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Abstract— An event-based state estimation scenario is con-
sidered where a sensor sporadically transmits observations of a
scalar linear process to a remote estimator. The remote estima-
tor is a time-varying Kalman filter. The triggering decision is
based on the estimation variance: the sensor runs a copy of the
remote estimator and transmits a measurement if the associated
measurement prediction variance exceeds a tolerable threshold.
The resulting variance iteration is a new type of Riccati
equation with switching that corresponds to the availability or
unavailability of a measurement and depends on the variance
at the previous step. We study asymptotic properties of the
variance iteration and, in particular, asymptotic convergence
to a periodic solution.

I. I NTRODUCTION

We study the recursive equation

p(k+1) = a2 p(k) + q − γ(p(k))
a2 c2 p2(k)

c2 p(k) + r
(1)

p(0) = p0 ≥ 0, (2)

with the switching function

γ(p(k)) :=

{

1 if c2(p(k)− p̄) ≥ δ

0 otherwise
(3)

and parameters|a| > 1, c 6= 0, q > 0, r > 0, δ > 0. The
equation represents the iteration of the prediction variance for
the event-based remote state estimation problem depicted in
Fig. 1. The remote estimator is a time-varying Kalman filter,
p(k) is the state prediction variance, and (3) is the triggering
rule used by the sensor: a measurement is transmitted if, and
only if, the prediction variance grows too large. The details
of the derivation of (1) (including the explanation of the
additional parameter̄p) are deferred to Sec. II.

The main result of this paper is to prove the global
convergence of the iteration (1) to a periodic solution under
certain assumptions to be derived herein as well. To the
authors’ knowledge, the discrete-time Riccati-type iteration
(1) has not been studied before.

Implementing a copy of the remote estimator on the sensor
node to decide whether or not to transmit data as shown in
Fig. 1 makes sense, for example, when the process is to
be monitored from a remote location, and communication
is expensive compared to local processing on the sensor.
The problem considered herein is a special case of a more
general problem that we are interested in. We consider the
networked control system (NCS) in Fig. 2, where multiple
agents observe and act on a dynamic system, and share

S. Trimpe and R. D’Andrea are with the Institute for Dynamic Systems
and Control (IDSC), ETH Zurich, Sonneggstr. 3, 8092 Zurich,Switzerland
{strimpe, rdandrea}@ethz.ch.

x(k)

y(k)

x̌(k), p(k)

Process Estimator

Transmit Estimator
p(k)

γ(p(k))

Sensor

Logic x̌(k),p(k)

Fig. 1. Event-based state estimation problem. A sensor observes a linear
process with statex(k) and transmits measurementsy(k) sporadically over
a network link to a remote estimator, which keeps track of the conditional
state meaňx(k) and variancep(k). The sensor implements a copy of the
remote estimator and uses its variancep(k) to make the transmit decision.
Solid lines denote continuous flow of data (at every time step of the
underlying discrete-time sampling) and dashed lines indicate discontinuous
data flow. The communication links are assumed ideal (no delays or packet
drops).

data with each other over a broadcast network. Each agent’s
objective is to maintain an estimate of the full system state
x(k) (for example, to feed its local controller). Since the
state may not be observable from a local sensor alone,
communication between the agents is required. Byreduced
communication state estimationwe mean: the problem of
maintaining an estimate of the system state on each agent of
an NCS while, at the same time, seeking to reduce the load
on the communication network.

Figure 3 explains an event-based strategy to address this
problem. The key idea is that each agent broadcasts its local
sensor measurement to the other agents onlyif it is required
in order to meet a certain estimation performance. To be
able to make this decision, each agent implements a copy of
the common estimator representing the common information
in the network. If the other agents’ estimate (represented
by the common estimator) of a particular measurement is
already “good enough,” it is not required to communicate this
measurement. This scheme has been experimentally demon-
strated on the Balancing Cube, [1], to achieve significant
reduction in average communication rates, [2], [3].

Different decision rules for considering an estimate “good
enough” can be implemented in the transmit logic block. In
[2], a constant threshold logic on the difference of the actual
measurement and its prediction by the common estimator
is implemented. In [3], a measurement is broadcast if its
prediction variance exceeds a tolerable bound. This is also
the approach taken in this paper. If a transmission is triggered
by a condition on the estimation variance, we refer to
this asvariance-based triggering. While [3] presents purely
experimental results, the theoretical basis of the approach is
developed herein.

The problem scenario in Fig. 1 is recovered from the
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Fig. 2. Networked control system. Multiple sensor (S) and actuator (A)
units are spatially distributed along a dynamic system. Each sensor and
actuator is associated with an algorithm block; and sensor,actuator, and
algorithm together are denoted as anagent. The agents can share data over
a common bus. In order to feed its local controller, each agent maintains an
estimate of the full system statex. Each agent also decides when to share
its local sensor data with its peers over the common bus.

Fig. 3. Event-based strategy to reduced communication state estimation.
The drawing represents a single agent (sensor (S), actuator(A), algorithm)
of Fig. 2. Each agent implements a copy of thecommon estimator, which
operates on data that is received over the common bus. Since allagents have
access to this data, the estimators are identical and represent the common
information in the network. Data from the common estimator is used in some
transmit logic (event generator) to decide whether or not to put the local
sensor data on the bus. This allows an efficient use of the communication
resource: an agent’s measurement is broadcast to all other agents only if the
common estimate of this measurement is not already satisfactory (measured,
for example, by its variance). A second estimator, thelocal estimator, may
be used to exploit all sensor data that is locally available,i.e. the data
received from the busand the local sensor data. Its estimate is used for
feedback control.

one in Fig. 2 when only two agents are considered, one
of which observes the system through its local sensor and
sporadically transmits data to the other, which estimates
the system state based on this information. The common
estimator then corresponds to the remote estimator in Fig. 1.
Equation (1) is, in fact, the scalar version of the matrix
variance iteration derived in [3] for the distributed event-
based estimation problem of Fig. 2 and 3.

For the specific problem in [3], convergence of the estima-
tion variance iteration to a periodic solution was observedto
numerical accuracy. This observation motivates the theoret-
ical study of the convergence properties of the event-based
state estimator with variance-based triggering in this paper.
To focus on the fundamental properties, this paper deals with
the scalar problem.

A. Related work

Event-based strategies are a popular means of ensuring
efficient use of the communication resource in NCS (see
[4] and references therein). As opposed to traditional time-
triggered transmission of data, event-based approaches trans-
mit data only when required to meet a certain specification
of the control system (e.g. closed-loop stability, controlor
estimator performance). Event-based state estimation prob-
lems with a single sensor and a single estimator node similar
to Fig. 1 have been studied in [4]–[11], for example. Event-
based state estimation problems for distributed or multi-agent
systems have been looked at in [2], [3], [12].

In most of the above-mentioned references for the single
sensor/single estimator case, the sensor node transmits to
the remote estimator a local state estimate (obtained from
a Kalman filter on the sensor) rather than the raw mea-
surement. While this seems to be the method of choice for
the single agent case (the state estimate contains the fused
information of all past measurements), communicating raw
measurements has a practical advantage for the multi-agent
case. For an agent to fuse another agent’s measurement with
its local state estimate, it needs to know the variance of the
measurement conditioned on the state. This is usually known
in form of a sensor model. To optimally fuse another agent’s
state estimate, on the other hand, the variance associated with
the estimate would have to be known. Since this variance is,
however, only known to the agent that generated the estimate,
it would have to be communicated over the network as well,
hence, increasing the network load.

In the above-mentioned references on event-based esti-
mation, an event is triggered by some condition on real-
time data (measurement or state); that is, in a stochastic
framework, data transmission is a random event. In contrast,
the variance-based trigger in (3) depends on the prediction
variance at the previous step. The resulting variance iteration
(1) is deterministic and depends on the problem data only. A
condition on the variance to trigger sensor transmissions is
considered in [13] in a slightly different framework. Therein,
the authors consider two heterogeneous sensors: at every time
step, one of these transmits its measurement to a remote
estimator, and a condition on the estimator variance is used
to decide which one. Whereas in that scenario, the average
communication rate is constant, we seek to reduce the
average sensor transmission rate, including the case where
no data is transmitted at a time step.

The variance iteration of other Kalman filtering problems
(their scalar version) can be recovered from (1) by replacing
γ(p(k)) in (1) with:

• γ(k) = 1. Classic Kalman filter for linear time-invariant
systems, [14]. The filter has access to a measurement at
every time step. Iteration (1) is called thediscrete-time
Riccati equation, [14]. It is well known that it converges
to a positive fixed point for the assumed parameters.

• γ(k) ∈ {0, 1} a periodic sequence. With periodic
measurement transmissions, the problem can be mod-
eled as linear periodic system with periodically varying



c(k) and r(k). The variance evolves according to the
discrete-time periodic Riccati equation, whose conver-
gence properties to periodic solutions are studied in
[15]. The problem considered herein is different in that
we do not assume a-priori a periodic transmit sequence.

• γ(k) ∈ {0, 1} a Bernoulli random process. Kalman fil-
tering with intermittent observations, [16]. The arrival of
a measurement at the Kalman filter is subject to random
data loss modeled as a Bernoulli process. Hence,p(k)
becomes a random variable. In [16], the authors show
there exists a critical value for the data loss probability,
below which the expected value ofp(k) is finite.

B. Outline of this paper

Equation (1) is formally derived in Sec. II. Section III
illustrates the behavior of (1) with simulation examples. The
asymptotic properties of (1) are studied in Sec. IV, and the
main result of this paper is derived (Theorem 2). Due to space
limitation, proofs of intermediate propositions have been
omitted and will be published elsewhere; they are available
in [17]. The paper concludes with a discussion in Sec. V.

II. EVENT-BASED KALMAN FILTER

In this section, we derive (1) as the variance update of
the event-based state estimator in Fig. 1 for a scalar linear
stochastic process. A matrix version of this equation for a
vector system with multiple sensors is derived in [3].

Consider the scalar stochastic linear time-invariant process

x(k+1) = a x(k) + v(k) (4)

y(k) = c x(k) + w(k), (5)

where k is the discrete-time index,x(k) represents the
process state, andy(k) its observation. The process noise
v(k), the measurement noisew(k), and the initial statex(0)
are assumed mutually independent, Gaussian distributed with
mean 0, 0,x0 and varianceq > 0, r > 0, and p0 ≥ 0,
respectively. For the purpose of this paper, we consider the
case of unstable dynamics, i.e.|a| > 1, which is the more
challenging case, since communication of measurements is
required for the estimation error variance to be bounded. Fur-
thermore, we assume that the system is detectable, i.e.c 6= 0.

It is well known that the Kalman filter, [14], is the optimal
state estimator for the process (4), (5) in that it keeps track
of the conditional probability distribution of the statex(k)
conditioned on all measurements up to timek, Y(k) :=
{y(1), . . . , y(k)}. To distinguish this Kalman filter from the
reduced communication filter derived below, it is denoted
as thefull communication Kalman filter. Under the above
assumptions, the state prediction variance Var[x(k)|Y(k−1)]
converges tōp > 0 which is the unique positive solution to
the discrete algebraic Riccati equation (DARE)

p̄ = a2p̄+ q −
a2c2p̄2

c2p̄+ r
. (6)

We write p̄ = DARE(a, c, q, r).
Next, we state the Kalman filter that estimatesx(k) based

on a reduced set of measurements. LetỸ(k) denote the

collection of all measurementsy(k) up to time k that are
available at the remote estimator,

Ỹ(k) := {y(l) | l ≤ k, γ̃(l) = 1}, (7)

where the transmit functioñγ is defined as

γ̃(k) :=

{

1 if measurementy(k) is transmitted

0 otherwise.
(8)

Notice that, if the sequence of transmit decisions
{γ̃(1), . . . , γ̃(k)} is known at timek, (7) is well defined.
We make precise later in this section how we decide if a
measurement is transmitted at timek.

Under the above assumptions, the distribution of the state
x(k) conditioned onỸ(k) is Gaussian. The Kalman filter
[14] keeps track of the conditional mean and variance,

x̌(k|k−1) = E [x(k)|Ỹ(k−1)] (9)

x̌(k|k) = E [x(k)|Ỹ(k)] (10)

p(k|k−1) = Var [x(k)|Ỹ(k−1)] (11)

p(k|k) = Var [x(k)|Ỹ(k)], (12)

where E[·|·] denotes the conditional expected value and
Var [·|·] the conditional variance. The filter equations are

x̌(k|k−1) = a x̌(k−1|k−1) (13)

p(k|k−1) = a2 p(k−1|k−1) + q (14)

K(k) =
c p(k|k−1)

c2 p(k|k−1) + r
(15)

x̌(k|k) = x̌(k|k−1) + γ̃(k)K(k)
(
y(k)−c x̌(k|k−1)

)

(16)

p(k|k) = p(k|k−1)− γ̃(k) cK(k) p(k|k−1). (17)

We denote the filter (13)–(17) as thereduced communication
Kalman filter.

Let p(k) := p(k|k−1) denote the state prediction variance.
It captures the uncertainty aboutx(k) given all measurements
up to the previous time stepk−1. Similarly, Var[y(k)|Ỹ(k−
1)] = c2p(k) + r captures the uncertainty in predicting the
measurementy(k). According to the idea outlined in the
introduction, a measurementy(k) is transmitted and used to
update the estimator if, and only if, its prediction variance
exceeds a tolerable bound. Since the reduced communication
Kalman filter cannot do better than the full communication
filter, we use a thresholdδ on the difference

Var [y(k)|Ỹ(k−1)]− lim
k→∞

Var [y(k)|Y(k−1)] = c2(p(k)− p̄)

(18)
for the transmit decision. Hence, we use the transmit rule

γ̃(k) = γ(p(k)) (19)

with γ(p(k)) as in (3). We assumeδ > 0 henceforth; for
δ = 0, the full communication Kalman filter is recovered.

By combining equations (14), (15), (17), and (19), equa-
tion (1) is obtained.



III. I LLUSTRATIVE EXAMPLES

Figure 4(a) shows simulation results1 of (1) for the fol-
lowing parameter values:

Example 1:a = 1.2, c = q = r = 1, δ = 3, p0 = p̄.
As expected, the variancep(k) grows at times where no
measurement is available. Once the threshold is exceeded, a
measurement is transmitted (γ(p(k)) = 1) and the estimator
variance drops. The solution in Fig. 4(a) asymptotically
converges to a periodic solution with periodN = 3.

Figures 4(b) and 4(c) illustrate that, for different values
of δ (all other parameters are the same as in Example 1),
asymptotically periodic solutions with very different periods
may be obtained. The period does not vary monotonically
with δ.

IV. A SYMPTOTIC CONVERGENCE

The asymptotic properties of (1) are studied in this
section. In particular, we derive conditions that guarantee
convergence to a periodic solution and give an algorithm
to compute the period. The convergence proof is based on
the contraction mapping theorem(also known asBanach’s
fixed point theorem). After some preliminaries in Sec. IV-A,
we use an illustrative example in Sec. IV-B to outline the
convergence proof, which then follows in Sec. IV-C to IV-E.

A. Preliminaries

Sinceq > 0 and r > 0, (1) and (3) can equivalently be
written as

p(k+1)

q
= a2

p(k)

q
+1−1 p(k)

q
− p̄

q
≥ δ

c2q

a2 c2q
r

(
p(k)
q

)2

c2q
r

p(k)
q

+ 1
, (20)

where we use

1X :=

{

1 if X is true

0 otherwise
(21)

for a more compact notation. By redefiningp(k), c2, andδ
asp(k)/q, c2q/r, andδ/(c2q), respectively, we can assume
without loss of generality thatq = r = 1. Henceforth, we
study the iteration

p(k+1) = h(p(k)), p(0) = p0 ≥ 0, (22)

where the functionh is defined as

h : [0,∞) → [0,∞)

p 7→ a2 p+ 1− 1p≥p̄+δ

a2 c2 p2

c2 p+ 1

(23)

with parameters|a| > 1, c 6= 0, δ > 0; and with p̄ =
DARE(a, c, 1, 1). The graph ofh is shown in Fig. 5 together
with the graph of the functiong,

g : [0,∞) → [0,∞)

p 7→ a2 p+ 1−
a2 c2 p2

c2 p+ 1
,

(24)

1Files to run the simulation are available at www.cube.ethz.ch/downloads.
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Fig. 4. Simulation results for different values of the threshold parameter
δ. The top graph of each sub-figure shows the variance iteratesp(k) (blue)
and the transmit threshold̄p + δ/c2 (red). The bottom graph shows the
corresponding transmit sequenceγ(p(k)). All solutions are asymptotically
periodic with periodsN = 3, 5, 19 from top to bottom.

which represents the variance iteration of the full communi-
cation Kalman filter. For the maph being appliedm times,
we write hm; that is, form ∈ N,

p(k+m) = hm(p(k)) = h(h(. . . (h
︸ ︷︷ ︸

m

(p(k)) . . . ))), (25)

whereh0(p(k)) := p(k).
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Fig. 5. The functionsh (blue) andg (orange). The filled (unfilled) circles
indicate a closed (open) interval boundary. The dotted diagonal represents
the identity mapp = p. The intersection ofg with the identity diagonal
represents the solution̄p to the DARE (6). The dashed box represents the
set [p1, p2), which is invariant underh. For p ≥ p̄+ δ, h(p) = g(p).

Proposition 1: Let p1 := h(p̄+δ) andp2 := a2(p̄+δ)+1.
The following properties ofh hold:
(i) h([p1, p2)) ⊆ [p1, p2).

(ii) ∀p ∈ [0,∞), ∃m ∈ N : hm(p) ∈ [p1, p2).
(iii) h is injective on[p1, p2).
(iv) h is continuous and strictly monotonic increasing on

[p1, p̄+ δ) and on[p̄+ δ, p2].
(v) h is differentiable on(p1, p̄+ δ) and on(p̄+ δ, p2).
For (i), we also say that[p1, p2) is an invariant set underh.

Proof: The proof can be found in [17].
We are interested in studying convergence of a solution

{p(0), p(1), p(2), . . . } of (22) to periodic cycles, which can
be defined according to [18], as follows:

Definition 1 (adapted from [18]):Let p∗ be in the do-
main of h. Then p∗ is called anN -periodic point of (22)
if it is a fixed point ofhN , that is, if

hN (p∗) = p∗. (26)

The periodic orbit ofp∗, {p∗, h(p∗), h2(p∗), . . . , hN−1(p∗)},
is called anN -cycle, andN is called theperiod.

Definition 2: A solution to (22) is calledasymptotically
N -periodic if

lim
m→∞

hmN (p0) = p∗, (27)

wherep∗ is anN -periodic point of (22).
In subsequent sections, we derive conditions that guarantee
that a solution to (22) is asymptotically periodic. For this
purpose, attention can be restricted to the interval[p1, p2),
since by Proposition 1, (i) and (ii), every solution enters
[p1, p2) for somem and remains within for allk ≥ m.

From Proposition 1, (iii), the inverse ofh exists on the
range ofh on [p1, p2), which can be seen from Fig. 5 to be
h([p1, p2)) = [p1, h(p2))∪ [h(p1), p2). Hence, we define the
inverseh−1 as

h−1 : [p1, h(p2)) ∪ [h(p1), p2) → [p1, p2)

y 7→ h−1(y) such thath(h−1(y)) = y.
(28)

For the domain ofh−1, we write dom(h−1).

B. Illustrative example and outline of the proof

We now illustrate, by means of Example 1, the main ideas
to show asymptotic periodicity of solutions to (22).

The graph ofh for the parameters of Example 1 is shown
in Fig. 6. Since there is no intersection with the identity
diagonalp = p, h has no fixed point, as expected. The graph
of h3, which is depicted in Fig. 7, does, however, have three
intersections in[p1, p2) with the identity diagonal. Hence,
h3 has three fixed points in this interval corresponding to
the 3-cycle shown in Fig. 4(a).

We illustrate next how one can use the contraction map-
ping theorem to prove thath3 has these three fixed points,
and that they are (locally) attractive. This approach is then
generalized in Sec. IV-C to IV-E.

Theorem 1 (Contraction Mapping Theorem, [19]):Let
‖·‖ be a norm forRn and S a closed subset ofRn.
Assumef : S → S is a contraction mapping: there is anL,
0 ≤ L < 1, such that‖f(p)− f(p̃)‖ ≤ L‖p− p̃‖ for all p, p̃
in S. Thenf has a unique fixed pointp∗ in S. Furthermore,
if p(0) ∈ S and we setp(k+1) = f(p(k)), then

‖p(k)− p∗‖ ≤
Lk

1− L
‖p(1)− p(0)‖ (k ≥ 0). (29)

Equation (29) implies thatp(k) converges top∗ ask → ∞
for any p(0) ∈ S.
To be able to apply Theorem 1 (withn = 1, f = h3, and
‖·‖ = |·|), there are two key requirements:
(i) a suitable closed setS that is invariant underh3 needs

to be constructed, and
(ii) h3 needs to be a contraction mapping onS.

As it shall be seen later, the discontinuities of the function
h3 play a crucial role in the development. The functionh3

has two discontinuities, which can be seen as follows:
• h(p) is continuous for allp ∈ [p1, p2) except atd1 :=

p̄+ δ.
• h2(p) = h(h(p)) is continuous atp if h is continuous

at p and if h is continuous ath(p), [20]. Hence, points
of discontinuity ared1 (discontinuity ofh); and d2 ∈
[p1, p2) such thatp̄ + δ = d1 = h(d2). Since d1 ∈
dom(h−1), the inverseh−1 exists andd2 = h−1(d1).

• Similarly, h3(p) = h(h2(p)) is continuous atp if h2 is
continuous atp and if h is continuous ath2(p). Points
of discontinuity ared1 and d2 (discontinuities ofh2);
and d3 ∈ [p1, p2) such thatp̄ + δ = d1 = h2(d3) ⇔
h−1(d1) = d2 = h(d3). But sinced2 /∈ dom(h−1)
(cf. Fig. 6), such ad3 does not exist. Hence,h3 has the
discontinuitiesd1 andd2.

The discontinuitiesd1 andd2 naturally subdivide[p1, p2)
in three disjoint subintervals:[p1, p2) = I3 ∪ I2 ∪ I1 with
I3 := [p1, d2), I2 := [d2, d1), and I1 := [d1, p2). Figure 8
illustrates where one of the subintervals,I1, is mapped by
repeated application ofh. Clearly,h3(I1) = h3([d1, p2)) ⊆
[d1, p2) = I1. Furthermore, sinceh(p2) < d2 (cf. Fig. 6), the
same property holds for the closure ofI1; that is, [d1, p2] is
invariant underh3,

h3([d1, p2]) ⊆ [d1, p2]. (30)
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Fig. 6. The functionh for a = 1.2, c = 1, δ = 3 on the domain
[p1, p2) = [2.20, 8.13). The function has a discontinuity atd1 = p̄+ δ =
4.95. The slope ofh is a2 on (p1, d1) and bounded byg′(d1) on (d1, p2).
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Fig. 7. The functionh3 for a = 1.2, c = 1, δ = 3 on the domain
[p1, p2) = [2.20, 8.13). The function has two discontinuities atd1 =
p̄+ δ = 4.95 andd2 = 2.74.

Notice thath([d1, p2]) andh2([d1, p2]) (the same intervals as
h(I1) andh2(I1) in Fig. 8, but with closed right bounds) are
closed intervals contained inI3 and I2, respectively. It can
be shown that, underh3, they are invariant and attractive for
any point inI3 andI2, respectively. Hence, we can construct
closed sets invariant underh3 (requirement (i)).

For requirement (ii), we focus again on the intervalI1.
Consider the derivative ofh3 on (d1, p2). By the chain rule,
for p ∈ (d1, p2),

d(h3)

dp
(p) = h′(h2(p))

d(h2)

dp
(p)

= h′(h2(p)) · h′(h(p)) · h′(p), (31)

whereh′ meansdh
dp

. Similar to the argumentation in Fig. 8,
one can see thath((d1, p2)) ⊆ (p1, d2) andh2((d1, p2)) ⊆
h((p1, d2)) ⊆ (d2, d1). From Fig. 6, it can be seen that
h′(p) = a2 for all p ∈ (p1, d2) ∪ (d2, d1) and thath′(p) <
g′(d1) for all p ∈ (d1, p2). Therefore, we get2 from (31), for
p ∈ (d1, p2),

d(h3)

dp
(p) < a2 · a2 · g′(d1) = a4g′(p̄+ δ) = 0.084. (32)

2The computation is available at www.cube.ethz.ch/downloads.
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h2(I1)
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Fig. 8. Mapping of the intervalI1 under repeated application ofh. On
the top line, the intervalI1 = [d1, p2) is shown in red. This interval is
mapped toh(I1) = [h(d1), h(p2)) = [p1, h(p2)) (cf. Fig. 6), shown on
the second line from above. Notice that the obtained interval is significantly
shorter due to the slope ofh being significantly less than one on[d1, p2)
(cf. Fig. 6). The intervalsh2(I1) = h(h(I1)) and h3(I1) = h(h2(I1))
(third and fourth line from above) are obtained accordingly. Notice that the
interval length increases for the latter two mappings, sincethe slope ofh
is greater than one on[p1, d1). Still, after one cycle of three mappings, the
resulting interval is contained in the original one, i.e.h3(I1) ⊆ I1.

From this, it follows (by the application of the mean value
theorem, [20]) that for any closed intervalS ⊆ (d1, p2),
the contraction mapping property in Theorem 1 holds with
L = a4g′(p̄+δ) < 1. Even though the closed interval[d1, p2]
is not contained in(d1, p2), Ĩ1 := h3([d1, p2]) is contained
(see Fig. 8). Furthermore,̃I1 is itself invariant underh3,
which follows directly from (30),

h3(Ĩ1) = h3(h3([d1, p2])) ⊆ h3([d1, p2]) = Ĩ1. (33)

Theorem 1 thus ensures that there exists a unique fixed point
in Ĩ1, and that every starting point iñI1 converges to this
fixed point. Furthermore, since

h3(I1) = h3([d1, p2)) ⊆ h3([d1, p2]) = Ĩ1, (34)

the fixed point is attractive (underh3) for all points in the
original intervalI1.

For the intervalsI2 and I3, one can proceed similarly
and, hence, show that every point in[p1, p2) converges to
a fixed point ofh3. Furthermore, we know by Proposition 1,
(i) and (ii), that every solution to (22) ends up in[p1, p2).
Therefore, the solution to (22) for the considered example is
asymptotically 3-periodic for any initial valuep0.

To treat the general case in the remainder of this section,
we proceed analogous to this example. In Sec. IV-C, we state
assumptions that guarantee the existence ofN closed subin-
tervals in[p1, p2) that are invariant underhN . In Sec. IV-D,
we show thathN is a contraction mapping on these intervals,
which then allows us (in Sec. IV-E) to apply Theorem 1
to conclude that solutions to (22) are asymptoticallyN -
periodic.

C. Invariant subintervals

The construction ofN closed subintervals of[p1, p2)
that are invariant underhN proceeds in two steps. First,
half-closed intervalsIi are generated that cover[p1, p2)
and possess the sought invariance property. Second, closed
intervals Ĩi ⊆ Ii are constructed that inherit the invariance
property from their supersets.

Motivated by the example of the previous subsection, the
intervals Ii are obtained by splitting up[p1, p2) through a



sequence of points{d1, d2, . . . }, di ∈ [p1, p2), which rep-
resent discontinuities ofhN and are obtained by iteratively
applyingh−1:

Algorithm 1:

d1 := p̄+ δ
while di ∈ dom(h−1)

di+1 := h−1(di)
incrementi

end while
N := i+ 1

If there exists anm ∈ N such thatdm /∈ dom(h−1), Algo-
rithm 1 terminates, and the obtained sequence{d1, d2, . . . } is
finite. For all problems of an exhaustive search that we have
conducted, this has actually been the case. A potential proof
that the algorithm terminates in general is, however, still
open. For the purpose of this paper, we assume henceforth
that it does.

Assumption 1:Algorithm 1 terminates.
The assumption is essentially checked by running Algo-
rithm 1; if the algorithm terminates, the assumption is true.

Proposition 2: Let Di := {d1, . . . , di}. The following
statements hold:

(i) di /∈ [h(p2), h(p1)), ∀i < N−1,
dN−1 ∈ [h(p2), h(p1)).

(ii) hi is continuous on[p1, p2) \ Di, ∀i ≤ N−1,
hN is continuous on[p1, p2) \ DN−1.

(iii) ∀di, dj ∈ DN−1 with i 6= j, di 6= dj .
Proof: The proof can be found in [17].

The pointsDN−1 divide the interval[p1, p2) in N subin-
tervals I := {I1, . . . , IN} as illustrated in Fig. 9. The
intervals are named such thatIi has di as a lower bound
for i ≤ N − 1, and IN has the lower boundp1. A formal
definition of the intervals is given next. LetΠ : {1, . . . , N−
1} → {1, . . . , N−1} be a permutation of thedi’s such that

dΠ(i) < dΠ(i+1), ∀i ∈ {1, . . . , N − 2}. (35)

Furthermore, leti and ī be the indices of the smallest and
greatestdi, i.e. Π(1) = i andΠ(N−1) = ī. Then define

Ii := [di, dΠ(Π−1(i)+1)) ∀i ≤ N − 1, i 6= ī (36)

Iī := [dī, p2) (37)

IN := [p1, di), (38)

that is, intervalIi hasdi as a lower bound (closed) and the
next bigger element fromDN−1 as an upper bound (open)
(except for the intervals at the boundaries of[p1, p2)). Since
each interval is uniquely specified from (36)–(38) by either
its lower or its upper bound, we sometimes omit either one
of them and write[d, ∗) or [∗, d). For the interior (the largest
contained open interval) ofIi, we write int(Ii).

Proposition 3: All intervals Ii ∈ I are mutually disjoint
and non-empty.

Proof: The proof can be found in [17].
Proposition 4: The following statements hold:

(i) h(IN ) ⊆ IN−1, h(IN−1) ⊆ IN−2, . . . , h(I2) ⊆ I1, and
h(I1) ⊆ IN .

I3

p1
[ )

p2
R

d3 d1 d4 d2

[ [ [) )I5 [) [) )I1 I4 I2

Fig. 9. The left-closed, right-open subintervalsI = {I1, I2, I3, I4, I5}
generated by the pointsD4 = {d1, d2, d3, d4} cover the interval[p1, p2).

(ii) h(int(IN )) ⊆ int(IN−1), h(int(IN−1)) ⊆ int(IN−2),
. . . , h(int(I2)) ⊆ int(I1), andh(int(I1)) ⊆ int(IN ).
Proof: The proof can be found in [17].

Corollary 1: The following statements hold:

(i) hN (Ii) ⊆ Ii ∀Ii ∈ I.
(ii) hN (int(Ii)) ⊆ int(Ii) ∀Ii ∈ I.

Proof: (i) and (ii) follow directly from Proposition 4
and the fact: for two setsS1, S2 and a functionf , S1 ⊆
S2 ⇒ f(S1) ⊆ f(S2).

The intervalsI cover the whole domain of interest[p1, p2),
and they are invariant underN times application ofh.
However, in order to be able to apply Theorem 1, closed
intervals are required. The proposition below states that
subintervals Ĩi ⊆ Ii exist that are invariant underhN

and closed. For stating the proposition, another technical
assumption is required:

Assumption 2:h(p2) < dN−1.
Notice that by Proposition 2, (i), the weaker condition
h(p2) ≤ dN−1 is already guaranteed.

Proposition 5: There exists a collection of intervals̃I =
{Ĩ1, Ĩ2, . . . , ĨN} such that for alli ∈ {1, . . . , N} the follow-
ing statements hold:

(i) Ĩi is closed.
(ii) Ĩi ⊆ int(Ii) ⊆ Ii.

(iii) hN (Ĩi) ⊆ Ĩi.
(iv) h2N (Ii) ⊆ Ĩi.

Proof: The proof can be found in [17].
The details of how the intervals̃I can be actually constructed
are given in the proof.

D. Contraction mapping

In this section, we show thathN is a contraction map-
ping (i.e. it has a Lipschitz constant strictly less than one,
cf. Theorem 1) on each of the intervals̃I. To this end, we
first derive an upper bound less than one on the derivative
of hN on the interior of the intervalsI.

Proposition 6: hN is differentiable on all open intervals
int(Ii), Ii ∈ I. Furthermore, there exists anL < 1 such that

∣
∣
∣
∣

d(hN )

dp
(p)

∣
∣
∣
∣
< L ∀p ∈ int(Ii), ∀Ii ∈ I.

Proof: The proof can be found in [17].
Corollary 2: hN is a contraction mapping on any interval

of Ĩ; that is, there exists anL < 1 such that

|hN (p)− hN (p̃)| ≤ L|p− p̃| ∀p, p̃ ∈ Ĩi, ∀Ĩi ∈ Ĩ.
Proof: Take anyp, p̃ ∈ Ĩi with p̃ < p without loss of

generality. By Proposition 2, (ii), and 5, (ii),hN is continuous
on [p̃, p] and, by Proposition 6,hN is differentiable on(p̃, p).



The claim then follows from the mean value theorem, [20].
(A more detailed proof can be found in [17].)

E. Main result

Equipped with the results of the previous two subsections,
the main result of this paper can be stated:

Theorem 2:Under Assumptions 1 and 2, the solution to
(22) is asymptoticallyN -periodic for any initial condition
p0 ≥ 0.

Proof: By Proposition 1, (ii), it follows that there exists
anm1 ∈ N such that

hm1N (p0) ∈ [p1, p2). (39)

Since the disjoint intervalsI cover [p1, p2), there exists a
uniquei ∈ {1, . . . , N} such that

hm1N (p0) ∈ Ii. (40)

By Proposition 5, (iv),

h(m1+2)N (p0) ∈ Ĩi. (41)

From Proposition 5, (i) and (iii), Corollary 2, and Theo-
rem 1, it follows that there exists a unique fixed pointp∗i of
hN (hence, anN -periodic point of (22)) inĨi and that, for
all p̃ ∈ Ĩi,

lim
m→∞

hmN (p̃) = p∗i . (42)

In particular, forp̃ = h(m1+2)N (p0) and by (41),

lim
m→∞

hmN
(
h(m1+2)N (p0)

)
= lim

m→∞
h(m1+2+m)N (p0)

= lim
m→∞

hmN (p0) = p∗i . (43)

V. D ISCUSSION

Two assumptions are made to state the main result of this
paper in Theorem 2. The question whether the assumptions
can be removed is subject to future study. As is, the strength
of the result is that it essentially offers a sufficiency test
for periodicity (if Algorithm 1 terminates, convergence to
a periodic solution with a known period is guaranteed) as
an alternative to simulating (1) and having to interpret the
result.

This paper deals with the scalar version of the variance
iteration of the event-based state estimator with variance-
based triggering. Whether the convergence result generalizes
to the multi-sensor case (as suggested by the observations in
[3]) is an open question.

A periodic solution to the event-based state estimation
problem with variance-based triggering allows the recovery
of a time-based transmit schedule: the periodic transmit
sequence can be implemented on a sensor as a time-based
schedule, which reduces the computational requirements
on the sensor. The rate of the time-based transmission is,
however, not a design parameter, but obtained from an
event-based approach, where the designer specifies tolerable
bounds on the estimation variance. Hence, the methods
presented herein and in [3] for the multi-sensor case can
be used as a tool for designing sensor update rates in an
NCS.
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