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Abstract—We propose a method for multi-modal scene
exploration where initial object hypothesis formed by active
visual segmentation are confirmed and augmented through
haptic exploration with a robotic arm. We update the current
belief about the state of the map with the detection results
and predict yet unknown parts of the map with a Gaussian
Process. We show that through the integration of different
sensor modalities, we achieve a more complete scene model. We
also show that the prediction of the scene structure leads to a
valid scene representation even if the map is not fully traversed.
Furthermore, we propose different exploration strategies and
evaluate them both in simulation and on our robotic platform.

I. INTRODUCTION

The a.blhty '.[0 Interpret the environment, detect and manlplf'g. 1. Top Left: ARMAR lIl robot head. Top Right: Kuka arm with the
ulate objects is at the heart of autonomous robot systems, [&5urk hand. Middie Lefc. Peripheral view of a typical expermental scene.
[2]. These systems need to represent known and unknowtiddle Right: Foveal view of the same scene.
objects for generating task-relevant actions. In this paper, oyr experimental platform includes the Armar Ill robotic
we present strategies for autonomously exploring a scefgad with a foveal and peripheral stereo camera. Attention
containing unknown objects. Our robotic setup consists of @ ysed in the peripheral view to direct fixation of the foveal
vision system that gengrates initial object hypotheses usiRgmeras at regions of interest [8]. Object manipulation is
active visual segmentation, [3], [4]. Thereby, large parts Qfigne using a 6DoF Kuka arm equipped with a Schunk

the scene are explored in a few glances. However, withoextrous Hand 2.0. Fig. 1 shows the hardware, an example
significantly changing the viewpoint, areas behind objects afge\y of each camera and a typical table top scene.

occluded. Having a complete scene representation is essentiatne contributions of this paper are i) strategies for active
for finding suitable grasps. To achieve that, parts of thgypioration of a predicted map, ii) a quantitative comparison
scene that are not visible to the vision system are activelyjith coverage based exploration and iii) a multi-modal scene

explored by the robot using a hand with tactile sensor$epresentation that integrates data from a state-of-the-art
Compared to a gaze shift, moving the arm is expensiMggion system with haptic data.

in terms of time and gain in information. Therefore, the
next best measurement has to be determined to explore the [l. RELATED WORK

unknown space efficiently. Interactive perception has gained considerable interest in
As exploration strategies, we adapt two approaches frofe |ast years. In [9], [10], the robot pushes objects to gain
the area of mobile robotics. First, we uSpanning Tree more information about the objects or the scene. In that work
Coverage (STC) that is optimal because every place ifpe assumption is initial object hypotheses are given. The
the scene is explored just once [5]. Secondly, we extergtoblem of choosing an action for forming these hypotheses
the approach presented recently in [6] where unexplored circumvented.
areas are predicted from sparse sensor measurements by @ this paper, we want to actively choose measurements
Ggussmq P.roces(GP). Explorqtlon then aims at conflrmln_g from a latent function, in our case the scene, for approx-
this prediction and reducing its uncertainty. The resultingnating it. This is related teactive learningin the field
scene model is multi-modal in the sense that it i) generatg$ machine learning. In [11], this is studied in an object
object hypotheses emerging from the integration of severglyssification task. Specific training examples are selected for
visual-cues, and ii) fuses visual and haptic information. Th'auerying their ground truth label to improve the estimated
model then forms the basis fanteractive perceptiorand a  §ecision boundary. A common approach is to choose a
general symbol grounding problem [7]. measurement action that maximizes the expected information
This work was supported by EU through the project PACO-PLUS,gE_"in' In[12], S_UCh amethod is applied to _C-spacg exploration
IST-FP6-1P-027657, and GRASP, IST-FP7-IP-215821 and the Swediskith a robotic arm. In [13], entropy is considered for
Foundation for Stl’ategic Research. The authors are with the Centre f%lnforcement |earn|ng. Tralnlng data for Iearnlng the pollcy
Autonomous Systems and Computational Vision and Active Perception del i h b d ility f . h id
Lab, School of Computer Science and Communication, KTH, Stockholn{[100€! IS ChOSEN based on an utility uncthn that C.OHSI e_rs
Sweden bohg,mattjr,celle,danik@csc.kth.se both the expected reward and expected information gain.




Algorithm 1: Pseudo Code for Scene Exploration The initial P contains a lot of unknown space that needs to

Data: Segmented point cloud from active segmentation be explored with the hand. The single steps in the main loo
It Full ; P
bReesiLrj]t Fully explored?P of Algorithm 1 will be explained in the following sections.
t=0,j=
P = project () IV. .SCENEOBSERVATION
while |P,| > 0 do A. Visual Observation
;),Z%ﬁ‘;?]'ﬁ;xtéﬂzzﬁuremems (P, P) For 3D object segmentation we use a recent approach [4].
répeat It relies on three possible hypotheses: figure, ground and a
t++ flat surface. It is assumed that most objects are placed on flat
z¢ = observe (P, p;) surfaces thereby simplifying segregation of the object from
untilp :;pdate (P20 it ti |y P 9 ORI !
intil -z, # occ its supporting plane.
end” t+ The segmentation approach is an iterative two-stage
end method that first performs pixel-wise labeling using a set of

model parameters and then updates these parameters in the

Such combined utility functions are also common in mobilsecond stage. This is similar to Expectation-Maximization

robotics [14], [15], [16]. Here, the information gain of awith the distinction that instead of enumerating over all

specific point in the commonly used 2D map is traded oftombinations of labelings, model evidence is summed up

with the distance to travel there. on a per-pixel basis using marginal distributions of labels
Other exploration strategies apply algorithms that syssbtained using belief propagation.

tematically explore the space. We employ Spanning Tree The model parameters consists of the following three parts,

Coverage [5] in which every grid cell is guaranteed tccorresponding to the foreground, background and flat surface

be measured only once. In this paper, we compare thigypothesis:

exploration strategy with an information-theoretic approach.

Specifically, we want to analyze how these strategies in- Op ={ps: Aprcrt Op = {dv, Ay, v},

fluence the quality of the scene estimation over the whole 0s = {os, 85,05, As, cs},

exploration process. ps denotes the mean 3D position of the foregrour.
is the mean disparity of the background, with the spatial
] N coordinates assumed to be uniformly distributed. The surface
As a scene representation, we choose a traditional 2fsparities are assumed to be linearly dependent on the image
occupancy grid(OG) [17]. It is well suited for integrating coordinates, i.ed = a,r + 85y + ds. All these spatial
measurements from different sources. The grid which igarameters are modeled as normal distributions, with
gligned with the t.able top,' uniformly subdivides the SCeN&\, and A, being the corresponding covariances. The last
into ' cells € with coordinates(w;, v;). Each cell has @ three parameters;;, ¢, and c,, are represented by color
specific states(C;). For simplicity, we will refer to it ass;. histograms expresised in hue and saturation space.
Itis defined over a binary random variable with two possible o jnitialisation, there has to be some prior assumption of
values: occupiedocd) or empty emp. It holds thatP(s; =  \what is likely to belong to the foreground. In our system, we
occ)+P(s; = emp) = 1. We defineP = {C; | 0 <i < N}, haye a fixating system and assume that points close to the
as the whole grid. Our goal is to estimatgs; = occ | {2}+),  center of fixation are most likely to be part of the foreground.
the probability for each cell’; to be occupied given a set por the flat surface hypothesis we apply RANSAC to find the

of sensor measuremen{s}; up to point¢ in time. Let  most fikely plane. The remaining points are initially labeled
P =P U P, whereP; is the set of cells whose state hasyg packground points.

already been estimated based on observatiBpss the set ) ]
of cells that has not been observed yet. Each cell is initialized: Haptic Observation
with a prior probability P(s; = occ) = 0.5. Our approach  For haptic exploration we use the two sensor matrices
for scene exploration is summarized in Algorithm 1. padding one finger of the robotic hand. Our goal is to decide
Initially, we project the stereo reconstructed pointwhen the hand is in contact with an object and when it is
cloud S of the scene on the grid as follows. Disparity mapsiot. For this purpose, we compute a noise profile of the
are gathered from several views of the robot head on ttsensor matrices?, and H,;. We model the distribution of
scene. They are converted into 3D points and projectdtiese random variables as multivariate normal distributions
into a common reference frame for all observations. OncH, ~ N(up,%,) and Hy ~ N(uq,Xq) for which means
aggregated, the whole point cloud is cleaned to remowand covariance matrices are computed from a number of
outliers. The labeling from the 3D object segmentatiomon-contact measurements. A contact with an object can
(discussed in Section IV-A) is applied to the remaining pointthen be seen as a multivariatetlier. For outlier detection,
identifying objects from the background. These object pointse compute the Mahalanobis distance between the current
are placed into a voxel grid. This voxelized representatiomeasurement,, ; and the respective mear, ;.
is projected down into a 2D occupancy gfidfor planning.
Fig. 2 displays this process and the resulting 2D map. d(hs) = \/(ht — )8 (hy — ) 1)

IIl. SCENEREPRESENTATION
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Fig. 2. Generation of an occupancy grid from individual views. (a) ARMAR robot head that (b) gathers several views. (c) Views are projected into a
common reference frame and (d) cleaned to remove noise. (e) Points are labeled according to the 3D object segmentation (Sec.IV-A). (f) Scene is voxelized.
The voxels that belong to objects are projected down into the map (g). Blue labels are unseen cells and gray levels correspond to occupancy probability.

Note that the subscripts andd are skipped in this equation A GP is used to fit a likelihood function to training data. In
for simplicity. If d(h;) is greater than a thresholg then our case this is the set of cell. € P, and the estimate of

z; = contact, otherwisez; = —contact. their states,. Given the estimated continuous function over
the occupancy grid, we can then estimate the state of the cells
V. MAP UPDATE C; € P, that have not been observed yet. We will briefly

iggoduce GPs. For a more detailed explanation, we refer
t0 [18]. A GP is defined as a collection of a finite number
of random variables with a joint Gaussian distribution. In
our case, the set of random variablegisc P. A GP can

be seen as a distribution over functions with a mpaand

For each movement of the haptic sensors along the plann
path, we are receiving a measurement;. Based on this
and the current estimatB(s; = occ | {z}:) of the state of
each cells; in the occupancy grid, we want to estimate

P(s;i =occ | {z}t41) = covariances. Given a matrix ofM already observed 2D grid
P(zt41 | 8i = occ) P(s; = oce | {z}+) @ cellsx = {Cr}m = {(wy,v,)} s and a vectoty = {s,} s
Sy, Pzert | 80)P(si | {2}e) of state labels, we want to query the stajeof cell C; then

. . . . _ [(Cj) ~ N(p, X) where
In this recursive formulation, the resulting new estimaté

P(s; = occ | {z},41) is stored in the occupancy grid. p= k(Cy,x)T[K(x,x)+ 03,17y (4)
P(z:+1 | s;) constitutes the haptic sensor model. As de- Y=

scribed in the previous se_:cnon, we model _the_ haptic me_a-k(cj’cj)_ k(C;,x)T[K (x,%) + 02, 1] k(C;, %). (5)
surements as random variables with a multivariate Gaussian

distributions. The case; = emp is related to Eq. 1 as o3, is the variance of the noise on the target values.

follows The entries of the covariance matriX(x,x),_, at row «
1 and columnv are defined based on a covariance function
P(hiy1 | si = emp) = exp(—7 d(hy,)) k(C.,, C,) with some hyperparametefisWe use the squared
1 exponential covariance function
= exp(— 5/ (hss — )T (s — ) ©)

k(Cu, Cy) = o7 exp(—((Cou = Cy) T L™HCu = C,)) /2) (6)

where the hyperparameters arg the signal variance, and
In the traditional occupancy grid, cells that have not beep the identity matrix multiplied with the length scale
observed yet will have a probabiliti(s; = occ | {z}:) = To computeP(s; = occ | {z};), wesquashf(C;) through
0.5, i.e. there is no information available about the state ghe cumulative Gaussian function.
these cells. However, we know that cells in the grid that
are close to occupied spaces but are due to occlusions not P(s5 = oce | {z}) = 1/2- (1 +erf(f(C;)/v2))  (7)

directly observable, are likely to be part of the occludingyn example for this prediction given a 2D map of partially
object. By modeling this spatial correlation, we can prediciypiored scene is given in Fig. 3. In Sec. VIII, we will show

unobserved places from observed ones. Instead of explorifgantitatively on synthetic data that a GP predicted map is
the whole environment exhaustively, we want to confirn reasonable estimate of the ground truth.

the predicted map at specifically uncertain places. Recently,

it was proposed that the spatial correlation in a 2D occu- VII. ACTION SELECTION FOREXPLORATION

pancy grid can be modeled with a Gaussian Process [6].Given a partial map of the environment, we want to effi-
The assumption of independence of neighbouring cells in@ently explore the remaining unknown parts with haptic sen-
traditional occupancy grids is removed. sors, i.e., we want to minimize the amount of measurement

VI. M AP PREDICTION



(a) Ground truth 2D occupancy (b) Occupancy grid after camera(c) Likelihood of occupancy for (d) Predictive mean and variance for 50th
grid Measurements taken from the each cell predicted by GP. 50th  row of occupancy grid along with train-
left side. row labeled. ing points.

Fig. 3. Example for the prediction of a 2D map from camera measurements using GPs.

actions needed to reach a sufficient scene understanding.
We will present two algorithms for planning a measurement
path in the given map. First, we will use Spanning Tree
Covering [5]. Second, we propose an active learning scheme
based on the predicted map.

A. Spanning Tree Covering

STC tackles theovering problenthat can be formulated (a) Initial Prim STC path.  (b) Updé;f@%| scene ?tnd
as follows. Given the haptic sensor of sizeand a planar Jelghted STC path after

work-areaP,,, the sensor has to be moved along a path such
that every point inP, is covered by it only once.
STC first defines a grapt#(V, E) on P, with cells of
size 2d, the double tool size. In our case whet&V, E)
has uniform edge weights, Prim’s algorithm can be used to
construct aMinimum Spanning Tre@MST) that covers every
vertexV in G at minimum cost regarding the edggs[19].
The haptic measurement path is defined on the original grid . ‘
with cells of sized such that the MST is circumnavigated in g P et P ) e o after 2e0.
counterclockwise direction. This circular path starts and ends measurements.
at the current arm position. In case an obstacle is deteCtﬁfa. 4. Examples for potential measurement paths generated with different
along the path, a new spanning tree has to be computed basgtloration strategies. Red stars label current and previous traversed arm
on the updated grid. An example for such a path is showppsitions, respectively.
in Fig. 4(a) and 4(b) It can occur that the hand is detecting an obstacle along
the chosen measurement path. It then has to re-plan and
would potentially never reach the initially selected optimal
Our goal is to estimate the scene structure early in thebservation point. Instead of considering the predictive vari-
whole exploration process without exhaustive observatioance only, the expected gain in information of the whole
Thus, we want to support the map prediction by selectinreasurement path has to be taken into consideration. We
most informative observations. Let us consider a set @fropose two different utility functions that are dependent on
measurements made along an MST as described aboweth predictive variance and distance of a specific cell. The
These measurements will tend to be very close to eagiist one is
other without leaving any unobserved holes in the map.
The GP prediction of the map based on these measurements Us(Ci) = a%i — (1 — ) d(Cs, Cy) ©)
will not be significantly different from the prediction basedynere ¥, is the predictive variance of the cell; and
on only half of it. By using a GP and thereby exploitingg(c, ¢;) is any distance function of the current position
spatial correlation in a map, the probability for a cell topf the armc, and cellC;. The parameted < o < 1 is user
be occupied can be inferred from its neighbors withou§etermined. The closer it is tbthe more important becomes
explicitly observing it. the value of the predictive variance.

We will present exploration strategies that follow an active . . .
. ; . . The second utility function uses a discount facior
learning paradigm of selecting new measurement points that

maximize the expected information gain. As it has been kil .
shown in [20], this is equivalent to minimizing the predictive Us(Ci) = Z 0" Xp(r) (10)
variance¥ from Eq. 5. r=1

B. Active Learning

where R is the number of measurement that are needed to
reach the final celC; along the pattp = [Cs41 ... C;]. Not



just the final cellC; is considered. Instead, the predictive
variance of all the cells along the path contributes to the
utility value of C;. The parametef has to be chosen by the
user. It steers how steep the decrease of influence of the cells
in the path are dependent on their distance from the current
arm position.

To find the global maxima of Eq. 8 we have to maximize ]
over all cellsC; in P, and over all the paths through which o1 ‘—wr
a cell can be reached frofds. Since this is a prohibitive S or ss 05 o o5 o5 o o5 o5 1
number of possibilities to compute, we use sampling tech-
nigues to find a local maxima of the utility functions. WeFig. 6. ROC for Squared Exponential (SE) and Neural Network (NN)
are building aprobabilistic road map(PRM) in the two covariance function. SE outperforms NN for OG prediction.

dimensional C-space of the occupancy grid [21]. function in which blob-like objects spread on a table were
A setT of cells from P is sampled according to their more correctly modeled.
predictive variance and connected to the PRM. Thij&stra We predicted each of the 50 occupancy grids with a GP

algorithm is used to compute the shortest path from thigy sampling training points from the space observed by the
current arm position to each cell iy through the PRM. camera and then queryings; = occ | {z};) for C; € P,.

The result is used to compute the utility of each celllin  We compared a neural network with a squared exponential
An example for the PRM and therefore the possible paths tmvariance function. The ROC curves for the whole data set
traverse is shown in Fig. 4(c) and 4(d). are shown in Fig. 6 from which the improved performance of

the squared exponential covariance function for our scenario
is confirmed.

We evaluate the proposed exploration strategies quantita- Prediction vs Occupancy GridAn important question
tively on synthetic data and demonstrate their feasibility ifs whether the GP makes a valid prediction of the scene
a real-world scenario. map and how this compares to the traditional occupancy
) rid. In an OG, only those estimates fofs; = occ | {2},

A. Synthetic Data gre different from the initial value o%(rﬁ for Wf|1i({:h} ;t

1) Data Set and Measure of Comparisowe generated |east one measurement has been obtained. However, the GP
50 different 2D occupancy gridg({ x 70 cells) an example predicts occupancy probability for all cells. To confirm that
appears in Fig. 3(a). Every scene contains ten objects thals inference is valid, we calculated the mean AUC for all
can either be of circular, elliptical or rectangular shapeccupancy grids after they have been observed by the camera
with a random size, aspect ratio, orientation and positiomnd compared it to the mean AUC of the GP predicted
Overlappings are allowed so that fewer than ten connectegaps. While for the unpredicted occupancy grid this value is
components can occur as well as more complex contours(.7697, it is 0.9058 for the predicted maps; a clear increase

For every scene, we simulated three camera observatiogi13%. Therefore we conclude in agreement with [6] that a
made from a fixed position on their left side with a randonGP prediction provides valid inference about regions of the
direction. As a sensor model, we used a beam model withsgene in which no measurements are available.

Gaussian profile [17]. Given a measurement, the occupancy3) Exploration Strategies Comparetdive compare the dif-
grid gets updated according to Eqg. 2. An example for thferent exploration strategies based on the mean and variance
result of this simulation is shown in Fig. 3(b). of the AUC measure over time and all synthetic scenes. We

We posed the validation problem of occupancy grid esstart from the scenes partially explored with the camera.
timation as a binary classification into empty or occupied First, we consider the utility based exploration (Sec. VII-
cells. For each estimated grid at any time in the exploratioB). Three functions were proposed that incorporate uncer-
process, the number of false and true positives can la&inty in the map prediction and/or distance to traverse.
computed for different thresholds resulting in an ROC curvekig. 5(a) and 5(b) show the results for the OGs and for the
For evaluating the development of this curve over time, w&P predicted maps. There is a clear difference between the
choose the area under the ROC curve (AUC) as a measuntility functions. The discounted version (Eq. 10) performs
It corresponds to the probability that the state of a cell iBest both in terms of mean and variance in the OGs and GP
correctly classified. predicted maps. This is due to the explicit consideration of

2) Predicting Occupancy Grids with GPs: the whole exploration path instead of just a high predictive

Covariance Functions Comparedn [6], it is claimed variance goal point that might never be reached.
that the neural network covariance function is more suitable Second, we consider STC based exploration (Sec. VII-
for predicting the non-stationary behavior of a typical ma@\). Measurement paths are planned such that edche
data set. That data comes from indoor and outdoor envirof®®, is traversed only once. Fig. 5(c) shows the results for
ments either with hallways, rooms, walls or streets bounddtie occupancy grids and for the GP predicted maps. The
by buildings. However, our experimental data showed siwestimation of the occupancy grid converges relatively fast
perior performance with the squared exponential covariantéewards ground truth.

VIIl. EXPERIMENTS
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(a) Utility based exploration of OG (b) Prediction with GP during utility based explo- (c) Best STC and utility based exploration compared
ration

Fig. 5. Mean and variance of area under ROC curve (AUC) for occupancy grid (OG) as well as Gaussian Process (GP) prediction under different
exploration strategies. (a), (b): Utility based exploration. Discounted predictive variance outperforms pure variance and trading off between distance and
variance value. (c) Comparison between Spanning Tree Covering (STC) based method and best utility based method. The latter achieves a more accurate
GP prediction early in the process, while STC explores the unknown space in the OG faster.

4) Summary:Fig. 5(c) also contains the results for the
discounted utility function for direct comparison with the
STC based exploration. GP predicted maps traversed based
on the discounted utility are more accurate early in the
exploration process. This is an expected result since here
points of high variance are chosen to be measured first.
They will therefore have a high positive influence on the
quality of the prediction. However, the occupancy grid does (a) Initial STC based plan. (b) STC based plan after 73
not converge as fast towards ground truth as in the STC Steps.
based exploration. We conclude that if a good map estimate
is needed quickly, active learning based exploration is advan- .ﬁ’
tageous over systematically traversing the space. If there is 3
time for an exhaustive exploration, STC based measurement :
paths are more beneficial.

B. Demonstration in the Real World

In this section, we demonstrate our approach for the real-
world scenario described in Sec. I: exploration of a table top
populated with several unknown objects using both, point 78N
clouds coming from a stereo camera and haptic data from a
robotic hand. As exploration strategy we consider STC (see
Sec. VII-A) and a PRM based scheme with the discounted
utility function defined in Eq. 10. .

The real world scene contains three objects. For visual | '
exploration, we manually select the initial fixation point for ™ )Ii Scene.
two of them. ThI_S COL!'d be replaceq by using an attemloﬂig. 7. Snapshots from an exploration using an STC based plan (covers
system as described in [8]. The objects are segmented agHll; reachable workspace).

;tereq reconstructed (Sec. IV-A). The r_esultlng' point Clou%f 780mm are reachable with a valid joint configuration. For
is projected onto an occupancy grid aligned with the table

(Sec. Ill). By excluding the third object from visual observa- > ¢ complex environments planning has to be done in the

. ) six-dimensional C-space of the arm which is considered as
tion, we can demonstrate the map update upon finger cont u€[<

Examples for the occupancy grid are given in Fig. 7(c u_re work. ) )
and 8(b). Since the fingers of the Schunk hand are very thick, we are

In this stereo based grid, we can now detect locations thi@€eping two grids in parallel: the coarse planning grid and
were not observed with the vision system. The reachabiBe finer grid from the stereo data. For every measurement,
unexplored spaces are explored with the haptic sensors B@th grids are updated in parallel: one cell in the planning
the hand. For doing so, we are using one of the three finge#&d, a set of cells in the stereo grid.
pointing downwards as shown in Fig. 7(e). The hand is In Fig. 7, the STC based measurement path planned on the
moved at a constant height over the table. The haptic sensoitial occupancy grid is shown as well as the updated grid
arrays on the finger are always pointing in the direction oéfter 73 measurement steps. As expected from the results
movement. Planning is done in a slice of the robot taskn the synthetic data, the area close to the starting position
space that is aligned with the table top. This is a reasonalid¢ the hand at the top left corner is explored systematically
simplification since all the points on the table within a radiusvithout leaving holes. In Fig. 8, the first PRM based mea-

(c) Initial OG from stereo.  (d) Stereo OG after 73 steps.

(f) Scene after 73 steps.



(a) Initial PRM based plan.  (b) Initial OG from stereo.

-

(e) PRM based plan after 68 (f) Stereo OG after 68 steps. (g) Prediction after 68 steps..

steps.

(c) Initial Prediction of OG.

(h) Scene after 68 steps.

Fig. 8. Snapshots from an exploration using an PRM based plan (covers only reachable workspace).

surement path is shown as well as the updated grids after 68
measurements. The area close to the start position is not yet
fully explored, but the next measurement path leads towardgs]
the lower left of the grid that has a high uncertainty. A movie
of the demonstration is available at [22]. [6]
Opposed to the synthetic experiments, in the real world,
objects can move upon contact with the hand. This can ber
observed when comparing Fig. 7(e) and 7(f) or 8(d) and 8(h)[8]
To avoid the map becoming inconsistent, visual tracking is
needed. (o]

IX. CONCLUSION (10]
10
We proposed a method for multi-modal scene explo-

ration. Initial object hypotheses formed by active visua{11
segmentation were confirmed and augmented through haptic
exploration. The current belief about the state of the mag.,
is updated with measurements and yet unknown parts of
the map are predicted with a Gaussian Process. Throu Ig]
the integration of different sensor modalities, we achieved a
more complete scene model. We showed that the predicti
of the scene structure leads to a valid scene representation
even if the map is not fully traversed. Furthermore, different
exploration strategies were proposed and evaluated quantites]
tively on synthetic data. Finally, we showed the feasibility
of our scene representation and exploration strategies in a
real world scenario. The demonstration on the robot aldfl
exposed further challenges. Constant visual tracking of the
scene during the hand interaction is necessary to keep tiél
scene estimate up to date. This is considered as future woyig)
Furthermore, we aim to generalise the approach to 3D.

[19]
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