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Abstract—An event-based state estimation scenario is consid-
ered where multiple distributed sensors sporadically transmit
observations of a linear process to a time-varying Kalman filter
via a common bus. The triggering decision is based on the
estimation variance: each sensor runs a copy of the Kalman
filter and transmits its measurement only if the associated
measurement prediction variance exceeds a tolerable threshold.
The resulting variance iteration is a new type of Riccati equation,
with switching between modes that correspond to the available
measurements and depend on the variance at the previous
step. Convergence of the switching Riccati equation to periodic
solutions is observed in simulations, and proven for the case
of an unstable scalar system (under certain assumptions). The
proposed method can be implemented in two different ways: as
an event-based scheme where transmit decisions are made on-
line, or as a time-based periodic transmit schedule if a periodic
solution to the switching Riccati equation is found.

Index Terms—Event-based state estimation, distributed esti-
mation, sensor scheduling, networked control systems, switching
Riccati equation, periodic solution.

I. I NTRODUCTION

Novel control strategies and improvements in sensor, actu-
ator and network technology will allow the next generation
of control systems to tightly integrate the physical world
with computation and communication. Referred to as cyber-
physical systems (CPSs) [1], these highly integrated systems
will extend present-day networked systems (such as networked
control systems (NCSs) [2] and wireless sensor networks
(WSNs) [3]) in both size and complexity.

As the number of interconnected entities in future CPSs
increases, the cost of communication will become a significant
factor. Communication is costly even in today’s networked
systems. In NCSs, where a multi-purpose communication
network is shared by many different control, sensor and
actuator units, a sensor node cannot transmit its measurement
without preventing other units from using the network or
causing load-induced delays. In WSNs, the transmission of
a sensor measurement to a remote estimator consumes energy
that is often a significant fraction of the system’s overall energy
balance.

While the future of CPSs in areas such as transportation,
power systems, smart buildings, mobile robots and process
plants is promising, the cost of communication must be
managed if CPSs are to meet their potential. It will be vital,for
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Fig. 1. Distributed event-based state estimation problem. The statex(k) of
a linear process is observed byM sensor agents, which sporadically transmit
their measurementsyj(k) over a common bus. (Solid lines denote continuous
flow of data, dashed lines indicate event-based communication, and commu-
nication is assumed without delay and data loss.) Estimator nodes connected
to the bus receive the measurements and keep track of the conditional state
meanx̌(k) and varianceP (k). Each sensor makes the decision whether to
transmit its local measurement based on the estimation varianceP (k), thus
linking the transmit decision to the estimation performance. The gray blocks
constitute the event-based state estimator to be designed herein. The depicted
scheme can be applied in different scenarios where communication is costly.
In a monitoring application, a remote estimator centrally fuses all sensor data
received from the bus (as shown here). In a networked controlsystem, where
the agents are also equipped with actuation, the state estimates can be used
locally for feedback control.

example, to consider the communication network as a shared
resource, and to design the control and estimation algorithms
in tandem with the network access strategy.

This article considers the problem of estimating the state
of a dynamic system from multiple distributed sensors in a
scenario where the communication of sensor measurements is
costly. We propose a method where data is transmitted only
when certain events indicate that the data is required to meet
constraints on the estimator performance (expressed as tolera-
ble bounds on the error variance). Thus the transmit decision
is linked to its contribution to the estimator performance and
data is exchanged only when needed.

Figure 1 depicts the distributed state estimation problem
and the event-based communication strategy used to address
it. The key idea is that each agent transmits its local sensor
measurementonly if it is required in order to meet a certain
estimation performance. To be able to make this decision, each
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agent implements a state estimator that is connected to the
common bus. Since the state estimate is computed based on
data received over the bus only (the local sensor data is used
only when also broadcast) and since we assume a loss and
delay-free network, the estimates are the same on all agents
and represent the common information in the network. The
estimator can hence be used to make the transmit decision:
if the other agents’ estimate of a particular measurement is
already “good enough,” it is not necessary to communicate
this measurement; if the common estimate is poor, on the other
hand, the measurement is transmitted so that all agents can up-
date their estimates. The estimators are implemented as time-
varying Kalman filters, which compute the mean and variance
of the state conditioned on the received measurements.

Different decision rules for determining whether an estimate
is “good enough” are conceivable. In [4], [5], for example, a
constant threshold logic on the difference between the actual
measurement and its prediction is used. Herein, we considera
different approach where the decision is based on the variance:
a measurement is broadcast if its prediction variance exceeds
a tolerable bound, which indicates that the uncertainty when
predicting the measurement is too large. If a transmission is
triggered by a condition on the estimation variance, we refer
to this asvariance-based triggering.

As opposed to making the transmit decision based on real-
time measurement data (where, for a stochastic process, the
transmit decision is a random variable), the approach herein
permits an off-line analysis of the (deterministic) estimation
variance iteration, provided that the observed process is sta-
tionary and its statistics are known in advance. Specifically,
if a periodic solution of the variance iteration is found, it
corresponds to a periodic sending sequence for each sensor,
and hence allows for a straightforward implementation of the
resulting communication logic. The periodic sending sequence
can be computed in advance and fixed for each sensor. Such
a time-based implementation represents an alternative to the
event-based implementation shown in Fig. 1 where transmit
decision are made on-line. The proposed method can hence
also be used as a tool for off-line design of periodic sensor
schedules. The recursive equation for the estimator variance
is a switching equation that represents a new type of Riccati
equation. A focus of this article is on studying the convergence
of this equation for the special case of a scalar unstable system.

A. Contributions and Outline

The main contributions of this article are the following:

• Variance-based triggering (combined with a Kalman fil-
ter) is proposed as a novel framework for event-based
state estimation.

• A new type of switching Riccati equation is obtained as
the variance iteration for this event-based estimator.

• The convergence properties of the switching Riccati equa-
tion are studied for an unstable scalar process, and a
sufficiency result for asymptotic periodicity is derived
(Theorem 2): if two assumptions are satisfied, global
convergence of the Riccati equation to a periodic solution
is guaranteed.

We first mentioned the idea of event-based state estimation
with variance-based triggering in the conference paper [6],
where we applied the method on the NCS of the Balancing
Cube [7]. By using the event-based estimator for feedback
control, we achieved a significant reduction in average com-
munication at only a mild decrease in control performance.
The experimental results from [6] are not repeated herein.
This article includes the proofs for the convergence resultof
the scalar switching Riccati equation, which were omitted in
a preliminary version of the result in [8].

This article continues as follows: After a review of related
work and introduction of notation in the next subsections,
the event-based state estimator and its corresponding Riccati
equation are derived in Sec. II. In Sec. III, we illustrate the
periodic behavior of the switching Riccati equation through
simulation examples of a scalar and a multivariable process.
The convergence result for the scalar case is derived in Sec.IV,
and we conclude with a discussion of the results in Sec. V.

B. Related Work

Event-based strategies are a popular means of ensuring
efficient use of the communication resource in NCSs or CPSs
(see [9] and references therein). As opposed to traditional
time-triggered transmission of data, event-based approaches
transmit data only when required to meet a certain specifica-
tion of the control system (e.g. closed-loop stability, control or
estimator performance). Event-based state estimation problems
with a single sensor and a single estimator node have been
studied in [9]–[16], for example. Event-based state estimation
problems for distributed or multi-agent systems have been
looked at in [4], [5], [17].

The basic idea of implementing state estimators on the
agents of an NCS in order to reduce communication of sensor
data was first presented in [18]. Therein, each agent uses a
model to predict the other agents’ measurements at times when
these are not transmitted (because the prediction error is below
a threshold), and the agentresetsparts of the state vector
when new measurement data becomes available. In contrast,
the Kalman filters used hereinfuse model-based predictions
with the received measurements. Communication schemes like
these where, in order to reduce network traffic, sensor data is
not sent at every time step, are also referred to ascontrolled
communication, [2], [13], [19].

In most of the above-mentioned references for the single
sensor/single estimator case, the sensor node transmits a local
state estimate (obtained from a Kalman filter on the sensor)
to the remote estimator, rather than the raw measurement.
While this seems to be the method of choice for the sin-
gle sensor agent case (the local state estimate contains the
fused information of all past measurements), communicating
raw measurements has a practical advantage for the case of
multiple agents with coupled dynamics. For an agent to fuse
another agent’s measurement with its local state estimate,it
must know the variance of the measurement conditioned on
the state. This is usually known in form of a sensor model.
To optimally fuse another agent’s state estimate (with coupled
dynamics), on the other hand, the variance associated with



the estimate would have to be known. Since this variance is,
however, only known to the agent that generated the estimate,
it would have to be communicated over the network as well,
hence, increasing the network load. The method herein makes
no assumptions on the dynamic coupling between the system
parts that are observed by the various sensors.

In the above-mentioned references on event-based estima-
tion, an event is triggered by some condition on real-time data
(measurement or state); that is, in a stochastic framework,data
transmission is a random event. In contrast, the variance-based
trigger used herein depends on the prediction variance at the
previous step. The resulting variance iteration is deterministic
and depends on the problem data only. A condition on the
variance to trigger sensor transmissions is considered in [20]
in a slightly different framework. Therein, the authors con-
sider two heterogeneous sensors: a condition on the estimator
variance is used to decide which of the sensors will transmit
its measurement to a remote estimator at any given time step.
Whereas the average communication rate is constant in [20],
we seek to reduce the average sensor transmission rate, and
to have the option to not transmit any data at a time step.
The authors in [20] also observe convergence of the estimator
variance to periodic sequences in their scenario, but they do
not prove this convergence.

As mentioned previously, the event-based estimation
method herein can also be used for off-line design of sensor
schedules (when a periodic solution to the Riccati equation
is implemented as a time-based schedule). Related sensor
scheduling problems are discussed in [21], [22], and, more
recently, [23]. Meier et al. [21] and Kushner [22] address a
finite horizon optimal scheduling problem, wherem sensor
observations are to be scheduled over a finite horizonT > m
to minimize some cost function. They show that the optimal
schedule can be determined off-line (as is the case herein),
and Kushner finds that them observation instants tend to
be equally spaced (i.e. “periodic” over the finite horizon) for
unstable scalar systems and a large time horizonT . Zhang et
al. [23] considered an infinite horizon optimal scheduling prob-
lem, for which they established that the optimal sensor sched-
ule can be approximated arbitrarily well by a periodic one.
In contrast to the aforementioned works, we do not cast the
reduced communication estimation problem as an optimization
problem. Instead of fixing the number of transmissions a priori,
we start from specifications of the desired estimation quality
(expressed as bounds on the measurement prediction variance)
and use event-triggers to determine whether a transmission
needs to happen or communication can be saved. Notably,
periodic schedules appear herein, as well as in [20], [22],
[23], as limiting cases or suboptimal solutions despite different
underlying problem formulations.

The Riccati iteration obtained for the event-based estimation
problem herein is related to Riccati equations of other well-
known Kalman filtering problems with different sensor trans-
mission policies. For full communication (all sensors transmit
at every time step), the discrete-time Riccati equation forthe
standard Kalman filtering problem is recovered, [24]. When
periodic transmission schedules are fixed a priori, the problem
can be cast as a linear periodic system, and the estimation

variance is thus captured by the discrete-time periodic Riccati
equation, [25]. Note that the problem considered herein is
different in that we do not a priori assume a periodic transmit
sequence, but we show that a periodic sequence results from
the event-based estimation problem. In Kalman filtering with
intermittent observations [26], measurement arrival at the filter
is subject to random data loss modeled as a Bernoulli process,
and the filter variance becomes a random variable itself. In
contrast to being governed by an external (random) process,
measurement transmissions herein are triggered “internally”
by the estimator whenever new data is needed.

Event-based state estimation is closely related to event-
based control. In fact, an event-based controller is obtained
when the output of an event-based estimator is connected to
a state-feedback controller (as is done in the experimental
applications in [4]–[6]). Results in [27] and [28] suggest this
structure for event-based control. Therein, the authors prove
that the combination of an optimal state-feedback controller
(designed using standard methods) with an optimal event-
based state estimator (from a joint design of estimator and
transmission logic) yields the optimal event-based controller
(for linear systems with a centralized controller and a quadratic
finite-horizon cost).

C. Notation and Preliminaries

We useR, Z, N, andN+ to denote real numbers, integers,
nonnegative integers, and positive integers, respectively. By
E [·|·] and Var[·|·], we denote the conditional expected value
and the conditional variance. A normally distributed random
variablez with meanm and covariance matrixV is denoted
by z ∼ N (m,V ).

For i, j ∈ Z andN ∈ N
+, we define the binary operator

‘−N ’ as follows:

i−N j =

{

mod(i−j,N) if mod(i−j,N) > 0

N if mod(i−j,N) = 0,
(1)

where mod(i,N) ∈ {0, . . . , N − 1} is the (nonnegative)
remainder ofi divided byN . Hence, ‘−N ’ is the subtraction
with subsequent moduloN operation, except that a resulting
0 is replaced byN .

For a symmetric matrixX ∈ R
n×n, we writeX > 0 and

X ≥ 0 to mean thatX is positive definite and positive semi-
definite, respectively. For a matrixA ∈ R

m×n, Aj: denotes
the jth row, and[Aj:]j∈J with J ⊆ {1, . . . ,m} denotes the
matrix constructed from stacking the rowsAj: for all j ∈ J .
Further, diag[Ajj ]j∈J denotes the diagonal matrix with entries
Ajj , j ∈ J , on its diagonal.

We define the binary indicator function1X such that1X =
1 if statementX is true, and1X = 0 otherwise.

Consider the iteration

p(k+1) = h(p(k)), p(0) = p0 ≥ 0, (2)

with a functionh : D → R
n, D ⊆ R

n. For h being applied
m times, we writehm; that is, form ∈ N,

p(k+m) = hm(p(k)) = h(h(. . . (h
︸ ︷︷ ︸

m

(p(k)) . . . ))), (3)



whereh0(p(k)) := p(k). For the domain of a functionh, we
write dom(h). We use the following definitions to characterize
periodic solutions of (2):

Definition 1 (adapted from [29]):Let p∗ ∈ dom(h). Then
p∗ is called anN -periodic pointof (2) if it is a fixed point of
hN , that is, if

hN (p∗) = p∗. (4)

The periodic orbit ofp∗, {p∗, h(p∗), h2(p∗), . . . , hN−1(p∗)},
is called anN -cycle, andN is called theperiod.

Definition 2: A solution to (2) is calledasymptoticallyN -
periodic for the initial conditionp(0) = p0 if

lim
m→∞

hmN (p0) = p∗, (5)

wherep∗ is anN -periodic point of (2).
For a functionh and collections of intervalsI1 andI2, we

write I1
h
−→ I2 to indicate that each interval fromI1, when

mapped byh, is contained in an interval inI2; that is,

I1
h
−→ I2 ⇔ ∀I1 ∈ I1, ∃I2 ∈ I2 : h(I1) ⊆ I2. (6)

II. EVENT-BASED STATE ESTIMATOR

We consider the stochastic linear time-invariant system

x(k) = Ax(k−1) + v(k−1) (7)

y(k) = C x(k) + w(k), (8)

wherek is the discrete time index,x(k) ∈ R
n is the state,

y(k) ∈ R
M its observation (M the number of sensors),

and all matrices are of corresponding dimensions. The pro-
cess noise, the measurement noise, and the initial statex(0)
are assumed mutually independent, normally distributed with
v(k) ∼ N (0, Q), w(k) ∼ N (0, R), x(0) ∼ N (x0, P0),
Q ≥ 0, R > 0, and P0 ≥ 0. We assume that(A,C) is
detectable (i.e. the process is detectable when measurements
from all sensors are combined, but not necessarily from an
individual sensor),(A,Q) is stabilizable, andR is diagonal.
The latter assumption means that the measurement noise is
mutually independent for any two sensors considered, which
is often the case in practice. The presented state estimation
method can, however, be readily extended to the case of block
diagonalR by sending blocks of correlated measurements at
once.

Remark 1:For ease of notation, we consider an unforced
system; that is, no inputu(k−1) in (7). Provided the inputs
are known by all sensor agents at all times (such as when
they represent a known reference signal or when they are
shared over the network), the extension of the event-based
state estimator to this case is straightforward, and the analysis
of the estimator variance in the following remains unchanged.

We seek an algorithm to recursively compute an estimate of
the statex(k) from measurements received up to timek, and
the problem parameters given by(A,C,Q,R, P0). If the full
measurement vectory(k) is available at timek, the problem is
solved by the standard Kalman filter (Sec. II-A). In Sec. II-B,
we present the event-based state estimator, which consists
of a Kalman filter that uses a reduced set of measurements
as an input and a rule for deciding whether to transmit a
measurement.

A. Full Communication Kalman Filter

It is well known that the Kalman filter is the optimal
Bayesian state estimator for the process (7), (8) because it
keeps track of the Gaussian conditional probability distribution
of the statex(k) conditioned on all measurements up to time
k, Y(k) := {y(1), . . . , y(k)} (see [24], for example). To dis-
tinguish this Kalman filter from the event-based filter derived
below, we refer to it as thefull communication Kalman filter.
Under the above assumptions, the state prediction variance
Var [x(k)|Y(k−1)] converges toP̄ > 0, which is the unique
positive semidefinite solution to the discrete algebraic Riccati
equation (DARE):

P̄ = AP̄AT +Q−AP̄CT(CP̄CT +R)−1CP̄AT. (9)

We write P̄ = DARE(A,C,Q,R).

B. Event-Based Kalman Filter

Denote byJ(k) ⊆ {1, . . . ,M} the subset of sensors that
transmit their measurement at timek. We make precise how
we chooseJ(k) later in this section. Since communication is
assumed to be instantaneous and without data loss,J(k) is
also the set of measurements available at the estimator at time
k. The corresponding measurement equation is then given by

ỹ(k) = C̃(k)x(k) + w̃(k), (10)

where ỹ(k) = [yj(k)]j∈J(k) is the vector of those measure-
ments available at timek, w̃(k) ∼ N (0, R̃(k)), and output
and measurement noise variance matrices are constructed as

C̃(k) = [Cj:]j∈J(k), R̃(k) = diag[Rjj ]j∈J(k). (11)

Notice thatỹ(k) ∈ R
m(k), w̃(k) ∈ R

m(k), C̃(k) ∈ R
m(k)×n,

and R̃(k) ∈ R
m(k)×m(k) have time varying dimensions with

m(k) ≤ M . This includes the casem(k) = 0; that is, at time
k there is no measurement available at the estimator. In order
to avoid special treatment of this case, we use the convention
that the measurement update step in the Kalman filter below
is omitted in casem(k) = 0.

For any given sequence of̃C(k) and R̃(k), the distribu-
tion of the statex(k) conditioned on the set of available
measurements̃Y(k) = {ỹ(l) | 0 ≤ l ≤ k} is Gaussian,
[24]. The Kalman filter keeps track of the conditional means
and variances,̌x(k|k− 1) = E [x(k)|Ỹ(k− 1)], x̌(k|k) =
E [x(k)|Ỹ(k)], P̌ (k|k−1) = Var [x(k)|Ỹ(k−1)], andP̌ (k|k) =
Var [x(k)|Ỹ(k)]. The filter equations are

x̌(k|k−1) = Ax̌(k−1|k−1) (12)

P̌ (k|k−1) = AP̌ (k−1|k−1)AT +Q (13)

Ǩ(k) = P̌ (k|k−1) C̃T(k)

·
(
C̃(k)P̌ (k|k−1)C̃T(k) + R̃(k)

)−1
(14)

x̌(k|k) = x̌(k|k−1) + Ǩ(k)
(
ỹ(k)−C̃(k)x̌(k|k−1)

)

(15)

P̌ (k|k) =
(
I−Ǩ(k)C̃(k)

)
P̌ (k|k−1). (16)

The filter is initialized withx̌(0|0) = x0 and P̌ (0|0) = P0.
For notational convenience, we useP (k) := P̌ (k|k−1) for

the state prediction variance. The prediction variance captures



the uncertainty aboutx(k) given all measurements up to the
previous time stepk− 1. Similarly, Var[yj(k)|Ỹ(k− 1)] =
CjP (k)CT

j + Rjj captures the uncertainty in predicting the
measurementyj(k). A measurementyj(k) is transmitted and
used to update the estimator if, and only if, its prediction
variance exceeds a tolerable bound. Since the event-based
Kalman filter cannot do better than the full communication
filter, we use a thresholdδ on the difference Var[y(k)|Ỹ(k−
1)]− limk→∞ Var [y(k)|Y(k−1)] = Cj(P (k)− P̄ )CT

j for the
transmit decision. Hence, we use the transmit rule

transmityj(k) ⇔ Cj

(
P (k)− P̄

)
CT

j ≥ δj (17)

for sensorj, where the design parameterδj captures the
tolerable deviation of thejth sensor measurement prediction
variance from the full communication, steady-state variance.
For ease of notation, we introduce the transmit function

γj(k) := 1Cj(P (k)−P̄ )CT
j≥δj

. (18)

Having established the transmit rule (17), we can now make
the setJ(k) of all sensor measurements transmitted at timek
precise:

J(k) = {j | 1 ≤ j ≤ M, Cj

(
P (k)− P̄

)
CT

j ≥ δj}. (19)

The matricesC̃(k) and R̃(k) for k ∈ N are well defined by
(11), (19), and knowledge ofP (k) = P̌ (k|k−1).

The index setJ(k) can have up toM elements; that is,
more than one sensor may transmit their data at timek. In
practice, this can for example be handled by low-level network
protocols assigning priorities to the different sensors, as is the
case in the application in [6]. We assume that the network
bandwidth is sufficient for all selected sensors to transmit
their data within on time interval. As we shall discuss in
the next subsection, the transmit sequence (and hence the
maximum number of sensors transmitting simultaneously) can
be analyzed in advance.

The Kalman filter (12)–(16) together with the variance-
based transmit decision (17) is referred to as theevent-
based state estimator with variance-based triggering. Since
the Kalman filter (12)–(16) is the optimal Bayesian state
estimator for any sequences̃C(k) andR̃(k), it is also optimal
for those sequences given by (11) and (19). In other words,
given the rule (17) (which captures the objective to use
relevant measurements only), the filter (12)–(16) is the optimal
state estimator for the estimation problem given by (7), (10),
(11), and (19). Clearly, ifδj = 0 for all sensors, the full
communication Kalman filter is recovered.

Remark 2:Alternative triggering rules than (17) may be
useful for different scenarios. For example, when sensor noise
is not stationary (i.e. Var[wj(k)] = Rjj(k) instead ofRjj),
the modified triggering rule

transmityj(k) ⇔ CjP (k)CT
j +Rjj(k) ≥ δj (20)

can be useful for adapting the sensor transmit rates to varying
Rjj(k). For instance, if sensorj observes a change in sensor
conditions leading to an updatedRjj(k), it can take this into
account in the transmit decision (20). The updatedRjj(k)
can be communicated alongsideyj(k) at the next triggering

instant, so that all estimators can use the updated variance
from thereon for making predictions.

Remark 3:The triggering rule (17) uses constant rather than
time-varying thresholdsδj . This is partly motivated by prac-
tical considerations (constant thresholds are easier to imple-
ment), and also suggested by theoretical results on the optimal
design of communication logics for related problems such asin
[9], [19]. Therein, optimal event-triggering rules are designed
such that a cost function, which captures estimation or control
performance, is minimized. Typically, the optimal triggering
rules are time-varying for finite horizon problems, while
they are constant for infinite horizon problems, [9, p. 340].
Since we are mostly interested in long-term behavior (average
communication rates and long-term estimation performance),
and the system (7), (8) is time invariant, there is essentially
no need to vary the threshold. For other applications, where
conditions such as communication loads or plant parameters
change, adaptive thresholds may be preferable.

C. Switching Riccati Equation

The update equation for the estimator prediction variance
P (k) is obtained by combining (11), (13), (14), (16), and (19):

P (k+1) = AP (k)AT +Q−AP (k) ČT(P (k))

·
(
Č(P (k))P (k) ČT(P (k)) + Ř(P (k))

)−1

· Č(P (k))P (k)AT =: H(P (k)), (21)

where Č(P (k)) := C̃(k) and Ř(P (k)) := R̃(k) have been
introduced to emphasize their dependence onP (k) by (11)
and (19); andH(·) denotes the map fromP (k) to P (k+1).
The system given by (7), (10), and (11) can be regarded as a
switching system with modes given by the possible values of
J(k). The modes of the system are switched as a function of
the prediction variance at the previous step through (19). Thus,
(21) is a Riccati-type iteration with switching that depends on
the variance at the previous step.

According to (21), the sequenceP (k) for k ∈ N
+ can be

computed from the problem data (A, C, Q, R, P0), and the
tuning parametersδj . Notice that this is fundamentally differ-
ent from approaches such as [4], where the decision whether
to transmit a measurement is based on the actual real-time
measurement. Since the measurement is a random variable,
the Kalman filter variablesP (k) and P̌ (k|k) become random
variables themselves; whereas here, they are deterministic and
can be computed off-line from the problem data. This will
allow the analysis of the switching Riccati equation (21) in
the following sections. Of course, the off-line analysis isonly
possible if the problem data is known ahead of time (it is not,
for example, in the scenario discussed in Remark 2).

III. I LLUSTRATIVE EXAMPLES

We provide two examples to illustrate the behavior of
the switching Riccati equation (21) for the event-based state
estimator. The solutions are asymptotically periodic in both ex-
amples. Periodic solutions of the Riccati iteration correspond
to periodic transmit sequences, which gives rise to a time-
triggered implementation of the event-based design with low



complexity (the sensor nodes do not need to run a copy of
the estimator then). Matlab files to reproduce the simulation
results of this section are provided as supplementary material
with this article.

A. Scalar Problem

Consider the system (7), (8) with a single sensor (M = 1),
a scalar process (n = 1), and the parameters (small letters are
used to indicate scalar quantities):

Example 1:a = 1.2, c = q = r = 1, δ = 3, p0 = p̄.
Figure 2(a) shows the results from simulating (21).

As expected, the prediction variancep(k) grows at times
where no measurement is available. Once the threshold is
exceeded, a measurement is transmitted (γ(k) = 1) and the
estimator variance drops. The solution in Fig. 2(a) asymptot-
ically converges to a periodic solution with periodN = 3.

Figures 2(b) and 2(c) illustrate that, for different valuesof
δ (all other parameters are the same as in Example 1), asymp-
totically periodic solutions with very different periods can be
obtained. Notice that the period does not vary monotonically
with δ.

B. Multivariate Problem of the Balancing Cube

The event-based state estimation method was used in [6] to
reduce the average communication in the networked control
system of the Balancing Cube [7]. As an example for the
multivariate version of (21), we recapitulate the simulation
results which were used in [6] to find periodic transmit
sequences. Please refer to [7] for a detailed description of
the system and to [6] for details on the model and the design
of the event-based state estimator.

The model that is used for state estimation hasn = 8
states. Noisy measurements of the statesx1, . . . , x6 and x8

are available. The result of simulating the switching Riccati
equation (21) for this system is shown in Fig. 3 (for iterations
1000 to 1150). The obtained solution converges to anN -
cycle with periodN = 50. Corresponding to this solution,
the sensor measuringx1 transmits every 50th time step (the
same holds for the sensors measuringx2, . . . , x6, whose
variance is not shown in Fig. 3), and the measurement of
x8 is transmitted every 5th time step. This corresponds to a
substantial reduction in average communication compared to
the full communication Kalman filter. As is shown in [6], this
reduction in communication comes at only a mild decrease in
control performance when the estimate is used for feedback
control.

IV. A SYMPTOTIC PERIODICITY FOR SCALAR PROBLEM

For the specific problems in the previous section, we ob-
served in simulations that the Riccati iteration (21) approaches
periodic solutions (i.e. convergence to periodic solutions was
interpreted from simulation results rather than proven). In this
section, we address the convergence problem and derive a the-
orem for the scalar version of (21) that guarantees asymptotic
periodicity of the solution under certain assumptions to be
derived in this section as well.
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Fig. 2. Simulation results for the scalar Example 1 and different values of the
threshold parameterδ. The top graph of each sub-figure shows the variance
iteratesp(k) (dots) and the transmit threshold̄p+δ/c2 (dashed). The bottom
graph shows the corresponding transmit sequenceγ(k). All solutions are
asymptotically periodic with periodsN = 3, 5, 19 from (a) to (c).

The question, under what conditions is the periodic trans-
mission of sensor data the optimal solution for the event-based
estimation problem posed by (7), (10), (11), and (19), is of
theoretical interest for understanding the connection between
time-triggered and event-based estimation. On the other hand,
checkable conditions for asymptotic periodicity are also of
practical value as they provide a means of identifying periodic
solutions other than by simulating (21) and having to interpret
the result (where it may happen that one has not simulated
long enough to find a solution with a larger period).

The subject of study in this section is the scalar version of
(21); that is, the nonlinear recursive equation

p(k+1) = a2 p(k) + q − 1c2(p(k)−p̄)≥δ

a2 c2 p2(k)

c2 p(k) + r
(22)

p(0) = p0 ≥ 0, (23)

for the parameters|a| > 1, c 6= 0, q > 0, r > 0,
δ > 0 (small letters are used to indicate scalar quantities). We
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Fig. 3. Simulation results of the switching Riccati equation(21) for the
Balancing Cube model after 1000 steps. Shown are some elements of P (k)
(dots) and the transmit threshold̄Pjj + δj (dashed). Notice that there is
no explicit threshold onP12(k) andP77(k). The solution is asymptotically
periodic with periodN = 50.

study the scalar problem (22) since it represents the simplest
version of the matrix equation (21) that still exhibits its main
characteristic, namely switching due to the variance-based
trigger. Furthermore, we restrict attention to unstable dynamics
(|a| > 1); in this case, communication of measurements is
required for the estimation error variance to be bounded. We
derive conditions that guarantee the solution of (22) to be
asymptoticallyN -periodic, and give an algorithm to compute
the periodN . After some preliminaries in Sec. IV-A, we use
an illustrative example in Sec. IV-B to outline the convergence
proof, which then follows in Sec. IV-C to IV-F with the main
result being stated in Sec. IV-F (Theorem 2).

A. Preliminaries

Sinceq > 0 andr > 0, (22) can equivalently be written as

p(k+1)

q
= a2

p(k)

q
+1−1 p(k)

q
− p̄

q
≥ δ

c2q

a2 c2q
r

(
p(k)
q

)2

c2q
r

p(k)
q

+ 1
. (24)

By redefiningp(k), c2, andδ asp(k)/q, c2q/r, andδ/(c2q),
respectively, we can assume without loss of generality that
q = r = 1. Henceforth, we study the iteration

p(k+1) = h(p(k)), p(0) = p0 ≥ 0, (25)
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Fig. 4. The functionsh (black) andg (gray). The filled circle indicates
a closed interval boundary, whereas the unfilled circle indicates an open
interval boundary. The dotted diagonal represents the identity map p = p.
The intersection ofg with the identity diagonal represents the solutionp̄ to
the DARE (9). The dashed box represents the set[p1, p2), which is invariant
underh. For p ≥ p̄+ δ, h(p) = g(p).

with h defined by

h : [0,∞) → [0,∞)

p 7→ a2 p+ 1− 1p≥p̄+δ

a2 c2 p2

c2 p+ 1

(26)

with parameters|a| > 1, c 6= 0, δ > 0; and with p̄ =
DARE(a, c, 1, 1). The graph ofh is shown in Fig. 4 together
with the graph of the functiong,

g : [0,∞) → [0,∞)

p 7→ a2 p+ 1−
a2 c2 p2

c2 p+ 1
,

(27)

which represents the variance iteration of the full communi-
cation Kalman filter.

We summarize some properties ofh, which will be useful
later. The proof is straightforward and therefore omitted.

Proposition 1:Let p1 := h(p̄+ δ) andp2 := a2(p̄+ δ)+ 1.
The following properties ofh hold:

(i) h is continuous and strictly increasing on[p1, p̄+δ) and
on [p̄+ δ, p2].

(ii) h is differentiable on(p1, p̄+ δ) and on(p̄+ δ, p2).
(iii) h is injective on[p1, p2).
(iv) h([p1, p2)) = [p1, h(p2)) ∪ [h(p1), p2) ⊆ [p1, p2).
(v) ∀p ∈ [0,∞), ∃m ∈ N : hm(p) ∈ [p1, p2).

Forh([p1, p2)) ⊆ [p1, p2) in (iv), we also say that[p1, p2) is an
invariant set underh. From (iv) and (v), ultimate boundedness
of the solution to (25) (in the sense of [30]) is immediate:

Corollary 1: For any initial conditionp0 ≥ 0, the solution
to (25) is ultimately bounded from above and below; that is,
there existsm ∈ N such thatp1 ≤ p(k) < p2 for all k ≥ m,
with p1 andp2 as defined in Proposition 1.

Corollary 1 shows the effect of the threshold parameter
δ on the estimation quality; in particular, the upper bound
p2 := a2(p̄+δ)+1 can directly be adjusted via this parameter.
Furthermore, the corollary allows us to restrict attentionto
the interval [p1, p2) for studying conditions for asymptotic
periodicity in the following.

From (iii), the inverse ofh exists on the range ofh on
[p1, p2), which is h([p1, p2)) = [p1, h(p2)) ∪ [h(p1), p2) by



(iv). Hence, we define the inverseh−1 as

h−1 : [p1, h(p2)) ∪ [h(p1), p2) → [p1, p2)

y 7→ h−1(y) such thath(h−1(y)) = y.
(28)

The convergence proof in the following subsections is based
on thecontraction mapping theorem:

Theorem 1 (Contraction Mapping Theorem, [31]):Let ‖·‖
be a norm forRn andS a closed subset ofRn. Assumef :
S → S is a contraction mapping: there is anL, 0 ≤ L < 1,
such that‖f(p) − f(p̃)‖ ≤ L‖p − p̃‖ for all p, p̃ in S. Then
f has a unique fixed pointp∗ in S. Furthermore, ifp(0) ∈ S
and we setp(k+1) = f(p(k)), then

‖p(k)− p∗‖ ≤
Lk

1− L
‖p(1)− p(0)‖ (k ≥ 0). (29)

Equation (29) implies thatp(k) converges top∗ as k → ∞
for any p(0) ∈ S.

B. Illustrative Example and Outline of the Proof

We now illustrate, by means of Example 1, the main
ideas that are used in Sec. IV-C to IV-F to prove asymptotic
periodicity of (25).

The graph ofh for the parameters of Example 1 is shown in
Fig. 5. Since there is no intersection with the identity diagonal,
h has no fixed point, as expected. The graph ofh3, which is
depicted in Fig. 6, does, however, have three intersectionsin
[p1, p2) with the identity diagonal. Hence,h3 has three fixed
points in this interval corresponding to the 3-cycle shown in
Fig. 2(a).

We illustrate below how Theorem 1 can be used to system-
atically prove thath3 has these three fixed points, and that
they are (locally) attractive. This approach is then generalized
in Sec. IV-C to IV-F to general solutions of (25). To be able
to apply Theorem 1 (withn = 1, f = h3, and‖·‖ = |·|), there
are two key requirements:

(R1) a suitable closed setS that is invariant underh3 must
be constructed, and

(R2) h3 must be a contraction mapping onS.
As it shall be seen later, the discontinuities of the function

h3 play a crucial role in the development. The functionh3 has
two discontinuities, which can be seen as follows:

• h(p) is continuous for allp ∈ [p1, p2) except atd1 :=
p̄+ δ.

• h2(p) = h(h(p)) is continuous atp if h is continuous atp
and if h is continuous ath(p), [32]. Hence, points of dis-
continuity ared1 (discontinuity ofh); andd2 ∈ [p1, p2)
such that̄p+ δ = d1 = h(d2). Sinced1 ∈ dom(h−1), the
inverseh−1 exists andd2 = h−1(d1).

• Similarly, h3(p) = h(h2(p)) is continuous atp if h2 is
continuous atp and if h is continuous ath2(p). Points
of discontinuity ared1 and d2 (discontinuities ofh2);
and (potentially)d3 ∈ [p1, p2) such thatp̄ + δ = d1 =
h2(d3) ⇔ d2 = h(d3). But since d2 /∈ dom(h−1)
(cf. Fig. 5), such ad3 does not exist. Hence,h3 has the
discontinuitiesd1 andd2.

The discontinuitiesd1 andd2 subdivide[p1, p2) into three
disjoint subintervals:[p1, p2) = I3∪I2∪I1 with I3 := [p1, d2),
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Fig. 5. The functionh for a = 1.2, c = 1, δ = 3 on the interval[p1, p2) =
[2.20, 8.13). The function has a discontinuity atd1 = p̄ + δ = 4.95. The
slope ofh is a2 on (p1, d1) and bounded byg′(d1) on (d1, p2) (cf. Fig. 4).
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Fig. 6. The functionh3 for a = 1.2, c = 1, δ = 3 on the interval[p1, p2) =
[2.20, 8.13). The function has two discontinuities atd1 = p̄+ δ = 4.95 and
d2 = 2.74.

I2 := [d2, d1), and I1 := [d1, p2). Figure 7 illustrates where
one of the subintervals,I1, is mapped by repeated application
of h. It can be seen thath3(I1) ⊆ [d1, p2) = I1. Furthermore,
sinceh(p2) < d2 (cf. Fig. 5), the same property holds for the
closure ofI1; that is, [d1, p2] is invariant underh3,

h3([d1, p2]) ⊆ [d1, p2]. (30)

Notice thath([d1, p2]) andh2([d1, p2]) (the same intervals as
h(I1) andh2(I1) in Fig. 7, but with closed right bounds) are
closed intervals contained inI3 and I2, respectively. It can
be shown that, underh3, they are invariant and attractive for
any point inI3 andI2, respectively. Hence, we can construct
closed sets invariant underh3 (requirement (R1)).

For (R2), we focus again on the intervalI1. Consider the
derivative ofh3 on (d1, p2). By the chain rule, forp ∈ (d1, p2),

d(h3)

dp
(p) = h′(h2(p)) · h′(h(p)) · h′(p), (31)

whereh′ refers to the first derivativedh
dp

. Similar to the argu-
mentation in Fig. 7, one can see thath((d1, p2)) ⊆ (p1, d2)
and h2((d1, p2)) ⊆ h((p1, d2)) ⊆ (d2, d1). From Fig. 5, it
can be seen thath′(p) = a2 for all p ∈ (p1, d2) ∪ (d2, d1)
and thath′(p) < g′(d1) for all p ∈ (d1, p2). Therefore, for
p ∈ (d1, p2), we get from (31) the following:

d(h3)

dp
(p) < a2 · a2 · g′(d1) = a4g′(p̄+ δ) = 0.084. (32)
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Fig. 7. Mapping of the intervalI1 under repeated application ofh. On the
top line, the intervalI1 = [d1, p2) is shown as a thick line. This interval
is mapped toh(I1) = [h(d1), h(p2)) = [p1, h(p2)) (cf. Fig. 5), shown on
the second line from above. Notice that the obtained interval is significantly
shorter due to the slope ofh being significantly less than one on[d1, p2)
(cf. Fig. 5). The intervalsh2(I1) = h(h(I1)) and h3(I1) = h(h2(I1))
(third and fourth line from above) are obtained accordingly. The interval length
increases for the latter two mappings, since the slope ofh is greater than one
on [p1, d1). Still, after one cycle of three mappings, the resulting interval is
contained in the original one, i.e.h3(I1) ⊆ I1.

From this, it follows (by the application of the mean value
theorem, [32]) that for any closed intervalS ⊆ (d1, p2),
the contraction mapping property in Theorem 1 holds with
L = a4g′(p̄+ δ) < 1. Even though the closed interval[d1, p2]
is not contained in(d1, p2), Ĩ1 := h3([d1, p2]) is contained
(see Fig. 7). Furthermore,̃I1 is itself invariant underh3,
which follows directly from (30):h3(Ĩ1) = h3(h3([d1, p2])) ⊆
h3([d1, p2]) = Ĩ1. Theorem 1 thus ensures that there exists a
unique fixed point inĨ1, and that every starting point iñI1
converges to this fixed point. Furthermore, since

h3(I1) = h3([d1, p2)) ⊆ h3([d1, p2]) = Ĩ1, (33)

the fixed point is attractive for all points in the original interval
I1.

For the intervalsI2 andI3, one can proceed similarly and,
hence, show that every point in[p1, p2) converges to a fixed
point of h3. Furthermore, we know by Corollary 1 that every
solution to (25) ends up in[p1, p2). Therefore, the solution to
(25) for the considered example is asymptotically 3-periodic
for any initial valuep0 ≥ 0.

To treat the general case in the remainder of this section,
we proceed analogously to this example. The construction
of N closed subintervals of[p1, p2) that are invariant under
hN proceeds in two steps. First, half-closed intervalsIi are
generated that cover[p1, p2) and possess the sought invariance
property (Sec. IV-C). Second, closed intervalsĨi ⊆ Ii are
constructed that inherit the invariance property from their
supersets (Sec. IV-D). In Sec. IV-E, we show thathN is a
contraction mapping on these intervals, which then allows us
(in Sec. IV-F) to apply Theorem 1 and conclude that solutions
to (25) are asymptoticallyN -periodic.

C. Invariant Subintervals (Left-Closed, Right-Open)

Motivated by the example of the previous subsection, the
left-closed, right-open intervalsIi are obtained by splitting
up [p1, p2) through a sequence of points{d1, d2, . . . }, di ∈
[p1, p2), which represent discontinuities ofhN and are ob-
tained by iteratively applyingh−1 until somedi /∈ dom(h−1).
We give an algorithm to compute these discontinuities:

Algorithm 1:

d1 := p̄+ δ

while di ∈ dom(h−1)
di+1 := h−1(di)
incrementi

end while
N := i+ 1.

If there exists anm ∈ N such thatdm /∈ dom(h−1), Algo-
rithm 1 terminates, and the obtained sequence{d1, d2, . . . } is
finite. For all problems of an exhaustive search that we have
conducted, this has actually been the case. For the purpose of
this article, we assume henceforth that the algorithm termi-
nates.

Assumption 1:Algorithm 1 terminates.
The assumption is essentially checked by running Algorithm1
for a concrete problem; if the algorithm terminates, the as-
sumption is true.

Proposition 2:Let Di := {d1, . . . , di} with di defined by
Algorithm 1. The following statements hold:

(i) ∀di, dj ∈ DN−1 with i 6= j, di 6= dj .
(ii) di /∈ [h(p2), h(p1)], ∀i < N−1,

dN−1 ∈ [h(p2), h(p1)).
(iii) hi is continuous on[p1, p2) \ Di, ∀i ≤ N−1,

hN is continuous on[p1, p2) \ DN−1.

Proof: (i): Proof by contradiction. Assume there exist
di, dj ∈ DN−1 with i 6= j and di = dj . Assume, without
loss of generality,j > i and letm := j − i ≤ N − 2. Then,
from Algorithm 1, di = dj = h−1(dj−1) = h−2(dj−2) =
· · · = h−m(di); that is, the sequence ofdi’s is periodic with
periodm, and Algorithm 1 never terminates, which contradicts
with Assumption 1.

(ii): By Assumption 1, the sequence{d1, d2, . . . } defined
by Algorithm 1 is finite and equal toDN−1. Therefore,di ∈
dom(h−1) for all i < N−1 and dN−1 /∈ dom(h−1). From
dom(h−1) = [p1, h(p2))∪[h(p1), p2) (see (28)), it follows that
di /∈ [h(p2), h(p1)) for all i < N−1. Furthermore,di 6= h(p1)
can be seen by contradiction: assumingdi = h(p1), it follows
from h(p1) ∈ dom(h−1) and p1 ∈ dom(h−1) that there is
di+2 ∈ DN−1 with di+2 = h−2(di) = h−1(p1) = p̄+ δ = d1,
which contradicts with (i).

Sinceh−1 maps to[p1, p2) (see (28)), we havedN−1 =
h−1(dN−2) ∈ [p1, p2). Together withdN−1 /∈ dom(h−1), this
implies thatdN−1 ∈ [p1, p2) \

(
[p1, h(p2)) ∪ [h(p1), p2)

)
=

[h(p2), h(p1)).
(iii): First, we prove by induction thathi is continuous on

[p1, p2) \ Di for all i ≤ N − 1. From Proposition 1, (i),
it follows that the statement is true fori = 1. Assume the
statement holds for somei ≤ N − 2 (induction assumption
(IA)); and consider

hi+1(p) = h(hi(p)), p ∈ [p1, p2). (34)

If hi is continuous atp and h is continuous athi(p), then
the compositionhi+1 is continuous atp, [32]. Hence,hi+1 is
guaranteed to be continuous on[p1, p2) except for the points
Di and the point̃p with hi(p̃) = d1 (d1 is the discontinuity of
h). But hi(p̃) = d1 ⇔ p̃ = h−i(d1) = di+1 (sincei ≤ N−2,
the i-times application of the inverse map,h−i, is defined).
Therefore,hi+1 is continuous on[p1, p2) \ (Di ∪ {di+1}) =
[p1, p2) \ Di+1.



Next, we prove thathN is continuous on[p1, p2) \ DN−1.
For this, consider

hN (p) = h(hN−1(p)), p ∈ [p1, p2). (35)

By the same argument as above,hN is guaranteed to be
continuous on[p1, p2) except for the pointsDN−1 and the
point p̃ with hN−1(p̃) = d1 ⇔ h(p̃) = h−(N−2)(d1) = dN−1.
But a pointp̃ with h(p̃) = dN−1 does not exist in[p1, p2) since
dN−1 ∈ [h(p2), h(p1)) (by (ii)), which is not in the range of
h (by Proposition 1, (iv)). Therefore,hN is continuous on
[p1, p2) \ DN−1.

The pointsDN−1 divide the interval[p1, p2) into N subin-
tervalsI := {I1, . . . , IN}. The intervals are named such that
Ii hasdi as a lower bound fori ≤ N−1, andIN has the lower
boundp1 (cf. Sec. IV-B). A formal definition of the intervals
is given next. LetΠ : {1, . . . , N−1} → {1, . . . , N−1} be a
permutation of thedi’s such that

dΠ(i) < dΠ(i+1), ∀i ∈ {1, . . . , N − 2}. (36)

Furthermore, leti and ī be the indices of the smallest and
greatestdi, i.e. Π(1) = i andΠ(N−1) = ī. Then define

Ii := [di, dΠ(Π−1(i)+1)) ∀i ≤ N − 1, i 6= ī (37)

Iī := [dī, p2) (38)

IN := [p1, di); (39)

that is, intervalIi hasdi as a lower bound (closed) and the
next bigger element fromDN−1 as an upper bound (open),
except for the intervals at the boundaries of[p1, p2). Since
each interval is uniquely specified from (37)–(39) by either
its lower or its upper bound, we sometimes omit either one
of them and write[d, ∗) or [∗, d). For the interior (the largest
contained open interval) ofIi, we write int(Ii).

Proposition 3:All intervals Ii ∈ I are mutually disjoint and
nonempty.

Proof: Disjointness of the intervals is given by their
construction and Proposition 2, (i). Furthermore, becauseof
Proposition 2, (i), the intervals (37) are not empty. Since
dī ∈ DN−1, it follows that dī ∈ [p1, p2) and dī < p2;
therefore, intervalIī in (38) is not empty. To see thatIN
in (39) is not empty, we assume that it is and lead this to
a contradiction. From[p1, di) = ∅ it follows that p1 = di
(p1 > di is not possible sincedi ∈ [p1, p2)). From di = p1 ∈
dom(h−1), it follows thatdi+1 is defined by Algorithm 1 and
di+1 = h−1(di) = h−1(p1) = h−1(h(p̄ + δ)) = p̄ + δ = d1.
But di+1 = d1 (with i ≥ 1) contradicts Proposition 2, (i).

Proposition 4:The following statements hold:

(i) h(IN ) ⊆ IN−1, h(IN−1) ⊆ IN−2, . . . , h(I2) ⊆ I1, and
h(I1) ⊆ IN .

(ii) h(int(IN )) ⊆ int(IN−1), h(int(IN−1)) ⊆ int(IN−2),
. . . , h(int(I2)) ⊆ int(I1), andh(int(I1)) ⊆ int(IN ).

The following lemma is used in the proof of this proposition
(statements (i) and (ii)) and later in Sec. IV-D ((iii) and (iv)).

Lemma 1: Consider the collectionI = {I1, . . . , IN}
of intervals Ii defined by (37)–(39); and letIint :=
{int(I1), . . . , int(IN )}. The following statements hold:

(i) I
h
−→ I.

(ii) Iint
h
−→ Iint.

(iii) Iī−N1 =

{

[dī−1, dN−1) ī > 1

[p1, dN−1) ī = 1.

(iv) int(IN−1) =

{

(dN−1, di−1) i > 1

(dN−1, p2) i = 1.

Proof: The proof is given in Appendix A.
Proof (Proposition 4): We present the proof of (i);

the proof of (ii) is analogous and therefore omitted. From
Lemma 1, (i), we know that, for anyI ∈ I, h(I) is
contained in an interval ofI. Since the intervals are disjoint
(Proposition 3), there is exactly one interval that containsh(I).
Therefore, it suffices to consider only the lower bound of an
interval to identify where the interval is mapped to.

Notice that, sinceh is strictly increasing (Proposition 1,
(i)), for all [a, b) ∈ I, h([a, b)) = [h(a), limpրb h(p)).
From Algorithm 1, it follows thath(di) = di−1 for all
i ∈ {2, . . . , N−1}. Since there is exactly one interval inI
with di−1 as lower bound, for alli ∈ {2, . . . , N−1},

h(Ii) = h([di, ∗)) = [di−1, ∗) ⊆ Ii−1 (40)

Similarly, sinceh(d1) = h(p̄ + δ) = p1 by the definitions of
d1 andp1, it follows that

h(I1) = h([d1, ∗)) = [p1, ∗) ⊆ IN (41)

From Proposition 2, (ii), it follows thath(p1) ∈ [dN−1, ∗) =
IN−1. Therefore,

h(IN ) = h([p1, ∗)) = [h(p1), ∗) ⊆ IN−1

The corollary follows directly from Proposition 4:
Corollary 2: The following statements hold:

(i) hN (Ii) ⊆ Ii ∀Ii ∈ I.
(ii) hN (int(Ii)) ⊆ int(Ii) ∀Ii ∈ I.

D. Invariant Closed Subintervals

The intervalsI cover the whole domain of interest[p1, p2),
and they are invariant underhN . However, closed intervals
are required if Theorem 1 is to be applied. The proposition
below states that such subintervalsĨi ⊆ Ii exist. A technical
assumption is required for this proposition:

Assumption 2:h(p2) 6= dN−1.
Notice that withh(p2) ≤ dN−1 by Proposition 2, (ii), this
implies

h(p2) < dN−1. (42)

Proposition 5: There exists a collection of intervals̃I =
{Ĩ1, Ĩ2, . . . , ĨN} such that for alli ∈ {1, . . . , N} the following
statements hold:

(i) Ĩi is closed.
(ii) Ĩi ⊆ int(Ii) ⊆ Ii.
(iii) hN (Ĩi) ⊆ Ĩi.
(iv) h2N (Ii) ⊆ Ĩi.

Proof: The closed intervals̃Ii can be constructed along
the same lines as illustrated in Sec. IV-B, by taking the closure
of the right-most interval[dī, p2] and considering its mappings
hi([dī, p2]), i ≥ 1, throughh. The details of the proof are given
in Appendix B.



E. Contraction Mapping

In this section, we show thathN is a contraction mapping.
To this end, we first derive an upper bound less than one on
the derivative ofhN for the interior of the intervalsI.

Proposition 6: hN is differentiable on all open intervals
int(Ii), Ii ∈ I. Furthermore, there exists anL, 0 ≤ L < 1,
such that

∣
∣
∣
∣

d(hN )

dp
(p)

∣
∣
∣
∣
< L ∀p ∈ int(Ii), ∀Ii ∈ I.

The following Lemma is needed in the proof.
Lemma 2:For all p ∈ [p1, p̄+δ), there exists anm(p) ∈ N

+

such that

p, h(p), . . . , hm(p)−1(p) < p̄+ δ and hm(p)(p) ≥ p̄+ δ.
(43)

Furthermore, there exists an̄N ∈ N
+ (independent ofp) such

thatm(p) ≤ N̄ , and

a2N̄ < a2
p̄+ δ

p1
. (44)

Proof: The proof is given in Appendix C.
The lemma says that ifp(0) starts anywhere in[p1, p̄ + δ),
there is a maximum number̄N of iterations (25), for which
p(k) remains in[p1, p̄+ δ).

Proof (Proposition 6): Take anyIi ∈ I and p̃ ∈ int(Ii).
Differentiability: By Proposition 1, (ii),h is differentiable

at p̃. Using the chain rule [32] and Proposition 4, (ii), it can
be shown by induction thathj is differentiable atp̃ for all
1 ≤ j ≤ N .

Contraction mapping:By the chain rule,

(hN )′(p̃) = h′(hN−1(p̃)) · (hN−1)′(p̃)

=
∏

j∈{0,...,N−1}

h′(hj(p̃)) =
∏

p∈P

h′(p), (45)

with P := {p̃, h(p̃), . . . , hN−1(p̃)}. Notice from Proposi-
tion 4, (ii), that, for every pointp ∈ P, there is exactly one
interval I ∈ I such thatp ∈ int(I).

Let IL ⊂ I denote the set of all intervalsI ∈ I with
I < p̄ + δ (intervals left of the discontinuitȳp + δ), and let
IR ⊂ I denote the set of allI ∈ I with I ≥ p̄+ δ (intervals
right of the discontinuitȳp+ δ). Furthermore, letNL andNR

denote the number of elements inIL and IR, respectively.
Notice thatNL ≥ 1 andNR ≥ 1. Then,

h′(p) = a2 > 0 ∀p ∈ int(I), I ∈ IL, (46)

follows directly from (26); and

0 < h′(p) = g′(p) < g′(p̄+δ) ∀p ∈ int(I), I ∈ IR, (47)

where the first inequality follows fromg′(p) = a2

(c2p+1)2 >

0, and the second inequality follows fromg′ being strictly
decreasing, which is seen fromg′′(p) = − 2a2c2

(c2p+1)3 < 0. With
these results, it follows from (45) that

0 < (hN )′(p̃) < a2NL
(
g′(p̄+ δ)

)NR
. (48)

Since a2 > 1 and g′(p̄ + δ) < 1, whether the maphN

is contractive depends on the ratio ofNR to NL, which is
investigated next.

p1 p2
R

d3 d1d7 d2d4 d8 d6 d5

I9 I4 I8 I3 I7 I2 I6 I1 I5

Fig. 8. Illustration of the intervalsI obtained for the parameter values
a = 1.2, c = 1, and δ = 9.6 (for better visibility the relative scaling of
the intervals has been adapted). There are two distinct interval subsequences
satisfying (49):I

1
= {I4, I3, I2} andI

2
= {I9, I8, I7, I6}.

Define a subsetI ⊂ I as a maximum sequence ofm
intervalsIℓ, Iℓ−N1, . . . all being left of p̄+ δ:

I :=
{
Iℓ, Iℓ−N1, . . . , Iℓ−N (m−1)

}
, m ≤ NL, (49)

such thatIℓ, Iℓ−N1, . . . , Iℓ−N (m−1) ∈ IL,

andIℓ−N (N−1), Iℓ−Nm ∈ IR,

Let there beκ ≥ 1 distinct interval sequences (49), which we
call I1, . . . , Iκ with m1, . . . ,mκ their numbers of elements,
respectively. Notice thatNL = m1 + · · · +mκ. An example
with two interval sequencesI1, I2 is provided in Fig. 8.

From Lemma 2, it follows thatmj ≤ N̄ for all j ≤ κ (N̄
is as defined in Lemma 2), and

NL = m1 + · · ·+mκ ≤ κN̄. (50)

For each sequence of intervalsIj , j ≤ κ, there is at least one
distinct intervalI ∈ IR (namely,Iℓ−Nm); hence,

NR ≥ κ. (51)

Combining (50) and (51), we obtain the sought bound on the
ratio ofNL andNR: NL ≤ κN̄ ≤ NRN̄ . With this result, we
can rewrite (48),

0 < (hN )′(p̃) < a2NL a2(NRN̄−NL) (g′(p̄+ δ))NR

= (a2N̄ g′(p̄+ δ))NR . (52)

Using (44) from Lemma 2, we get

a2N̄g′(p̄+ δ) < a2
p̄+ δ

p1
g′(p̄+ δ). (53)

The right-hand side in (53) depends on the problem param-
eters, and it can be shown to be less than one (the proof is
omitted due to space constraints; the symbolic calculationis
provided in a supplementary Matlab script). With this, the
statement of Proposition 6 follows from (52) withL :=
(a2N̄ g′(p̄+ δ))NR < 1.

From Proposition 6 and the mean value theorem [32], it
follows:

Corollary 3: hN is a contraction mapping on any interval
of Ĩ (defined in Proposition 5); that is, there exists anL,
0 ≤ L < 1, such that

|hN (p)− hN (p̃)| ≤ L|p− p̃| ∀p, p̃ ∈ Ĩi, ∀Ĩi ∈ Ĩ.

F. Main Result

Equipped with the results of the previous subsections, we
can now state the main result of this section:

Theorem 2:Under Assumptions 1 and 2, the solution to (25)
is asymptoticallyN -periodic for any initial conditionp0 ≥ 0.



Proof: By Corollary 1, it follows that there exists anm1 ∈
N such that

hm1N (p0) ∈ [p1, p2). (54)

Since the disjoint intervalsI cover [p1, p2), there exists a
uniquei ∈ {1, . . . , N} such that

hm1N (p0) ∈ Ii. (55)

By Proposition 5, (iv),

h(m1+2)N (p0) ∈ Ĩi. (56)

From Proposition 5, (i) and (iii), Corollary 3, and Theo-
rem 1, it follows that there exists a unique fixed pointp∗i of
hN (hence, anN -periodic point of (25)) inĨi and that, for all
p̃ ∈ Ĩi,

lim
m→∞

hmN (p̃) = p∗i . (57)

In particular, forp̃ = h(m1+2)N (p0) and by (56),

lim
m→∞

hmN
(
h(m1+2)N (p0)

)
= lim

m→∞
h(m1+2+m)N (p0)

= lim
m→∞

hmN (p0) = p∗i .

V. D ISCUSSION

The proposed method for event-based state estimation is a
direct extension of the classic Kalman filter to a distributed
estimation problem with costly communication. Starting from
the design of a discrete-time Kalman filter with access to all
sensor measurements at every sampling time, the presented
method allows the designer to trade off communication re-
quirements with estimation performance by selecting suitable
thresholds for each sensor (these thresholds are the only
additional tuning parameters).

The presented event-based estimator is the optimal Bayesian
estimator given the triggering policy that a measurement is
transmitted if, and only if, its prediction variance exceeds a
given threshold (equation (17)). Thus, equation (17) represents
a soft constraint on communication, in that transmission of
a measurement only occurs if otherwise the measurement
cannot be predicted well enough. A focus of this article is
on the study of the asymptotic properties of the resulting
variance recursion (the switching Riccati equation (21)),and
on proving its convergence to periodic solutions for the special
case of an unstable scalar process (Theorem 2). The event-
based estimator variance being periodic in the limit means
that a periodic, time-based transmit schedule is optimal inthe
above sense. The result thus establishes an interesting link
between event-based and time-based optimal state estimation.

Assumption 1 is an important assumption in the deriva-
tion of Theorem 2. In all simulations that we performed,
this assumption was satisfied. Based on this observation and
preliminary analysis not presented herein, we conjecture that
Assumption 1 holds true for almost all values of the problem
parameters (in particular, the thresholdδ). However, establish-
ing this result is an open question beyond the scope of this
article. As is, Theorem 2 provides a sufficiency test for peri-
odicity (if the assumptions are satisfied, global convergence to

a unique periodic solution with a known period is guaranteed)
as an alternative to simulating the Riccati equation and having
to interpret the result. The above conjecture has a practical
ramification: if the algorithm does not terminate “quickly,” one
can perturb the parameterδ slightly (which affects estimation
quality only insignificantly as by Corollary 1) and restart the
algorithm.

While we propose variance-based triggering as a framework
for reduced communication state estimation for systems with
multiple sensors and states (and also applied it to such a
system in [6]), the analysis herein focuses on scalar systems
with a single sensor and, in particular, on the analysis of
the corresponding scalar Riccati equation (22). Whether the
results of asymptotic periodicity (Theorem 2) and also ultimate
boundedness (Corollary 1) generalize to the matrix case (21)
are open questions.

When a periodic solution to the switching Riccati equation
is found (for both the scalar and the matrix case), sensor
transmissions can be implemented as time-based, periodic
schedules. The rate of the periodic transmission is, however,
not a design parameter as in traditional time-sampled estima-
tion, but obtained from an event-based approach, where the
designer specifies tolerable bounds on the estimation variance.
Hence, the method can be used as a tool for designing periodic
sensor schedules for a multi-rate sensor system.

Alternatively, the estimation method can be implemented as
shown in Fig. 1, where each sensor computes the variance of
the estimator on-line and uses it to decide whether or not to
broadcast its measurement. This way, sensor transmit ratescan
adapt in real time to unforeseen events (for example, varying
sensor noise conditions as discussed in Remark 2, or packet
drops). This implementation of estimation with variance-based
triggering is in accordance with the common understanding of
event-based methods (where events are generated on-line and
can respond to unexpected changes), whereas with the periodic
implementation mentioned above, transmission instants are
computed off-line and can thus not adapt in real-time.

Various extensions of the presented event-based estimation
approach are conceivable. Instead of making the transmit
decision based on a measurement’s prediction variance, it
could be based on its prediction error; that is, the difference
between the measurement and its prediction mean (see [4],
[5]). A promising approach is to combine the two methods
by augmenting fixed minimum sensor communication rates to
keep the variance bounded with triggering thresholds on real-
time prediction errors. If improving the estimator performance
locally on each agent is of interest (for example, when the
estimate is used in feedback for controlling an actuator),
a second estimator can be used to compute an improved
estimate from using the data received from the network and,
additionally, exploiting its local sensor data at every time step
(see [4]).

APPENDIX A
PROOF OFLEMMA 1

For the proof of Lemma 1 at the end of this section, we
need the following lemma and corollary.



Lemma 3:Let I = {I1, I2, . . . , IN} be a collection of
nonempty, mutually disjoint intervalsIi := [ai, bi) (or Ii :=
(ai, bi)) with ai, bi ∈ R. A unique representation ofI is given
by the setsL = {a1, a2, . . . , aN} andU = {b1, b2, . . . , bN}
of all lower and upper bounds, respectively, in the following
sense: the collection̄I := {Ī1, Ī2, . . . , ĪN} of intervals con-
structed such that, for alli, j with 1 ≤ i, j ≤ N ,

Īi := [αi, βi) (or Īi := (αi, βi)), αi ∈ L, βi ∈ U , (58)

Īi 6= ∅, and Īi ∩ Īj = ∅, (59)

exists, it is unique, and̄I = I.
This lemma is useful, since it allows one to work with the

(unordered) sets of interval boundsL and U instead of the
actual intervals. The unique relationship between the bounds
(which lower bound belongs to which upper bound) essentially
follows from all intervals being disjoint and nonempty.

Proof: We present the proof simultaneously for the case
of left-closed, right-open intervals̄Ii = [αi, βi) and for the
case of open intervals̄Ii = (αi, βi) (where required to
distinguish the two, the latter case is augmented in square
brackets).

Since, for alli ≤ N , Ii ∈ I is nonempty,ai < bi. Since the
intervalsI are mutually disjoint, there exists a permutation of
indicesΠ̃ : {1, . . . , N} → {1, . . . , N} such that

aΠ̃(1) < bΠ̃(1) ≤ aΠ̃(2) < bΠ̃(2) ≤ · · · ≤ aΠ̃(N) < bΠ̃(N).

Assume w.l.o.g. (by renaming of the intervals inI) that

a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aN < bN . (60)

Notice that the choice

αi = ai and βi = bi for 1 ≤ i ≤ N (61)

satisfies (58), (59), and̄I = I trivially. Hence, a collection of
intervalsĪ satisfying (58) and (59) exists; it remains to show
that the choice (61) is unique.

We first show that, for anyai ∈ L, there is exactly one
interval in Ī that hasai as a lower bound. We will show this
by contradiction.

• Assume there is more than one interval withai as
a lower bound; that is, there are[ai, bj), [ai, bℓ) ∈
Ī [(ai, bj), (ai, bℓ) ∈ Ī] with bj , bℓ ∈ U and
bj > ai, bℓ > ai (otherwise the intervals would be
empty, which contradicts with (59)). But then,[ai, bj) ∩
[ai, bℓ) = [ai, min(bj , bℓ)) 6= ∅ [(ai, bj) ∩ (ai, bℓ) =
(ai, min(bj , bℓ)) 6= ∅], which contradicts with (59).

• Assume there is no interval in̄I that hasai as a lower
bound. Then, there can only beN − 1 intervals in total,
since it follows from the previous discussion that each
of the remainingaj ∈ L \ {ai} can be chosen at most
once as a lower bound. This contradicts with (58) (the
collection Ī havingN elements).

Analogously, it can be shown that, for anybi ∈ U , there is
exactly one interval in̄I that hasbi as an upper bound. The
detailed proof is omitted.

Now, takeαi = ai for any i ∈ {1, . . . , N}. From the dis-
cussion above, it follows that there is an interval[αi, βi) ∈ Ī

[(αi, βi) ∈ Ī], βi ∈ U . We prove by contradiction that this
implies βi = bi, and, hence, that the choice (61) is unique.

Assumeβi = bj , bj 6= bi. Then, from the above discussion,
there exists also an interval[aℓ, bi) ∈ Ī [(aℓ, bi) ∈ Ī], aℓ ∈ L.
For [ai, bj) [(ai, bj)] to be nonempty, it follows thatai <
bj , which implies by (60) thatbi ≤ bj . Similarly, for [aℓ, bi)
[(aℓ, bi)] to be nonempty,aℓ < bi implying aℓ ≤ ai. But then,
[ai, bj)∩ [aℓ, bi) = [ai, bi) 6= ∅ [(ai, bj)∩(aℓ, bi) = (ai, bi) 6=
∅], which contradicts (59).

Corollary 4: Let I1, I2 be two collections of nonempty
and mutually disjoint intervals. LetL1 andU1 be the sets of
lower and upper bounds, respectively, ofI1; and letL2 and
U2 be the sets of lower and upper bounds, respectively, ofI2.
If L1 = L2 andU1 = U2, thenI1 = I2.

Proof: Follows directly from Lemma 3.
Proof (Lemma 1): (i), (ii): Statements (i) and (ii) are

treated simultaneously ((ii) in brackets where required).
By Proposition 3, the intervalsI = {I1, I2, . . . ,

IN} = {[p1, dΠ(1)), [dΠ(1), dΠ(2)), . . . , [dΠ(N−1), p2)}
are mutually disjoint and nonempty. Therefore, also
the intervals Iint = {int(I1), int(I2), . . . , int(IN )} =
{(p1, dΠ(1)), (dΠ(1), dΠ(2)), . . . , (dΠ(N−1), p2)} are mutually
disjoint and nonempty. Hence, by Lemma 3,I [Iint] is
uniquely represented by the sets of lower and upper bounds

L =
{
p1, dΠ(1), . . . , dΠ(N−1)

}
=

{
p1, d1, . . . , dN−1

}
, (62)

U =
{
dΠ(1), . . . , dΠ(N−1), p2

}
=

{
p2, d1, . . . , dN−1

}
(63)

and the conditions (58) and (59) (note that the setsL andU
are the same forI andIint, but (58) is different).

Define the collection of images ofh on I [Iint] as Ih :=
{
h
(
[p1, dΠ(1))

)
, h

(
[dΠ(1), dΠ(2))

)
, . . . , h

(
[dΠ(N−1), p2)

)}

[Iint,h =
{
h
(
(p1, dΠ(1))

)
, h

(
(dΠ(1), dΠ(2))

)
, . . . ,

h
(
(dΠ(N−1), p2)

)}
]. Hence, by definition,

I
h
−→ Ih [Iint

h
−→ Iint,h]. (64)

Since, by Proposition 1, (i),h is strictly increasing on each
Ii = [a, b) ∈ I [Ii = (a, b) ∈ Iint], it holds thath([a, b)) =
[h(a), limpրb h(p)) [h((a, b)) = (h(a), limpրb h(p))]. There-
fore, the sets of lower and upper bounds ofIh [Iint,h] are
given by

Lh :=
{
h(a) | a ∈ L

}
=

{
h(p1), h(d1), h(d2), . . . , h(dN−1)

}

=
{
h(p1), p1, d1, . . . , dN−2

}
, (65)

Uh :=
{
lim
pրb

h(p) | b ∈ U
}

=
{
h(p2), lim

pրd1

h(p), h(d2), . . . , h(dN−1)
}

=
{
h(p2), p2, d1, . . . , dN−2

}
, (66)

where we used the facts thath is continuous from the right
at all a ∈ L and continuous from the left at allb ∈ U \ {d1};
and that

h(d1) = h(p̄+ δ) = p1 (def. of p1), (67)

h(di) = di−1, 2 ≤ i ≤ N−1 (by Alg. 1), (68)

lim
pրd1

h(p) = a2(p̄+ δ) + 1 = p2 (def. of p2). (69)
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Fig. 9. Illustration of the enlargement of the intervals[d, h(p2)) and
[h(p1), d) to [d, dN−1) and [dN−1, d). The points unspecified are elements
from {d1, . . . , dN−2}. All intervals remain nonempty and mutually disjoint.

Since h is injective (Proposition 1, (iii)),h(I1 ∩ I2) =
h(I1)∩ h(I2) holds for anyI1, I2 ⊆ [p1, p2), [33]. From this,
and the fact that the intervalsI [Iint] are disjoint, it follows that
the mapped intervalsIh [Iint,h] are also disjoint. Furthermore,
sinceh is not constant on any intervalI ∈ I (it is strictly
increasing by Proposition 1, (i)), the intervalsIh [Iint,h] are
all nonempty. Hence, by Lemma 3,Ih [Iint,h] is uniquely
represented byLh andUh. Notice thatLh andUh have the
same elements asL andU except forh(p1) andh(p2) in Lh

andUh, anddN−1 in L andU . We show next that the intervals
Ih [Iint,h] are contained in the intervals ofI [Iint].

To see this, notice first that the elements ofLh ∪ Uh ∪ L∪
U = {p1, p2, h(p1), h(p2), d1, . . . , dN−1} have the following
order relation:

p1 ≤ · · · · · ·
︸ ︷︷ ︸

otherdi ’s

< h(p2) ≤ dN−1 < h(p1) < · · · · · ·
︸ ︷︷ ︸

otherdi ’s

< p2,

(70)
because

p1 < h(p2) (p̄+δ<p2 and Prop. 1(i)),

h(p1) < p2 (Prop. 1, (iv)),

h(p2) ≤ dN−1 < h(p1) (Prop. 2, (ii)),

di ∈ [p1, h(p2)) ∪ (h(p1), p2), ∀i ∈ {1, . . . , N−2}

(Prop. 2, (ii)).

Therefore, the upper bound of[∗, h(p2)) ∈ Ih [(∗, h(p2)) ∈
Iint,h] can be changed todN−1, and the lower bound of
[h(p1), ∗) ∈ Ih [(h(p1), ∗) ∈ Iint,h] to dN−1, without
affecting the mutual disjointness and the nonemptiness of the
intervals. This modification of the intervals is illustrated in
Fig. 9, and we make it formal next.

Let d be the lower bound of[∗, h(p2)) ∈ Ih [(∗, h(p2)) ∈
Iint,h], and let d be the upper bound of[h(p1), ∗) ∈ Ih
[(h(p1), ∗) ∈ Iint,h]. Then, define

Ĩh :=
{
I ∈ Ih | I 6= [d, h(p2)) andI 6= [h(p1), d)

}

∪
{
[d, dN−1), [dN−1, d)

}
, (71)

that is,Ĩh has the same elements asIh except for the replace-
ments [d, h(p2)) → [d, dN−1) and [h(p1), d) → [dN−1, d).
Similarly, define

Ĩint,h :=
{
I ∈ Iint,h | I 6= (d, h(p2)) andI 6= (h(p1), d)

}

∪
{
(d, dN−1), (dN−1, d)

}
. (72)

Since, from (70), [d, h(p2)) ⊆ [d, dN−1) [(d, h(p2)) ⊆
(d, dN−1)] and [h(p1), d) ⊆ [dN−1, d) [(h(p1), d) ⊆
(dN−1, d)], it follows from (64) that

I
h
−→ Ĩh [Iint

h
−→ Ĩint,h]. (73)

The lower and upper bounds ofĨh (Ĩint,h) are given by

L̃h :=
{
dN−1, p1, d1, . . . , dN−2

}
, (74)

Ũh :=
{
dN−1, p2, d1, . . . , dN−2

}
. (75)

Since the intervals̃Ih [Ĩint,h] are nonempty and mutually
disjoint, andL̃h = L andŨh = U , it follows from Corollary 4
that Ĩh = I [Ĩint,h = Iint]. Using this result, statements (i) and
(ii) are given by (73).

(iii): First, notice that1 ≤ ī ≤ N − 1 and

h(Iī) =
(38)

h([dī, p2)) =
(67),(68)

{

[dī−1, h(p2)) if ī > 1

[p1, h(p2)) if ī = 1.
(76)

Sinceh(Iī) ∈ Ih, it follows that

d =

{

dī−1 if ī > 1

p1 if ī = 1
(77)

(d has been defined above as the lower bound of the (unique)
interval in Ih that hash(p2) as an upper bound). Notice that
in I, there is exactly one interval withdī−1 as lower bound
(for ī > 1) and exactly one interval withp1 as lower bound.
Therefore, it follows from[d, dN−1) ∈ Ĩh = I (see (71)), and
(37)–(39) that

[d, dN−1) =

{

[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1
=

{

Iī−1 if ī > 1

IN if ī = 1

= Iī−N1. (78)

(iv): Notice that1 ≤ i ≤ N − 1 and

h(int(IN )) =
(39)

h((p1, di)) =
(68),(69)

{

(h(p1), di−1) if i > 1

(h(p1), p2) if i = 1 .
(79)

Sinceh(int(IN )) ∈ Iint,h, it follows that

d =

{

di−1 if i > 1

p2 if i = 1 ,
(80)

and, from(dN−1, d) ∈ Ĩint,h = Iint (see (72)) and (37)–(38),

(dN−1, d) =

{

(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1
= int(IN−1).

APPENDIX B
PROOF OFPROPOSITION5

We defineN intervals Ĩ1, . . . , ĨN and prove that the prop-
erties (i)–(iv) hold for these. Letm1 := ī+1 (> 1). We define
recursively

ĨN−1 := hm1([dī, p2]), (81)

Ĩi−N1 := h(Ĩi) ∀i ∈ {1, . . . , N−1}, (82)

where ‘−N ’ is defined in (1).
We first show that (i)–(iii) hold forĨN−1. Notice that̄i ∈

{1, . . . , N−1}. We have

h([dī, p2]) =
Prop. 1 (i)

[h(dī), h(p2)] =

{

[dī−1, h(p2)] if ī > 1

[p1, h(p2)] if ī = 1



⊆
(42)

{

[dī−1, dN−1) if ī > 1

[p1, dN−1) if ī = 1
=

Lem. 1 (iii)
Iī−N1. (83)

From Proposition 4, it follows that, for alli ∈ {1, . . . , N} and
for all m ∈ N,

hm(Ii) ⊆ Ii−Nm, (84)

hm(int(Ii)) ⊆ int(Ii−Nm). (85)

With this and (83), hī([dī, p2]) = hī−1(h([dī, p2])) ⊆
hī−1(Iī−N1) ⊆ I(̄i−N1)−N (̄i−1) = IN , and

ĨN−1 = hm1([dī, p2]) = hī+1([dī, p2]) ⊆ h(IN ) =
(39)

h([p1, di))

=
Prop. 1 (i)

{

[h(p1), di−1) if i > 1

[h(p1), p2) if i = 1

⊆
Prop. 2 (ii)

{

(dN−1, di−1) if i > 1

(dN−1, p2) if i = 1
=

Lem. 1 (iv)
int(IN−1) ⊆ IN−1.

(86)

Thus, (ii) holds forĨN−1.
Property (i) can be seen as follows:h([dī, p2]) =

[h(dī), h(p2)] is closed. From (83) and Proposition 1, (i), it fol-
lows thath is continuous and strictly increasing onh([dī, p2]).
Similarly, by (84), hm([dī, p2]) = hm−1(h([dī, p2])) ⊆
hm−1(Ii−N1) ⊆ Ii−Nm, m ≥ 1; thus, h is continuous and
strictly increasing onhm([dī, p2]). Since, for a continuous
and strictly increasing functionf and a, b ∈ R, f([a, b]) =
[f(a), f(b)] (the image of a closed interval underf is a
closed interval),hm([dī, p2]) is closed for anym ≥ 1 and,
in particular, form = m1.

To show (iii) for ĨN−1, let m2 := N −m1 (≥ 0). We then
get with (86), (84), and (38),hm2(ĨN−1) ⊆ hm2(IN−1) ⊆
I(N−1)−Nm2

= Iī = [dī, p2) ⊆ [dī, p2]. Property (iii) then
follows by

hN (ĨN−1) = hm1(hm2(ĨN−1)) ⊆ hm1([dī, p2]) =
(81)

ĨN−1.

Hence, we have shown that (i)–(iii) hold fori = N − 1. We
next prove (i)–(iii) for i ∈ {1, . . . , N − 2, N} by induction.

Induction assumption (IA): (i)–(iii) are valid for somei ∈
{1, . . . , N − 1}. Show that this implies that (i)–(iii) hold for
i−N 1.

Property (ii) holds since

Ĩi−N1 =
(82)

h(Ĩi) ⊆
IA (ii)

h(int(Ii)) ⊆
(85)

int(Ii−N1) ⊆ Ii−N1.

Since Ĩi ⊆ Ii (IA (ii)), h is continuous and strictly
increasing onĨi. Moreover, Ĩi is closed (IA (i)). Together,
this implies that the image underh, Ĩi−N1 = h(Ĩi), is also
closed; hence, (i) is true.

Property (iii) can be seen to hold by

hN (Ĩi−N1) =
(82)

hN+1(Ĩi) = h(hN (Ĩi)) ⊆
IA (iii)

h(Ĩi) =
(82)

Ĩi−N1.

This completes the proof of statements (i)–(iii).
To see statement (iv), takeIi ∈ I for any i ∈ {1, . . . , N}.

Let m3 := i−N ī (≥ 1). Then, from (84) and (38),hm3(Ii) ⊆
Ii−Nm3

= Ii−N (i−N ī) = Iī = [dī, p2) ⊆ [dī, p2], and, with this
and (81),hm1+m3(Ii) = hm1(hm3(Ii)) ⊆ hm1([dī, p2]) =

ĨN−1. Let m4 := (N −N i) − 1 (0 ≤ m4 ≤ N − 1). Then,
with the preceding expression, (81), and (82), we get

hm1+m3+m4(Ii) = hm4(hm1+m3(Ii)) ⊆ hm4(ĨN−1)

= Ĩ(N−1)−Nm4
= Ĩ(N−1)−N ((N−N i)−1) = Ĩi. (87)

Now, consider three different cases fori.
First case:i = N . Sincem1 +m3 +m4 = (̄i+1)+ (N −

ī) + (N − 1) = 2N , (iv) follows directly from (87).
Second case:̄i < i < N . Sincem1 +m3 +m4 = (̄i+1)+

(i−ī)+(N−i−1) = N , (87) readshN (Ii) ⊆ Ĩi, which implies
(iv) as follows:h2N (Ii) = hN (hN (Ii)) ⊆ hN (Ĩi) ⊆ Ĩi.

Third case:1 ≤ i ≤ ī. Sincem1 +m3 +m4 = (̄i + 1) +
(i− ī+N) + (N − i− 1) = 2N , (iv) follows from (87).

APPENDIX C
PROOF OFLEMMA 2

Take p ∈ [p1, p̄ + δ). Let k ∈ N
+ such that

p, h(p), . . . , hk−1(p) < p̄+δ (such ak exists sincep < p̄+δ).
Then, from (26),

hk(p) = a2 hk−1(p) + 1 > a2 hk−1(p), (88)

and, therefore,
hk(p) > a2k p. (89)

Since |a| > 1, limk→∞ a2kp = ∞. Hence, there exists an
m(p) ∈ N

+ such that (43) holds.
Now, we seek the largest possible integerm(p) over all

p ∈ [p1, p̄ + δ), for which (43) holds. Sincehk(p1) ≤ hk(p)
for all p ∈ [p1, p̄+ δ) andk ≤ m(p), the greatestm(p) such
that (43) holds isN̄ ∈ N

+ defined by

p1, h(p1), . . . , h
N̄−1(p1) < p̄+ δ and hN̄ (p1) ≥ p̄+ δ.

(90)
Hence,N̄ is independent ofp, andm(p) ≤ N̄ . From (89) and
(90), it follows that

a2(N̄−1) p1 < hN̄−1(p1) < p̄+ δ ⇒
(p1>0, a2>0)

a2N̄ < a2
p̄+ δ

p1
.
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