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Abstract: An event-based state estimation problem is considered where the state of a
dynamic system is observed from multiple distributed sensors that sporadically transmit their
measurements to a remote estimator over a common bus. The common bus allows each sensor to
run a copy of the remote estimator and to make the triggering decision based on this estimate:
a measurement is transmitted only if its prediction by the estimator deviates by more than a
tunable threshold. The event-based estimator is a switching observer that mimics a Luenberger
observer with full communication of all measurements. It is proven that the difference between
the event-based estimator and its full communication counterpart is bounded. The reduction
of average sensor communication rates achieved by using the event-based state estimator for
feedback control is demonstrated in experiments on a balancing cube.
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1. INTRODUCTION

Figure 1 illustrates the state estimation problem that is
considered in this paper. The state of a dynamic system
is estimated from measurements of multiple sensors dis-
tributed along the system. The sensors have computing
capability, and decide when to broadcast their measure-
ment over a common bus network that all sensors and the
estimator are connected to. Since the system state is not
necessarily observable from a single sensor alone, commu-
nication from different sensors is required. The objective
is to maintain an estimate of the full system state while,
at the same time, reducing the load on the communication
network.

An event-based strategy to addressing this problem is
explained in Fig. 2, which depicts a single sensor node
of Fig. 1. The key idea is to implement, on each sensor, a
copy of the remote estimator and an appropriate transmit
decision rule (event generator): a measurement is transmit-
ted only when it is required to meet a certain estimation
performance. The event-based state estimator consists of
the state estimator itself and the event generator.

The common bus (or broadcast network) is a key enabling
feature of the architecture in Fig. 1. It allows all sensors
to also listen to the other sensors’ data and, hence, to
generate the estimate x̌(k) locally at no additional com-
munication cost. This architecture allows for an effective
implementation of a distributed event triggering scheme
(i.e. one where the triggering depends only on local data),
since the quantity of interest (the estimate x̌(k)) is actually
available locally.

The input signal u(k) is assumed to be accessible at the
sensor nodes for making the estimator updates. For ex-
ample, u(k) may be an a-priori known reference input,
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Fig. 1. Distributed state estimation problem. The state
x(k) of a dynamical system is observed by measure-
ments yi(k) of N sensors. The system is driven by a
known input u(k) and unknown process and measure-
ment disturbances v(k) and w(k). The sensor nodes
are connected to each other and to a remote estima-
tor via a common bus. Each sensor decides when to
broadcast its local measurement over the bus. The
remote estimator generates an estimate x̌(k) of the
state x(k) based on the received data.

or u(k) = 0 for an autonomous system. When u(k) is
computed from a feedback control law, it needs to be com-
municated to the sensor nodes. In that case, continuously
communicating u(k), but only sporadically transmitting
the measurements yi(k) may be beneficial if there are fewer
inputs than measurements. Furthermore, with knowledge
of the inputs, the state estimation problem (which is the
focus of this paper) can be treated without consideration
of the feedback control law. This reduces the complexity
of the design problem.

Different measures are conceivable for the event generation
(i.e. for the decision to transmit a measurement). Trimpe
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Fig. 2. A single sensor node. Each sensor node listens
to all data communicated from other sensors on the
common bus. Therefore, it has access to the same
data set as the remote estimator of Fig. 1 and can
implement a copy of the same. Based on this estimate,
the event generator decides when to broadcast the
local measurement.

and D’Andrea [2011a] use a constant threshold on the dif-
ference of an actual measurement and its prediction by the
estimator as condition to trigger an event. We refer to such
a triggering rule, which depends on (realtime) measure-
ment data, as measurement-based triggering. This is also
the approach taken herein. In contrast, a triggering con-
dition that is based on the estimator variance is referred
to as variance-based triggering (considered in Trimpe and
D’Andrea [2011b]). Measurement-based triggering allows
for the estimator to react to events in real time, whereas
transmit schedules can typically be computed off-line with
variance-based triggering.

In contrast to the previously mentioned work, where
the state estimator is a time-varying Kalman filter, we
use a switching Luenberger-type observer herein. The
design is based on a Luenberger observer for the case of
synchronous communication of all measurements (referred
to as the full communication state estimator (FCSE)). The
event-based state estimator (EBSE) updates its estimate
with the available measurements using the corresponding
sub-blocks of the static FCSE gain matrix. Hence, the
estimator switches between different pre-computed static
gains. Compared to a time-varying Kalman filter, where
the filter gain is recomputed at every time step from a few
matrix multiplications, the approach taken herein is less
computationally demanding.

The main contributions of this paper are: the proposal
of the EBSE as a switching static-gain observer combined
with an appropriate event trigger; proof of an upper bound
on the difference between the EBSE and the FCSE; and
demonstration of the EBSE performance in experiments
on an unstable networked control system (the Balancing
Cube; see www.cube.ethz.ch for a video).

This paper is organized as follows: after a brief review of
related work and an introduction of notation below, the
estimation problem is stated in Sec. 2. The event-based
state estimator is derived in Sec. 3, and its stability is
analyzed in Sec. 4. Experimental results on the Balancing
Cube testbed are given in Sec. 5, and the paper concludes
with remarks in Sec. 6.

Related Work. The approach to event-based state es-
timation taken herein is conceptually related to the ap-
proach for event-based control by Lunze and Lehmann

[2010] for a centralized design, and by Stöcker et al. [2012]
for a decentralized problem. Therein, the authors design an
event triggering rule such that the difference between the
state of a reference system with continuous feedback and
the state of the event-based control system is bounded.
Here, the FCSE is the reference estimator, and event
triggers are designed such that the difference of the EBSE
to the FCSE is bounded.

Event-based strategies are a popular means of ensuring
an efficient use of the communication resource in control,
estimation, and optimization problems in networked con-
trol systems (see Lemmon [2011] for an overview). For
a single sensor and a single estimator node, event-based
state estimation problems have been studied by several
researchers (see Lemmon [2011] and references therein). A
distributed estimation problem related to the one herein
is addressed by Weimer et al. [2012]. The authors design
communication policies for wireless sensor nodes that may
either transmit information to a central estimator, listen to
information from the central estimator, or be turned off.
When either sensor or estimator transmit data, all data
since the last update is sent; hence, the load per packet is
variable whereas it is fixed for the approach herein.

Notation. For a vector v ∈ R
n and q ∈ [1,∞], ‖v‖q

(or simply ‖v‖) denotes the vector Hölder norm of v (see
Bernstein [2005])

‖v‖ = ‖v‖q =







(∑n

j=1
|vj |

q
)1/q

for 1 ≤ q < ∞

max
j∈{1,...,n}

|vj | for q = ∞.
(1)

For a matrix A, ‖A‖q (or simply ‖A‖) denotes the matrix
norm ofA induced by the chosen vector norm. For a vector-
valued sequence v = {v(0), v(1), v(2), . . . }, ‖v‖∞ denotes
the ℓ∞ norm of v (see Callier and Desoer [1991])

‖v‖∞ := sup
k≥0

‖v(k)‖,

where ‖v(k)‖ is the chosen vector norm.

2. ESTIMATION PROBLEM FORMULATION

Consider the linear time-invariant (LTI) system

x(k) = Ax(k−1) +B u(k−1) + v(k−1) (2)

y1(k) = C1 x(k) + w1(k) (3)
...

yN (k) = CN x(k) + wN (k), (4)

where k ≥ 1 is the discrete-time index, x(k) ∈ R
n is the

system state, u(k) ∈ R
nu the control input, yi(k) ∈ R

pi ,
i ∈ {1, . . . , N}, are measurements by N sensors, v(k) ∈
R

n, wi(k) ∈ R
pi , i ∈ {1, . . . , N}, are disturbances, and all

matrices are of corresponding dimensions. We use y(k) to
denote the vector that combines all measurements; that is,

y(k) :=





y1(k)
...

yN (k)



 =





C1
...

CN





︸ ︷︷ ︸

=:C

x(k) +





w1(k)
...

wN (k)





︸ ︷︷ ︸

=:w(k)

= Cx(k) + w(k).

Hence, y(k), w(k) ∈ R
p with p :=

∑N
i=1 pi. We assume that

(A,C) is detectable. Notice that (A,Ci) is not assumed to
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be detectable; that is, the system state is not necessarily
detectable from any individual sensor alone.

Notice that no assumption on the characteristics of the
disturbances v(k) and w(k) is made. For example, v(k) and
w(k) may be random variables with known statistics in a
stochastic setting; or they may be bounded disturbances
in a deterministic setting.

2.1 Full Communication State Estimator

Next, we introduce the FCSE, which uses the full mea-
surement vector y(k) at every time step and serves as a
reference to the EBSE design later:

x̂(k|k−1) = A x̂(k−1|k−1) +B u(k−1) (5)

x̂(k|k) = x̂(k|k−1) + L
(
y(k)− C x̂(k|k−1)

)
, (6)

with the static estimator gain L. The estimator is ini-
tialized with some x̂(0) ∈ R

n. It generates an estimate
x̂(k|k) of the state x(k) based on all past measurements
up to, and including, y(k). For ease of notation, we write
x̂(k) := x̂(k|k).

The estimator gain L is designed such that (I − LC)A is
stable (i.e. all eigenvalues have magnitude less than one).
If (A,C) is detectable, such an L is guaranteed to exist (see
Åström and Wittenmark [1997]). It can be designed, for
instance, via pole placement (see Åström and Wittenmark
[1997]) or as the steady-state solution of the Kalman filter
(see Anderson and Moore [2005]).

Let ê(k) := x(k)− x̂(k) denote the estimation error of the
FCSE. The error evolves according to

ê(k) = (I−LC)Aê(k−1)+ (I −LC)v(k−1)−Lw(k). (7)

In a state estimation scenario where v(k) and w(k) are
bounded disturbances, the stability of (I − LC)A implies
that the estimation error is also bounded. If v(k) and w(k)
are independent random variables with finite variance, (7)
ensures that the estimation error variance is bounded.

2.2 Problem Statement

An EBSE is sought that approximates the estimate x̂(k) of
the FCSE (5)–(6) up to a guaranteed bound, but uses fewer
measurements. The EBSE consists of an event generator
and a state estimator (with state x̌(k)) as symbolized by
the blocks in Fig. 2.

The sensor nodes and the remote estimator are assumed
to be synchronized in time, and transmission via the
communication network is assumed to be instantaneous
and without data loss. Hence, the state estimates x̌(k) on
all nodes are assumed identical.

3. EVENT-BASED STATE ESTIMATOR

In this section we present the EBSE, which addresses the
problem stated above.

Event Generator. The event generator on sensor i de-
cides at every time step k whether or not to transmit
the local measurement yi(k). The measurement yi(k) is
transmitted whenever a prediction of that measurement
based on the previous estimate x̌(k−1) is off by more than
a tolerable threshold.

Without any information on v(k) and wi(k), a prediction
y̌i(k) of the measurement yi(k) may be obtained from (2)–
(4) by setting v(k) = 0 and wi(k) = 0; that is,

y̌i(k) := Ci

(
Ax̌(k−1) +Bu(k−1)

)
.

Using x̌(k|k−1) := Ax̌(k−1) + Bu(k−1), the employed
event triggering rule is

transmit yi(k) ⇔ ‖yi(k)− Cix̌(k|k−1)‖ ≥ δi, (8)

with threshold parameters δi ≥ 0, i ∈ {1, . . . , N}. Tuning
δi allows the designer to trade off each sensor’s frequency of
events (and, hence, the communication rate) for estimator
performance. For notational convenience, we denote δ =
(δ1, . . . , δN ) ∈ R

N the vector of threshold parameters δi.

State Estimator. Let I(k) denote the tuple of indices of
those sensors that transmitted their measurement at time
k; that is,

I(k) :=
(
i | 1 ≤ i ≤ N, ‖yi(k)− Cix̌(k|k−1)‖ ≥ δi

)
. (9)

The filter that is used to generate an estimate x̌(k) :=
x̌(k|k) of the state x(k) based on the measurements
broadcast up to time k is given by:

x̌(k|k−1) = A x̌(k−1|k−1) +B u(k−1) (10)

x̌(k|k) = x̌(k|k−1) +
∑

i∈I(k)

Li

(
yi(k)− Cix̌(k|k−1)

)
, (11)

where L = [L1, L2, . . . , LN ] with Li ∈ R
n×pi is the

decomposition of the estimator gain matrix according
to the dimensions of the individual measurements. By
rewriting (6) as

x̂(k) = x̂(k|k−1) +
∑

i∈{1,...,N}

Li

(
yi(k)− Cix̂(k|k−1)

)
, (12)

one can see that (11) is obtained from (6) by including only
those elements in the summation where measurements are
available. If, at time k, no measurement is transmitted
(i.e. I(k) = ∅), (11) is to be understood such that the
summation vanishes; that is, x̌(k|k) = x̌(k|k−1). In order to
ease the presentation, this case is not explicitly mentioned
hereafter. The filter (10)–(11) and the triggering rule (8)
constitute the EBSE.

We assume henceforth that the EBSE is initialized with
the same value as the FCSE, i.e. x̌(0) = x̂(0). This is a
reasonable assumption since we seek to mimic the FCSE
with the EBSE.

Notice that the estimator gains Li in (11) are blocks of the
constant matrix L; that is, the entries can be computed
off-line. This is different from the approach in Trimpe and
D’Andrea [2011a], where a time-varying Kalman filter is
used, and the entries of the estimator gain are recomputed
at every step k. The approach herein thus has lower
computational complexity.

For a fixed sequence {I(1), . . . , I(k)}, the filter (10)–(11) is
a linear filter. The index tuple I(k) does, however, depend
on y(k) by (9); hence, (10)–(11) represent a nonlinear
filter. It is a switching observer, whose switching modes
correspond to the available measurements at time k.

Notice that any individual mode of the filter may be
unstable ((A,Ci) is not necessarily detectable). Moreover,
even if the individual modes were stable, this would not
imply the stability of the switching observer, as discussed
in Lunze [2000] and Böker and Lunze [2002] (Sec. 6.2).
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The stability of the presented EBSE follows from the
combination of (10)–(11) with the triggering condition (8).
This is discussed in detail in the next section.

4. ANALYSIS

We introduce the error measures

e(k) := x̂(k)− x̌(k) and (13)

ě(k) := x(k)− x̌(k), (14)

which are analyzed below. The error e(k) is the difference
between the state estimate of the FCSE and the EBSE.
It is required to be bounded according to the problem
statement in Sec. 2.2. The error ě(k) is the estimation error
of the EBSE (defined analogously to ê(k) for the FCSE).

Difference of the EBSE to the FCSE. From (5), (10),
(11), (12), and (13), we get

e(k) = x̂(k)− x̌(k)

= Ax̂(k−1) +Bu(k−1)−Ax̌(k−1)−Bu(k−1)

+
∑

i∈{1,...,N}

Li

(
yi(k)− CiAx̂(k−1)− CiBu(k−1)

)

−
∑

i∈{1,...,N}

Li

(
yi(k)− CiAx̌(k−1)− CiBu(k−1)

)

+
∑

i∈Ī(k)

Li

(
yi(k)− CiAx̌(k−1)− CiBu(k−1)

)
,

where

Ī(k) := (1, . . . , N) \ I(k)

=
(
i | 1 ≤ i ≤ N, ‖yi(k)− Cix̌(k|k−1)‖ < δi

)
. (15)

Straightforward manipulation then yields

e(k) =
(

A−
∑

i∈{1,...,N}

LiCiA
)

e(k−1)

+
∑

i∈Ī(k)

Li

(
yi(k)−Cix̌(k|k−1)

)

= (I−LC)Ae(k−1) +
∑

i∈Ī(k)

Li

(
yi(k)−Cix̌(k|k−1)

)
. (16)

The dynamics of e(k) are those of a stable LTI system
((I − LC)A is stable) with an input which is bounded
according to (15). Hence, we have the following theorem.

Theorem 1. Let all eigenvalues of (I −LC)A have magni-
tude less than one (i.e. the error dynamics of the FCSE
are stable). Then, the difference e(k) between the FCSE
and the EBSE is bounded for all k. In particular, there
exist constants m > 0 and ρ ∈ [0, 1) such that

‖e‖∞ ≤
m

1− ρ
‖L‖ ‖δ‖ =: emax. (17)

Proof. Rewrite (16): for k ≥ 1,

ē(k+1) = (I − LC)Aē(k) + LĪ(k)∆Ī(k)(k), (18)

where ē(k+1) := e(k); ∆i(k) := yi(k) − Cix̌(k|k− 1);
∆Ī(k)(k) denotes the matrix obtained from consecutively

stacking the vectors ∆i(k), i ∈ Ī(k), from top to bottom;
and LĪ(k) denotes the matrix from consecutively stacking

Li, i ∈ Ī(k), from left to right.

First, notice that ē(k+1) = (I−LC)Aē(k) is exponentially
stable by assumption. Therefore, there exist constants
m > 0 and ρ ∈ [0, 1) such that for all k0 ∈ N and k ≥ k0,

‖
(
(I − LC)A

)k−k0‖ ≤ mρk−k0 , (19)

[Callier and Desoer, 1991, p. 212–213, Def. 17, Thm. 33].

Recalling the definition of the vector norm (1), one can see
that, for 1 ≤ q < ∞,

‖∆Ī(k)(k)‖
q
q =

∑

i∈Ī(k)

‖∆i(k)‖
q
q <

(15)

∑

i∈Ī(k)

δqi ≤
N∑

i=1

δqi = ‖δ‖qq,

and, for q = ∞,

‖∆Ī(k)(k)‖q = max
i∈Ī(k)

‖∆i(k)‖q <
(15)

max
i∈Ī(k)

δi ≤ ‖δ‖q.

Hence, for 1 ≤ q ≤ ∞, ‖∆Ī(k)(k)‖ < ‖δ‖, and

sup
k≥1

‖∆Ī(k)(k)‖ ≤ sup
k≥1

‖δ‖ = ‖δ‖.

Since also
∥
∥LĪ(k)

∥
∥ ≤ ‖L‖, it follows that the input term

LĪ(k)∆Ī(k)(k) in (18) is bounded. Using these results and

applying the bounded trajectories theorem [Callier and
Desoer, 1991, p. 218, Thm. 75] then yields

sup
k≥1

‖ē(k)‖ ≤ m‖ē(1)‖+
m

1− ρ
‖L‖ ‖δ‖.

Equation (17) follows by ē(1) = e(0) = x̂(0)− x̌(0) = 0. 2

Notice that the bound (17) holds irrespective of the rep-
resentation of the disturbances v(k) and wi(k) in (2)–(4).
In particular, it holds for the case where the disturbances
are unbounded, such as for Gaussian noise.

Estimator error. The estimation error ě(k) of the EBSE
can be written as

ě(k) = x(k)− x̂(k) + x̂(k)− x̌(k) = ê(k) + e(k). (20)

Therefore, Theorem 1 can be used to deduce properties of
the EBSE from properties of the FCSE. For example, if
the estimation error ê(k) of the FCSE is bounded, then by
(20) and Theorem 1, the error ě(k) of the EBSE is also
bounded. In general, Theorem 1 shows that for δi → 0,
e(k) becomes arbitrarily small; that is, the performance of
the FCSE is recovered.

5. EXPERIMENTS

The Balancing Cube shown in Fig. 3 serves as the
testbed for demonstrating the event-based state estimation
method. Six rotating arms on the inner faces of the cube
allow the cube to balance on any of its edges or corners.
The arms (called modules) constitute the agents of the net-
worked control system: each one is equipped with sensors,
actuation, and a single-board computer. The computers
share data over a Controller Area Network (CAN) bus. For
the purpose of this paper, the cube balances on one of its
edges. The experimental setup is the same as in Trimpe
and D’Andrea [2011a], where more detailed descriptions
of the system, the linear model, and the controller can be
found.

The eight states of the system model (2) are the angles of
the six modules (rotation relative to the cube structure),
and the angle and angular rate of the cube about its
axis of rotation. Since each module regulates its angular
velocity locally with a fast feedback controller, the angular
velocities of the six modules are treated as plant inputs.
Two types of sensors are used on each module: an absolute
encoder measuring the module angle and a rate gyroscope
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Fig. 3. The experimental testbed: six rotating modules
balance a cubic structure on one of its edges. (See
www.cube.ethz.ch for a video.)

measuring the angular velocity of the cube. Hence, N = 12
sensors are used in total. Each module is able to observe
its own angle and the cube states with its local sensors,
but the complete system state is not locally observable.

The gain L of the linear observer (5)–(6) is designed as
the gain of a steady-state Kalman filter. The resulting
eigenvalues of (I − LC)A are 0.936, 0.427, and (with
algebraic multiplicity 6) 0.382. For the rate gyro sensors,
the transmit threshold δgyro = 0.004 rad/s is used, which
corresponds to roughly one standard deviation of the
sensor noise. For the encoders, δenc = 0.008 rad is chosen.

Every module implements a copy of the EBSE (10)–(11) as
shown in Fig. 2. In addition to using the estimate x̌(k) for
the transmit decision in the event generator, the estimator
feeds an LQR controller that computes the input to the
local actuator (i.e. one of the elements of u(k)). Hence,
there is feedback from the estimators on the sensor nodes
to the system input u(k) (not shown in Fig. 1). A detailed
discussion and analysis of the distributed feedback control
system is beyond the scope of this paper and a subject for
future work.

The sensors are sampled, and the controller commands are
updated every 16.6ms. The control inputs are shared over
the CAN bus at every time step, so that u(k) is available
to compute (10) on each module. The network bandwidth
is sufficient to broadcast all input and measurement data
within the duration of one time step. Hence, data trans-
mission is assumed synchronous for all practical purposes.

A truth model state is computed in post-processing from
all recorded sensor data, which also includes measurements
from multiple accelerometers on the cube (see Trimpe and
D’Andrea [2011a] for details). The performance P of the
feedback control system is measured as the root-mean
square (RMS) value of the truth model state. By Ri(k) we
denote the average communication rate of measurement yi.
It is computed at time k as the moving average over the
last 100 steps. Furthermore, R̄i denotes the time average of
Ri(k) over the duration of the experiment, and R denotes
the average total rate (the average of R̄i over all sensors i).
Hence, R is a measure of the total communication in the
network (R = 1 means full communication, R = 0 means
no communication).

Table 1. Experimental results.

R P

FCSE 1.000 0.183

EBSE 0.221 0.206

Table 2. Average communication rates R̄i.

Module # 1 2 3 4 5 6

Encoder 0.0001 0.024 0 0 0.022 0

Gyro 0.429 0.406 0.384 0.472 0.453 0.459
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Fig. 4. Experimental communication rates. Roughly at
10 s, Module 1 was displaced by pushing it.

Table 1 shows the communication and performance mea-
sures R and P for two three-minute balancing experi-
ments: one experiment using the EBSE and another with
the FCSE. The results illustrate the expected trade-off
between control performance and average communication.

In Table 2, the average communication rates R̄i of the in-
dividual sensors are given for the same EBSE experiment.
They can be interpreted as follows: due to local regulation
of the module angular velocities, the module angles can be
predicted very accurately from the known velocity input;
hence, little communication is required. The gyro sensors,
on the other hand, observe the unstable mode of the cube;
hence, sufficiently high rates are required for stabilizing
the cube. The encoder communication rates of Modules 2
and 5 (on the front and back face of the cube in Fig. 3) are
greater than those of the other modules, because Modules
2 and 5 move more during balancing, and their motion is
affected more severely by gear backlash in the actuation.
Gear backlash is not captured by the linear model (2), and
its effect can therefore not be predicted by (10).

In another experiment, Module 1 was manually displaced
during balancing (a clutch in the actuation mechanism al-
lows the module to slip when pushed). The communication
rates over time are shown in Fig. 4. Clearly, Module 1’s
encoder rate adapts to the external disturbance. While the
module is being pushed, (10) cannot accurately predict the
module angle, hence its communication rate goes up.
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Fig. 5. Experimental estimator performance (same data
sequence as in Fig. 4). The estimates of Module 1’s
angle and the cube angle are shown. Top graph: truth
model states; middle: difference between FCSE and
EBSE (the error e(k)); bottom: EBSE error ě(k).

For the same experiment, Fig. 5 illustrates the perfor-
mance of the EBSE exemplarily for Module 1’s angle and
the cube angle. For q = ∞ in (1), the bound in (17) is
emax = 0.1162. Clearly, the error signals e(k) in Fig. 5
are well below. The conservatism of the bound (17) stems
from the upper bound (19) on the state-transition matrix
of the multivariate system (16).

6. CONCLUDING REMARKS

The proposed event-based state estimator for a distributed
arrangement of sensors is a direct extension of well-known
methods for linear state estimation with synchronous
(time-sampled) measurement feedback (such as the Lu-
enberger observer or the steady-state Kalman filter). The
approach allows one to trade off estimator performance
achievable with the full communication design for commu-
nication bandwidth. Experiments on the Balancing Cube
illustrated the ability of the event-based control system to
discriminate different sensor types and adapt the sensor
communication rates to the need for feedback control.

The setup for the experiments on the Balancing Cube is es-
sentially the same as in Trimpe and D’Andrea [2011a], but
the event-based state estimator implementation herein is
different: a switching Luenberger observer is used instead
of a time-varying Kalman filter. Whereas a time-varying
filter is computationally more expensive, it potentially has
a better performance, since the filter gains adapt on-line
to the set of received measurements at a time step. The

experimental results (e.g. in Table 1) should, however, not
directly be compared with those in Trimpe and D’Andrea
[2011a], because different design parameters were chosen.
An experimental comparison of the different methods is
planned for future work.

Each agent on the Balancing Cube implements a copy of
the event-based state estimator and uses the estimate to
compute its local control input. To satisfy the assump-
tion that the input vector u(k) is available at all sensor
nodes (see Fig. 1), the inputs are shared between the
agents over the network. The experiments demonstrated
the performance of the event-based control system under
realistic conditions, where the individual estimates are not
perfectly identical. The stability of the distributed feed-
back system with non-identical estimators is, however, not
analyzed herein. Strategies for removing the requirement
of the continuous exchange of the control inputs, as well
as the stability analysis of the distributed feedback control
system shall be addressed in future work.
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