.

Related Work: The method proposed herein mainly falls
into the category ofevent-based state estimation methods
since triggering decisions are based on the estimation perfor-
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Fig. 2. Components of the event-based control system implemented on each
agent of the NCS in Fig. 1. Event-triggered communication is indicated by
dashed arrows, and periodic communication by solid ones. The event-based
estimator (shown in black) consists of thestate estimator and theevent
generator, which triggers the communication of local sensor measurements.
The common bus ensures that all agents receive the same measurement
data as inputs to the estimators and hence establishes consistency in the
network. An event-based controller results when the local estimate is used
for feedback control (gray). In this case, the control inputs are assumed to
be shared between all agents (not shown) to be known to all estimators.

mance. Event-based estimation problems with a single sensor
and estimator node have been considered in [8]–[14], for
example. Distributed event-based estimation problems with
an underlying broadcast communication architecture, such
as the one considered herein, are also discussed in [15]–
[17]. Related problems, where network communication is
according to a graph topology, are treated in [18], [19].

When the state estimators are connected to state-feedback
controllers as shown in Fig. 2, this structure represents an
event-based output-feedback control system. Related prob-
lems on event-based control with output measurements
(i.e. without full state measurements) have been considered,
for example, in [20]–[24] for a single event-based control
loop, and in [25]–[27] for a distributed setting.

Notation: A matrix is called stable if all of its eigenvalues
have magnitude less than one. For an estimate ofx(k)
computed from measurement data until timeℓ ≤ k, we write
x̂(k|ℓ). To simplify notation, we also writêx(k) for x̂(k|k).

II. PRELIMINARIES

In this section, we introduce the networked system and
summarize a standard (centralized) observer-based control
design, which serves as the basis for the event-based estima-
tion and control methods of this paper.

A. Networked System

Consider the discrete-time, linear, time-invariant system

x(k) = Ax(k−1) +B u(k−1) + v(k−1) (1)

y(k) = C x(k) + w(k) (2)

with time index k (corresponding to a sampling timeTs),
statex(k) ∈ R

n, control inputu(k) ∈ R
q, measurement

y(k) ∈ R
p, disturbancesv(k) ∈ R

n, w(k) ∈ R
p, and

all matrices of corresponding dimensions. We assume that
(A,B) is stabilizable and(A,C) is detectable.

Let there beN agents, each of which measures a portion
of y(k) by its local sensors; that is,





y1(k)
...

yN (k)





︸ ︷︷ ︸

y(k)

=





C1
...

CN





︸ ︷︷ ︸

C

x(k) +





w1(k)
...

wN (k)





︸ ︷︷ ︸

w(k)

(3)

with yj(k), wj(k) ∈ R
pj and p =

∑N

j=1 pj . Similarly, we
consider the decomposition of the input vector

uT(k) =
[
uT
1(k) uT

2(k) · · · uT
N (k)

]
(4)

whereuj(k) ∈ R
qj is the input associated with agentj’s

actuators, andq =
∑N

j=1 qj . Without loss of generality, each
agentj is assumed to have both sensors (yj(k)) and actuators
(uj(k)) (if it has not, the corresponding dimensionpj or
qj may be set to zero). We do not make any assumption
on stabilizability and detectability for the individual agents;
that is, (A,Bj) may be not stabilizable, and(A,Cj) not
detectable.

The agents are connected over a broadcast network such
as in Fig. 1 and can exchange their measurements and inputs
with each other. They are assumed to be synchronized in time
(all have the same time indexk). Network communication
is assumed instantaneous without delay.

In this paper, we focus on the estimation problem and the
reduction of measurement communications. We assume that
the inputu(k) is known to all agents:

Assumption 1: All agents have access to the inputu.
The assumption is satisfied, for example, whenu is an exter-
nal reference signal. When the componentsuj are computed
locally on different agents (such as in Sec. V where the local
estimates are used for control), Assumption 1 requires that
these inputs are communicated between all agents.

B. Centralized Observer-Based Control

A centralized control system (i.e. one that has periodic
access to all measurementsy(k) and computes all inputs
u(k)) can be designed as the combination of a linear state
estimator and a state-feedback controller. Let

x̂(k|k−1) = A x̂(k−1|k−1) +B u(k−1) (5)

x̂(k|k) = x̂(k|k−1) + L
(
y(k)− C x̂(k|k−1)

)
, (6)

be the state estimator whose gainL is chosen such that(I−
LC)A is stable; and let

u(k) = F x̂(k) (7)

be the state-feedback controller with gainF such thatA +
BF is stable (recall that̂x(k) = x̂(k|k)). The observer and
controller gainsL and F can be designed using standard
state-space design methods (see e.g. [28]). Notice that (6)
can be rewritten as

x̂(k) = x̂(k|k−1) +
∑

i∈{1,...,N}

Li

(
yi(k)− Cix̂(k|k−1)

)
(8)

where
L = [L1, L2, . . . , LN ], Li ∈ R

n×pi (9)

is the decomposition of the estimator gain according to the
dimensions of the individual measurementsyi(k).



It is straightforward to establish the stability of the cen-
tralized closed-loop control system given by (1), (2), (5),(6),
and (7) from the stability of(I−LC)A andA+BF .

III. D ISTRIBUTED & EVENT-BASED ESTIMATION

The distributed and event-based state estimation method
from [1] is summarized in this section. It consists of an
event generator and a state estimator implemented on each
agent as shown in Fig. 2. To study stability for the case
of non-identical estimates in later sections, we augment the
framework from [1] by introducing disturbance signals on
the individual estimates.

A. Event Generator

The event generator on agentj decides at every stepk,
whether or not the local measurementyj(k) is sent to all
other agents. The following rule is used for making this
transmit decision:

transmityj(k) ⇔ ‖yj(k)− Cj x̂j(k|k−1)‖ ≥ δj (10)

where δj ≥ 0 is a design parameter,̂xj(k|k−1) is agent
j’s prediction of the statex(k) based on measurements
until time k−1 (to be defined in the next subsection), and
Cj x̂j(k|k− 1) is agentj’s prediction of its measurement
yj(k). Hence, measurementyj(k) is transmitted if, and only
if, its prediction from the previous estimate deviates by more
than the tolerable thresholdδj .

We denote the indices of those agents that transmit their
measurement at timek by I(k); that is,

I(k) :=
(
i | 1 ≤ i ≤ N, ‖yi(k)− Cix̂i(k|k−1)‖ ≥ δi

)
.

B. State Estimator

Agentj’s state estimator recursively computes an estimate
x̂j(k) of the system statex(k) from the measurementsI(k)
transmitted at timek:

x̂j(k|k−1) = A x̂j(k−1|k−1) +B u(k−1) (11)

x̂j(k|k) = x̂j(k|k−1) +
∑

i∈I(k)

Li

(
yi(k)− Cix̂j(k|k−1)

)

(12)

whereLi is as defined in (9). That is, the estimator equations
and the gainsLi are the same as for the centralized estimator
(5), (8). The event-based estimator, however, updates its esti-
mate with a subset of all measurements (compare summation
in (12) and (8)).

In [1], it is assumed that all agents’ estimates are identical
(x̂j(k) = x̂i(k) for all i, j, and k). Since this requires
perfect communication and computation, it is an unrealistic
assumption. To account for differences in the estimates from
imperfect conditions, we introduce a disturbance signaldj
in each estimate and replace (12) with

x̂j(k|k) = x̂j(k|k−1) +
∑

i∈I(k)

Li

(
yi(k)− Cix̂j(k|k−1)

)

+ dj(k) (13)

for the following analysis. The disturbancesdj are assumed
bounded.

IV. A NALYSIS

In contrast to the original approach in [1], the disturbance
signalsdj cause the individual estimates to differ. Thus, the
difference between any two agents’ estimates must be taken
into account in the stability analysis. The error dynamics for
the modified scheme are derived in Sec. IV-A. In Sec. IV-
B, we propose a synchronous averaging mechanism as an
extension to [1], by means of which boundedness of the
individual estimation errors is established in Sec. IV-C.

A. Estimation Error

Let ej(k) := x(k)− x̂j(k) be the estimation error of agent
j, and letǫji(k) := x̂j(k)− x̂i(k) be the inter-agent error of
agentsj andi. For the estimation error, we obtain from (1),
(3), (11), (13) and straightforward manipulation,

ej(k) = Aej(k−1) + v(k−1)

−
∑

i∈{1,...,N}

Li

(
yi(k)− Cix̂j(k|k−1)

)

+
∑

i∈Ī(k)

Li

(
yi(k)− Cix̂j(k|k−1)

)
− dj(k) (14)

= Aej(k−1) + v(k−1)− L
(
y(k)− Cx̂j(k|k−1)

)

+
∑

i∈Ī(k)

Li

(
yi(k)− Cix̂j(k|k−1)

)
− dj(k) (15)

= (I−LC)Aej(k−1) + (I−LC)v(k−1)− Lw(k)

+
∑

i∈Ī(k)

Li

(
yi(k)− Cix̂i(k|k−1)

)

−
∑

i∈Ī(k)

LiCiAǫji(k−1)− dj(k) (16)

where

Ī(k) := (1, . . . , N) \ I(k)

=
(
i | 1 ≤ i ≤ N, ‖yi(k)− Cix̂i(k|k−1)‖ < δi

)
(17)

is the set of measurements that are not transmitted at timek.
Notice that the term

∑

i∈Ī(k) Li(yi(k)−Cix̂i(k|k−1)) in (16)
is bounded because of (17). This observation is the key step
in the stability proof in [1]. Indeed, under the assumption
that all estimates are exactly identical, we haveǫji(k) = 0
anddj(k) = 0 for all k, and stability of the estimation error
follows from (16) with (17) and(I−LC)A being stable.
Here, we need to establish in addition that the inter-agent
errorsǫji(k) are bounded.

From (11) and (13), we obtain

ǫji(k)=Aǫji(k−1)−
∑

ℓ∈I(k)

LℓCℓAǫji(k−1) + dj(k)− di(k)

=(I−LI(k)CI(k))Aǫji(k−1) + dj(k)− di(k) (18)

where LI(k) and CI(k) denote the matrices constructed
from the corresponding submatricesLℓ and Cℓ, ℓ ∈ I(k).
Obviously, the inter-agent errorǫji(k) is governed by the
time-varying dynamics(I −LI(k)CI(k))A, and we cannot
simply infer stability of the event-based estimation from
stability of (I−LC)A as in [1]. In Sec. VI, an example



is presented where the inter-agent errors are unstable despite
stability of (I−LC)A. Next, we present a straightforward
extension to actually ensure boundedness ofǫji(k).

B. Synchronous Averaging Mechanism

The inter-agent errorǫji(k) is the difference between
the state estimates by agenti and j. We therefore have
full control over it: we can make it zero at any time by
resetting the two agents’ state estimates to the same value,for
example, their average. Therefore, a straightforward strategy
to guarantee bounded inter-agent errors is to periodically
reset all agents’ estimates to their joint average. Clearly, this
strategy increases the communication load on the network. If,
however, the disturbancesdj are small or only occur rarely,
the required resetting period may be very large in comparison
to the underlying sampling timeTs.

Let x̂j(k−) and x̂j(k+) denote agentj’s estimate before
and after resetting, and letK ∈ N be the resetting period.
Each agentj implements the following synchronous averag-
ing mechanism: fork a multiple ofK,

transmitx̂j(k−); receivex̂i(k−), i ∈ {1, . . . , N} \ {j};

set x̂j(k+) = avg(x̂i(k−)) =
1

N

∑N

i=1
x̂i(k−) (19)

where avg denotes the average over allN agents as shown.
We assume that the network capacity is such that the

mutual exchange of the estimates can happen in one time step
(as is the case for the system in [1]), and that no data is lost
in the transfer (e.g. through appropriate low-level protocols
using acknowledgments).

C. Stability of the Estimation Error

With the synchronous averaging mechanism, we can now
establish boundedness of the estimation error:

Theorem 1: Assume that the disturbancesv, w, anddj are
bounded and that(I−LC)A is stable. Then, all estimation
errorsej resulting from the distributed event-based estimator
(10), (11), (13) with synchronous averaging (19) are bounded
for any initial conditionsx̂j(0) andx(0).

For the proof and the later development, we define the fol-
lowing signals: the average estimatex̄(k) := avg(x̂j(k)) =
1
N

∑N

j=1 x̂j(k), the average estimation errorē(k) := x(k)−
x̄(k), and agentj’s deviation from the averageǫj(k) :=
x̄(k)− x̂j(k).

Proof: From the previous definitions,ej(k) = ē(k) +
ǫj(k), and we establish the claim by showing boundedness
of ǫj(k) and ē(k).

For the average estimatēx(k), we have from (11), (13),

x̄(k|k−1) = Ax̄(k−1|k−1) +Bu(k−1)

x̄(k|k) = x̄(k|k−1) +
∑

i∈I(k)

Li

(
yi(k)− Cix̄(k|k−1)

)
+ d̄(k)

where x̄(k|k) = x̄(k), x̄(k|k−1) := avg(x̂j(k|k−1)), and
d̄(k) := avg(dj(k)). The dynamics of the errorǫj(k) =
x̄(k)− x̂j(k) are therefore described by

ǫj(k) = (I−LI(k)CI(k))Aǫj(k−1) + d̄(k)− dj(k) (20)

ǫj(k+) = 0, for k = κK with someκ ∈ N (21)

where (20) is obtained by direct calculation analogous to
(18), and (21) follows from (19). That is,ǫj is periodically
reset to0 and evolves according to (20) in-between resetting
instants. Sinced̄, dj , and (I−LI(k)CI(k))A are bounded,
boundedness ofǫj for all j ∈ {1, . . . , N} follows.

Since ē(k) = avg(ej(k)), we obtain from (16)

ē(k) = (I−LC)Aē(k−1) + (I−LC)v(k−1)− Lw(k)

+
∑

i∈Ī(k)
Li

(
yi(k)− Cix̂i(k|k−1)

)

−
∑

i∈Ī(k)
LiCiAǫi(k−1)− d̄(k) (22)

where we used avg(ǫji(k−1)) = avgj(x̂j(k−1)−x̂i(k−1)) =
x̄(k−1)− x̂i(k−1) = ǫi(k−1). Note that (22) fully describes
the evolution ofē. In particular, the resetting (19) does not
affect ē since, at resetting instantk = κK, ē(k+) = x(k)−
1
N

∑N

j=1 x̂j(k+) = x(k) − 1
N

∑N

j=1(
1
N

∑N

ℓ=1 x̂ℓ(k−)) =

x(k)− 1
N

∑N

ℓ=1 x̂ℓ(k−) = ē(k−).
All input terms in (22) are bounded:v, w, and d̄ by

assumption;
∑

i∈Ī(k) Li(yi(k)−Cix̂i(k|k−1)) by the event-
triggering mechanism (see (17)); andǫi for all i by the
previous argument. Sincẽe(k) = (I − LC)Aẽ(k − 1) is
exponentially stable, it follows that̄e(k) is bounded for all
k [29, Thm. 75, p. 218], which completes the proof.

V. D ISTRIBUTED & EVENT-BASED CONTROL

In this section, we analyze the stability of the distributed
event-based control system that is obtained when the com-
ponentsuj(k) of the control vector (4) are computed locally
by the agents from their state estimatesx̂j(k) and the state-
feedback law (7).

Let F T = [F T
1 . . . F T

N ], Fj ∈ R
qj×n, be the decomposi-

tion of the state-feedback gain in (7) according to the input
decomposition (4). Agentj implements

uj(k) = Fj x̂j(k) (23)

which can be rewritten asuj(k) = Fj (x(k)− ē(k)− ǫj(k)).
From this and (1), it follows

x(k) = (A+BF )x(k−1) + v(k−1)

−BFē(k−1)−
∑N

j=1
BjFjǫj(k−1) (24)

where B = [B1 . . . BN ] with Bj ∈ R
n×qj . Update

equations forē(k) and ǫj(k) were derived in the proof
of Theorem 1 in (22) and (20). The closed-loop system
consisting of the plant (1), (3), the event-based estimators
(10), (11), (13), (19), and the state-feedback controllers(23)
is fully described by the state-space equations (24), (22),and
(20). We thus have the following result:

Theorem 2: Assume thatv, w, and dj are bounded and
that (I −LC)A and A+BF are stable. Then, the state
(x(k), ē(k), ǫ1(k), . . . , ǫN (k)) of the distributed event-based
control system given by (1), (3), (10), (11), (13), (19), and
(23) is bounded for all initial conditionŝxj(0) andx(0).

Proof: Theorem 1 establishes the boundedness ofē(k),
ǫ1(k), . . . , ǫN (k). The statement then follows directly from
(24) andA+BF being stable.



VI. SIMULATION EXAMPLE

In this section, we present simulation results to highlight
certain aspects of the analysis in previous sections. In partic-
ular, we simulate random packet drops causing the agents’
estimates to differ. As simulation example, we consider an
inverted pendulum being balanced by two sensor-actuator-
agents. Matlab files to reproduce the simulations results of
this section are available as supplementary material to this
paper (contact the author or download from his web page).

A. Simulation Model

We consider the inverted pendulum system depicted in
Fig. 3. The pendulum is to be stabilized about its upright
position (φ = 0) by appropriate motion of its two rotating
“arms.” The system can be regarded as an abstraction of the
Balancing Cube [30], which was used as the experimental
platform in [1]. The Balancing Cube uses six rotating arms
to balance its cubic structure on any of its edges or corners.
The arms represent the control units, which carry sensors and
actuators, and communicate with each other over a common
bus as in Fig. 1.

A state-space model of the system linearized aboutφ =
ϕ1 = ϕ2 = 0, which is used for state estimation, is given by

x(k) = Ax(k−1) +B1 u(k−1) +B2 u(k−2) + v(k−1)

y(k) = C x(k) + w(k)

with (see supplementary Matlab files for other matrices)

A =







1 0 0 0
0 1 0 0

−0.0001 −0.0001 1.0007 0.01
−0.0151 −0.0151 0.1492 1.0007







(25)

C =





C1

C2

C3



 =





1 0 0 0
0 1 0 0
0 0 0 1



 , (26)

statex = (ϕ1, ϕ2, φ, φ̇), and samplingTs = 1/100 s. The
model includes the effect of local feedback on the arm
velocities ϕ̇1 and ϕ̇2. The inputsu ∈ R

2 are the reference
velocities for these inner loops. The particular structureof
the state equation, which also includes the input at time
k−2, follows from a time-scale separation algorithm used to
compute an approximate system model assuming sufficiently

ϕ1

ϕ2

φ
gravity

Fig. 3. Inverted pendulum system used for the simulations. The system
(confined to the vertical plane) consists of three links: thependulum, whose
angle against the vertical is denoted byφ, and two “arms” rotating relative
to the pendulum with anglesϕ1 andϕ2.

fast tracking for the velocity feedback loops (see [30], [31]
for details). The state estimator equation (11) is modified
accordingly to include the additional input.

From (25) and (26), it follows that(A,Ci) is not detectable
for any i; that is, communication between the agents is
required for stable state estimation.

The noise variablesv(k) andw(k) are modeled as uniform
random variables. The sensor noise intensity is chosen com-
parable to the experiment [1] (noise on angle sensorsy1, y2
is negligible, noise on angular rate sensory3 is significant).
To account for non-ideal actuation, we simulate input noise
uniform in [−0.05, 0.05] rad/s.

In order to study non-identical estimates, we simulate ran-
dom packet drops: any measurementy1(k), y2(k), y3(k) that
is transmitted between agent 1 and 2 is lost with a probability
of 5%. Packet drops are represented by the disturbancedj(k)
in (13) as follows: ifyℓ(k), ℓ ∈ I(k) is a measurement not
received at agentj, thendj(k) = −Lℓ(yℓ(k)−Cℓx̂j(k|k−1)

)

accounts for the lost packet (however, we do not establish
boundedness ofdj in this case, see Sec. VII for further
discussion). We assume that the communication required
to perform the periodic averaging of estimates (19) is not
affected by data loss.

B. Event-Based Estimation & Control Design

The event-based control system presented in Sec. V is
applied to stabilize the pendulum aboutx = 0. The two
control agents compute individual state estimatesx̂1(k) and
x̂2(k) according to (11), (13), and apply the control (23).
The event trigger (10) is applied to each sensor measurement
y1(k) to y3(k) individually. Agent 1 is responsible for
measurementy1(k), and agent 2 decides for bothy2(k) and
y3(k) (i.e. x̂3(k|k−1) = x̂2(k|k−1) in (10)). We chose
δi = 0.005 for all triggering thresholds, andK = 200 as
period for the synchronous averaging (19) (reset every2 s).

The centralized observer (5), (6) and the state-feedback
controller (7), which form the basis of the event-based
implementation, are designed from the linearized dynamics
using standard techniques, such that(I−LC)A andA+BF
are stable (see supplementary material for details).

C. Simulation Results: Effect of Synchronous Averaging

Figures 4 and 5 show system trajectories and communica-
tion rates for a typical simulation of the event-based control
system. The communication rates are comparable to those
observed in the experiments in [1]. Att = 10 s, an impulsive
disturbance onu1 is applied. As expected, the communica-
tion rate for the corresponding angle measurementy1 goes
up temporarily.

Figure 6 shows the inter-agent errorǫ21 for a different
segment of the same simulation (in blue), as well as for
a separate simulation, where synchronous resetting (19) is
disabled (in green). Without resetting, the inter-agent errors
diverge causing the control system to destabilize (the pendu-
lum falls). This demonstrates that stability may be lost dueto
small deviations in the agents’ estimates, which is neglected
in the analysis in [1] by assuming identical estimates.
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Fig. 4. Typical state and input trajectories for the simulation example.
TOP: arm anglesx1 (blue) andx2 (green). MIDDLE: pendulum angle
x3. BOTTOM: control inputsu1 (blue) andu2 (green). Att = 10s, an
impulsive disturbance is applied on inputu1.
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Fig. 5. Communication rates (moving average over 100 steps) forthe same
simulation experiment as in Fig. 4. The rates are shown in blue and green
for the arm angle measurementsy1 and y2, and in red for the pendulum
angular rate measurementy3. The black dots on the time axis indicate the
instants when the estimates are reset according to (19).

D. Performance Comparison to Ideal Case

Table I shows root mean square (RMS) values of the
individual estimation errorse1 and e2, as well as the inter-
agent errorǫ21. The values represent the average over 1000
simulation runs, with one run representing 300 seconds
of balancing. In contrast to the simulation in Fig. 4, no
impulsive disturbance was applied (but process and sensor
noise were still active). The table shows the results for the
simulation scenario discussed so far (with 5% packet drop
probability), as well as the case of no packet drops. For the
latter, x̂1 andx̂2 are identical and no synchronous averaging
(19) is required, which corresponds to the analysis in [1].

Apparently, the RMS values ofe1 ande2 are only slightly
larger for the case with packet drops compared to the
idealized case without data loss. Furthermore, the inter-agent
error ǫ21 is relatively small. This indicates that analyzing the
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Fig. 6. Two components of the inter-agent errorǫ21 for simulation with
synchronous averaging (blue) and without (green). The bluegraph is reset to
zero att = 2, 4, 6, . . . according to (19). Without resetting, the inter-agent
errors diverge and destabilize the system.

TABLE I

RMS ESTIMATION ERRORS AND COMMUNICATION RATES FOR

SIMULATION WITH AND WITHOUT PACKET DROPS.

Simulation scenario 5% packet drops no packet drops
Synchronous averaging (19) yes no

RMS estimation errore1 5.53 · 10
−3

5.31 · 10
−3

RMS estimation errore2 5.34 · 10
−3

5.31 · 10
−3

RMS inter-agent errorǫ21 1.47 · 10
−3 0

Total communication rateR 0.158 0.145

simpler case of identical estimates is helpful to approximate
the estimation performance, while it is not sufficient to
guarantee stability as discussed before.

Table I also shows for both scenarios the total communica-
tion rateR, which is defined as the number of communicated
units (measurements) averaged over the duration of the
experiment and the number of sensors. That is,0 ≤ R ≤ 1,
andR = 1 means that all sensors communicate at every step.
The slight increase inR for the packet drop case is due to
the additional communication required for the synchronous
averaging (19) (one element of̂xj(k−) is counted as one
measurement). Apart from this, the communication rates are
comparable.

VII. C ONCLUDING REMARKS

The key difference of this work compared to the event-
based estimation framework presented in [1] is the removal
of the assumption that all agents’ estimates are identical.
This assumption is not practical since it is violated, for
example, as soon as a single packet is dropped or delayed,
or if initial conditions vary slightly. The simulation example
herein shows that stability may actually be lost due to
such differences in the agents’ estimates. In this paper, we
established stability in the presence of inter-agent differences
by means of the synchronous averaging mechanism (19);
that is, by periodically (but infrequently) resetting all agents’
estimates to their joint average.

As a result, there are two types of communication in



this approach: event-based communication of measurements
according to the event triggers (10), and periodic exchangeof
estimates for the synchronous averaging (19). Even though it
would be possible to design a stable estimation scheme with
the synchronous averaging mechanism alone, this typically
requires periodic updates at a relatively high frequency,
which would be against the event-based communication
paradigm. Instead, the results herein suggest a different
design philosophy: first, an event-based design is carried out
making the idealizing assumption of zero inter-agent errors
(i.e. according to [1]). In a second stage, a synchronous
averaging mechanism is introduced in order to keep inter-
agent errors small and guarantee stability under practical
circumstances (proposed herein). In a scenario, where inter-
agent differences occur infrequently, the synchronous reset-
ting frequency can be small and most communication is
due to the event-triggering. Moreover, one can expect the
estimation performance to be comparable to the idealized
design (see simulation example in Sec. VI, esp. Table I).

Stability is established for bounded disturbancesdj driving
the inter-agent error (18). The assumption of boundeddj
seems realistic when representing errors from initialization
or computational accuracy, for example. In the simulation
experiment, the signalsdj are used to model random packet
drops (cf. Sec. VI-A). Even though boundedness ofdj cannot
be established in a deterministic sense for this case, the
method still proves effective in stabilizing the inter-agent
error in this example.

Alternative ways of stabilizing the inter-agent errors (18)
than the synchronous averaging proposed herein, as well
as avoiding the periodic communication of control inputs
(Assumption 1), are some topics for future work.
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