
Towards Robust Online Inverse Dynamics Learning

Franziska Meier1,2, Daniel Kappler2,3, Nathan Ratliff3 and Stefan Schaal1,2

Abstract— Learning of inverse dynamics modeling errors is
key for compliant or force control when analytical models are
only rough approximations. Thus, designing real time capable
function approximation algorithms has been a necessary focus
towards the goal of online model learning. However, because
these approaches learn a mapping from actual state and
acceleration to torque, good tracking is required to observe
data points on the desired path. Recently it has been shown
how online gradient descent on a simple modeling error offset
term to minimize tracking at acceleration level can address this
issue. However, to adapt to larger errors a high learning rate of
the online learner is required, resulting in reduced compliancy.
Thus, here we propose to combine both approaches: The online
adapted offset term ensures good tracking such that a nonlinear
function approximator is able to learn an error model on
the desired trajectory. This, in turn, reduces the load on the
adaptive feedback, enabling it to use a lower learning rate.
Combined this creates a controller with variable feedback and
low gains, and a feedforward model that can account for
larger modeling errors. We demonstrate the effectiveness of
this framework, in simulation and on a real system.

I. INTRODUCTION

Learning control brings the promise of algorithms that
achieve accurate motion generation in an autonomous and
safe manner. The goal is to design learning algorithms that
can augment controllers such that they provide accurate
tracking in diverse task settings without the need for exces-
sive tuning. At the same time, applications of robotic systems
increasingly involve human interaction, creating the need for
robust and compliant control algorithms.
Inverse dynamics control has created a promising avenue
towards the design of compliant movement generation. With
a good model of a systems dynamics, torque generation can
mainly rely on the feedforward prediction of the dynamics
model. Modeling errors or perturbations are typically re-
jected by a Proportional Derivative Integral (PID) controller
[5]. The required feedback gains depend on the accuracy
of the inverse dynamics model. The better the model, the
smaller the feedback gains can be, which in turn results
in a more compliant and reactive controller. Unfortunately,
estimating good inverse dynamics models is hard.
Thus, developing machine learning algorithms to estimate
inverse dynamics models has become an active research
area within the field of learning control. Just from a pure
machine learning perspective, challenges in this setting are

1 CLMC Lab, University of Southern California, Los Angeles, USA 2

Autonomous Motion Department, MPI for Intelligent Systems, Tübingen,
Germany 3 Lula Robotics Inc. fmeier@usc.edu

This research was supported in part by National Science Foundation
grants IIS-1205249, IIS-1017134, EECS-0926052, the Office of Naval
Research, the Okawa Foundation, and the Max-Planck-Society.

plentiful. The inverse dynamics data distribution is non-
stationary during execution and thus offline learning of this
model would require data of a well explored state space.
For high-dimensional systems this is infeasible. Thus, online
estimation of the inverse dynamics is required. For a learning
algorithm to be successful in the online learning scenario, it
needs to be computationally efficient and a robust parameter
estimation framework is required, such that the models
prediction can be trusted. To this end, there has been recent
progress on creating efficient approximations of Gaussian
process regression (GPR)[1], [2], [3], [4]. Gaussian process
regression provides a robust learning framework and allows
to associate uncertainty estimates with its predictions, both of
which we believe to be important components of a controller
with learning in the loop.
Because of the difficulties from a machine learning per-
spective alone, research and progress has been focused on
creating algorithms that could eventually be used within a
control loop. However, assuming we have a fast enough
learning algorithm, actually employing it comes with its
own challenges. For instance, the model, when used to cre-
ate feedforward predictions, influences its next observation.
This creates a learning feedback loop - the learned model
essentially determines what next data point it gets to see.
Unless we start out with a perfect model, the actual observed
state will be different than the desired state. While we can
still incorporate that observed data point, it provides an
observation of the inverse dynamics in the current actual
state, instead of the desired. As a result, the model has
just incorporated a data point that is not necessarily on the
trajectory we are trying to track. Of course, we can employ
a PID controller to generate feedback torques that brings us
back to our desired trajectory, and with time the learning
algorithm should observe enough data points to allow it
to generalize to the desired states. However, this begs the
question of how to design the PID controller. The goal of
inverse dynamics learning is to be able to reduce feedback
gains, yet we need them – at least when starting learning –
to make sure we track and generate useful data.
It is this problem that recent work [?] on online estimation
of inverse dynamics modeling errors addresses. In contrast to
the above mentioned methods, this work does not explicitly
require a PID controller to achieve tracking. The key to
this approach is the modeling of the inverse dynamics
error as a constant offset, that is continuously adapted via
online gradient descent to minimize the tracking error at
acceleration level. This can be understood as computing
a variable feedback term, generating the missing torques
to achieve desired accelerations. The learning rate of the

gradient descent directly affects how much we update the
offset to minimize the acceleration error at each time step.
Thus this parameter corresponds to the feedback gains of a
more traditional PID control term. The restrictive assumption
of a constant model error makes online learning relatively
simple, however it also means no structure of the modeling
error is captured, and thus generalization is not possible.
In this work, we show how to extend this new framework to
use a drifting Gaussian process (GP) [7] to learn a local
model of the inverse dynamics error online. We use the
constant offsets at each time step as data points for our
GP, such that it can learn to predict the modeling errors
in a feedforward fashion. As the GPs predictions improve,
the constant offsets work is reduced to reject noise and
perturbations, which opens up the possibility of reducing the
learning rate – the feedback gain. Furthermore, we discuss
how to robustify the online hyper parameter learning and
predictions of the constantly changing function approximator.
In the following, we first review the inverse dynamics
learning problem and the framework of [?] in Section II.
Then, in Section III, we show how to introduce a drifting
Gaussian process model within this framework and how to
make robust feedforward predictions. Finally, we evaluate
our approach in Section IV and conclude with a discussion
of the proposed approach in Section V.

II. BACKGROUND

When employing inverse dynamics control the torque τ to
control the system is computed as τ = τff + τfb, where the
feedforward command τff is computed from the assumed
inverse dynamics model and the feedback term τfb is tra-
ditionally a PID control term. Current inverse dynamics
approaches leverage the general Lagrangian mechanical form
of the equations of motion:

τrbd = M(q)q̈ + h(q, q̇) (1)

where q, q̇, q̈ denote the joint position, velocities and acceler-
ations, M is the inertia matrix and h collects all the modeled
forces such as gravitional, Coriolis, centrifugal forces, and
friction terms. Given sufficiently rich data and Rigid Body
Dynamics (RBD) assumptions, best fit RBD parameters
found using linear regression techniques [?], resulting in
approximate M̂ and ĥ. Unfortunately, the RBD model typ-
ically is not flexible enough to capture all non-linearities
of the actual systems dynamics. As a result, the estimated
RBD model is generally only a rough approximation. Thus,
when attempting to track desired accelerations q̈d the torque
estimated through the approximate inverse dynamics model

τ̂rbd = M̂(qt)q̈td + ĥ(qt, q̇t) (2)

results in actual accelerations q̈a

q̈ta = M(qt)−1[τ̂rbd − h(qt, q̇t)] (3)

= M(qt)−1[
(
M̂(qt)q̈td + ĥ(qt, q̇t)

)
− h(qt, q̇t)] (4)

which differ from the desired accelerations q̈td, resulting in
inferior tracking.

To address this, various approaches to learning inverse dy-
namics (error) models have been proposed, such that the
total feedforward torque command is a combination of any
existing approximate RBD model and a learned error model

τff(q, q̇, q̈;w
t) = τ̂rbd(q, q̇, q̈) + τrbdErr(q, q̇, q̈;w). (5)

Most recent work on online inverse dynamics learning is
concerned with creating computationally efficient methods
to learn a globally valid model of the inverse dynamics. To
this end, computationally efficient learning algorithms have
been developed [9], [10], [1], [2], [3], [4] These methods
optimize the following loss

L =
∑

(q,q̇,q̈a,τapplied)∈D

‖τapplied − f(q, q̇, q̈a;w)‖2 (6)

where f(q, q̇, q̈;w) is the function learned. Note, with this
loss function, these methods can only consider information
about the unknown inverse dynamics model at the actual state
and actual accelerations. Thus, when learning is performed
online, the feedback term is paramount to achieve good
tracking of the desired accelerations – at least until the model
has reached a certain level of accuracy.

A. Direct Optimization of Inv. Dynamics Modeling Errors

In contrast to the above mentioned methods [?] proposes to
augment Equation (3) with a constant offset term w such
that the actual acceleration can now be written as:

q̈ta = M(qt)−1[
(
M̂(qt)q̈td + ĥ(qt, q̇t) + w

)
− h(qt, q̇t)].

This offset w is designed to correct any modeling error or
perturbation that would lead to inaccurate tracking. Thus,
this approach proposes to perform gradient descent on the
inertia weighted acceleration error of the form

Ldirect(w) =
1

2
||q̈td − q̈ta(wt)||2Mt

(7)

=
1

2

(
q̈td − q̈ta(wt)

)T
Mt

(
q̈td − q̈ta(wt)

)
to minimize the error between desired and actual accelera-
tions. Note that Mt = M(qt) is the true unknown inertia
matrix. When using a constant offset model, its gradient is
just given through the raw acceleration error:

∇wLdirect(w) = −∂q̈
t
a(wt)

∂wt

T (
Mt(q̈

t
d − q̈ta(wt))

)
= −M−1t Mt

(
q̈td − q̈ta(wt)

)
= −

(
q̈td − q̈ta(wt)

)
.

We cannot analytically evaluate either the objective or its
derivative because it involves the true (unknown) dynamics
function within q̈ta(wt). But, in practice, this final expres-
sions can be estimated (using finite differencing for the
accelerations) from the measured state information streaming
from the robot. Given this, the torque offset for the next time
step is computed as

wt+1 = wt + η(q̈td − q̈ta(w)) (8)

which results in the adjusted torque command

τ t+1 = τ̂rbd(qt+1, q̇t+1, q̈t+1
d) + wt+1 (9)

To reduce the effects of noise, exponential smoothing is
performed on the w, for more details on achieving a robust
online gradient descent algorithm see [?].
Note, that [?] also draws a connection between online
gradient descent [12] on the acceleration error and the more
traditional PID term, which allows us to analyze the effect
of the learning terms from a feedback term perspective. For
instance, the learning rate η influences the effect of the
current acceleration error on the torque adjustment of the
next time step. Thus, a higher learning rate will create a
larger adjustment, just as higher gains of a PID controller
will. Because of this, increasing the learning rate also results
in reduced compliancy. Furthermore, in its current form the
offset is simply a constant offset and as such cannot be used
to make feedforward predictions about the inverse dynamics
model error.
While [?] proposes the more general setting of using a
nonlinear model fon instead of a constant model, we opt to
learn an independent function approximator in parallel to the
adaptive feedback for two reasons: First, while the derivation
in [?] is valid for general function approximators, it is not
clear yet how to generalize it to models such as Gaussian
processes. For Gaussian processes the gradient update would
involve optimizing the log likelihood function, a combination
of the loss function and prior over functions. This update
would involve both the true targets and the true inertia
matrix, quantities that are unknown. Second, we believe that
it is advantageous to use a combination of the constant
error offset and a nonlinear function approximator that can
feedforward predict larger modeling errors. This enables the
use of the constant offset w as a variable feedback term
with low gains to reject disurbances while the feedforward
term is augmented with a nonlinear error model τrbdErr. Thus,
in this work, we take this framework, and show how to
utilize the online optimized offsets w to learn a locally valid
inverse dynamics error model τrbdErr. With the feedforward
predictions of τrbdErr the errors that w has to account for
should become smaller, such that we can run the online
adaptation of w at a lower learning rate while retaining
tracking accuracy.

III. ONLINE LEARNING OF INVERSE DYNAMICS
MODELING ERROR

The recent advances in online learning adaptive control can
be viewed as online learning of feedback terms, which are
optimized to counteract the modeling errors of the approx-
imate inverse dynamics model and any other perturbations.
In this light, we can write the total torque at time step t, as

τ t = τ tff + τ tfb = τ̂rbd(xta, q̈
t
d) + fon(q̈t−1d , q̈t−1a ,wt)

where xta = (qa, q̇a) is the current actual state and where
the feedback term has been replaced by the online estimated
offset fon(q̈t−1d , q̈t−1a ,wt) = wt. In this work, we aim at
reducing the work that these online torque offsets wt have

to do. We achieve this by incorporating a nonlinear function
approximator that estimates a model of the inverse dynamics
error, and can thus feedforward predict the torque offsets
needed to achieve desired accelerations q̈td.
With this additional feedforward term the total amount of
torque at time step t is then computed as

τ t = τ̂rbd(xta, q̈
t
d)+frbdErr(x

t
a, q̈

t
d)+f ton(q̈t−1d , q̈t−1a ,wt) (10)

where frbdErr denotes the function approximating the error
made by the rigid body dynamics model.

A. Online Learning of Inverse Dynamics Error

As discussed earlier, online learning of a global inverse
dynamics model or error is a difficult problem. Because our
goal is to simply feedforward predict the current error offset,
we only need a locally valid model. Thus, we use a fixed size
window of recent observations, to approximate the landscape
of the current modeling error. In this work, we use Gaussian
process regression with a localizing kernel to perform this
task, an approach that we have recently shown to work well
for online inverse dynamics learning [7]. The key difference
to our previous work is that here we explicitely use the
online learned model in the control loop, such that the GP
predictions influences the torque commands.
More concretely, at time step t, we want to use the cur-
rent model f trbdErr to predict the modeling error at the
current actual state and the desired acceleration, τ trbdErr =
f trbdErr(x

t
a, q̈

t
d). This torque estimate is combined with the

torque τ̂rbd estimated from the approximate RBD model
and the online learned feedback term f ton to compute the
total torque command τ t (Equation 10) that is send to
the robot. Applying this torque command will result in
actual accelerations q̈ta, which are estimated from measured
position data via finite differencing. Note, that this obser-
vation {(xta, q̈ta), τ t} gives us information about the inverse
dynamics at the current actual state with actual measured
accelerations, instead of the current actual state and the
desired accelerations. Thus, if we are not tracking the desired
accelerations well, we do not necessarily receive useful
information. Because of this, we always have the online
learning of fon running – the feedback term on accelerations
– to make sure we are tracking them.
The estimate of the torque error τ trbdErr that was made by the
approximate inverse dynamics model is given as

τ trbdErr = τ t − τ̂rbd(xta, q̈
t
a) (11)

As a result, the data point that needs to be included in our
data window is then given as {xt = (xta, q̈

t
a), yt = τ trbdErr}.

Once we obtained this new data point, it is time to update the
parameters of the Gaussian process model. Specifically, we
update the data window by dropping the oldest observation
and including the new one, to obtain Dt = {xn, yn}tn=t−N ,
where N denotes the window size. Then, we update the
GPR model on Dt to obtain updated hyper parameters θt =
{σty, σtf , λt}, where σ2

y is the noise variance and σ2
f and λ

denote the signal variance and length scale of the squared
exponential kernel. Furthermore, instead of optimizing the

Algorithm 1 Control Loop with Online Learning
Require: ε, κ, θtsmoothed, Ψt

smoothed , Dt, wt, π(qt, q̇t),
system(τ t), qt,q̇t

1: q̈td = π(qt, q̇t)
2: Ψt+1

smoothed = (1−κ)Ψt
smoothed+κf trbdErr(q

t, q̇t, q̈td, θ
t
smoothed)

3: τ t = τ̂rbd(xt) + wt + Ψt+1

4: qt+1 = system(τ t)
5: q̈t+1, q̈ta = finiteDiff(qt+1,qt)
6: Dt+1 = {qn, q̇n, q̈na , τn − τ̂rbd(qn, q̇n, q̈ta)}tn=t−N
7: θt+1

smoothed = (1− ε)θtsmoothed + ε optimize(θtsmoothed,Dt+1)
8: wt+1 =optimize(q̈ta, q̈

t
d,w

t)
9: return θt+1

smoothed, Ψt+1
smoothed , Dt+1, wt+1

hyper parameters at each time step from scratch we can
initialize θt with the parameters from the previous time step
θt−1. An overview of this process is given in Algorithm 1,
which demonstrates the computations of one control loop
instance.

B. Robust Learning and Prediction

Robustly optimizing and predicting feedforward terms is a
key concern when moving towards applying online learning
on a real system. Here we take a couple of measures to
robustify the hyper parameter optimization and predictions
of the Gaussian process.
While the Gaussian process framework comes with a robust
learning framework, we can receive quite noisy acceleration
measurements, which influence both the inputs and targets of
the GPR process. Further, we have to assume that, depending
on the state space we are moving in, the squared exponential
kernel may be too smooth and thus not always well suited
to fit the inverse dynamics. Both of these issues may lead
to extreme hyper parameter updates that could lead to insta-
bilities. This is a research topic outside of the scope of this
work, however, we can try to protect against this unwanted
behavior of the parameters by exponentially smoothing them
over time. Thus, when performing the gradient descent on
θ, resulting in new parameters θt, we compute smoothed
parameters as

θtsmoothed = (1− ε)θt−1smoothed + εθt

where ε determines the degree of smoothing. The smoothed
parameters become the new hyper parameter set if the new
log likelihood value of the GPR model increased with respect
to the previous parameter set. This exponential smoothing,
prevents large jumps from time step to time step. This
effectively means that we are slowing down the reactiveness
of the GP, and so there is an inherent trade-off between the
reactiveness and robustness of the hyper parameter optimiza-
tion of the GP.
Note that we are using a localizing kernel, so we are
protected against extrapolating into parts of the state space
that we have no information about (assuming the length scale
is in a reasonable range). However, to protect against erratic

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

x

y

approx inv dyn

desired

Fig. 1. Simulated system: In green the desired trajectory that is
supposed to be tracked. In orange the trajectory resulting from
applying inverse dynamics control with the wrong inverse dynamics
model and no feedback terms.

predictions—that may be caused for the same reasons as
stated above—we also perform exponential smoothing of the
predictions over time.

Ψt
smoothed = (1− κ)Ψt−1

smoothed + κf trbdErr(q
t, q̇t, q̈td, θ

t
smoothed)

Smoothing at the prediction level further changes the
timescale in which the GPR model operates. A positive effect
of this formulation is that the online offsets can correct fast
time scale perturbations while the GPR model corrects for
longer term effects such as friction. Furthermore, the risk of
oscillations between the two learning systems is reduced is
greatly reduced.

IV. EXPERIMENTS

We evaluate our approach in three different settings. First
we create a simulated 2D inverse dynamics problem that
allows use to explore noise levels and parameter settings
extensively. Second, we deploy our method in simulation for
our KUKA lightweight arm. In this setting, we are also able
to add noise and torque perturbations while being able to test
real time capabilities of our approach. Finally, we evaluate
our approach on the KUKA lightweight arm. In all these
experiments we evaluate and compare the tracking error and
the magnitudes of w – the adaptive feedback terms – of 2
different versions:

1) CONST: Inverse dynamics control with adaptive con-
stant offsets only, meaning only feedback terms are
learned online

2) GP+CONST: CONST plus a drifting Gaussian process
to capture the inverse dynamics model errors

We compute the tracking error as the mean absolut difference
between desired positions qd and actual positions qa

1

T

T∑
t=1

|qtd − qta|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.05

0.1

0.15

learning rate

p
o
si
ti
o
n

tr
a
ck

in
g
e
rr
o
r

CONST

GP+CONST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3

4

5

learning rate

to
rq

u
e
s
in

N
m

w GP not active

w GP active

Fig. 2. (top) Position tracking error per learning rate of the stochastic
gradient descent on the constant offsets. Results are averaged across noise
with 1e−3, 1e−4, 1e−5 standard deviation. (bottom) Average magnitude
of w, averaged across the same noise levels.

A. Simulated 2D System

We generate a system with simplistic inverse dynamics,
where we model the true system to have forward dynamics

τrbd = M q̈d = 5.0I q̈d (12)

and the simulated robot uses an approximate model

τ̂rbd = M̂ q̈d = 2.5I q̈d (13)

Additionally, we model the true system such that it experi-
ences some friction and stiction effects, that the simulated
robot has no knowledge of. Finally, to simulate noisy sensor
readings, we add zero mean Gaussian noise with standard
deviations between 1e− 5 and 1e− 2 on the positions.
To evaluate our approach under these system settings we
generate a trajectory, which takes 5 seconds assuming a
control loop of 100Hz. Figure 1 shows the desired position
trajectory in green. In orange, we see the trajectory that is
being generated trying to track desired accelerations based on
the approximate inverse dynamics model without a feedback
term. Clearly, some feedback is required to improve tracking.
We evaluate the two versions each with different learning
rates for the online gradient descent on the constant offsets,
from 0.1 to 0.9 in 0.1 increments. For the versions using GPR
to estimate the modeling errors, we use a window size of 50,
and perform online parameter learning. Further, we run both
frameworks using each of the learning rates with 4 different
sensing noise levels. Table I shows the tracking errors for
each noise level, averaged across the different learning rates.
As we can see, using the GP improves tracking in all cases
but the highest noise level. Note that in our simulation we
add noise on positions and finite difference twice to simulate
actual accelerations. Thus, the resulting accelerations used as
data points for the GP are exteremely noisy, and it is likely
that the actual signal that we are trying to fit is lost.
To analyze the effect of the learning rate of the online
gradient descent on the feedback terms, we visualize the

TABLE I
POSITION TRACKING ERROR

noise level no GP GP

0.01 0.058 0.058
0.001 0.056 0.037

0.0001 0.057 0.018
0.00001 0.057 0.018

Fig. 3. Our robotic system with 2 KUKA lightweight arms, used
to perform experiments

same results in Figure 2(top) as function of the learning
rate, this time we average across the 3 noise-levels (we
exclude the results with the highest noise level for the reason
stated above). We can clearly see, that for each learning rate,
using the GP to learn the modeling errors helps improve
tracking performance. The most gain is achieved for the
lowest learning rate. Note, this is exactly the scenario that
we want to deploy our framework in, a low learning rate on
the constant offsets (the feedback term). The bottom plot,
shows the resulting magnitudes of the learned offsets w (the
feedback), both when using no additional feedforward term
(blue), and when deploying the GP (red). As expected, the
average magnitude of w drops when deploying the Gaussian
process model. The lowest learning rate, creates the largest
drop off. Note, that our goal is to use our framework with
a small learning rate, while retaining or improving tracking
accuracy through the online estimation of larger modeling
errors. While we can see smaller tracking errors for higher
learning rates, they come at the price of larger offset torques
that are send to the system, resulting in reduced compliancy.
We have observed oscillations, between the two learning
processes when using a high learning rate on the feedback
gains, a phenomenon that can also be observed for tradtional
PID control frameworks with high gains. Thus our simulation
results confirm that using a nonlinear function approximator
to estimate inverse dynamics modeling errors leads to smaller
feedback terms.

B. Robot Experiments

For both robot experiments, simulation and real, we were
using the platform shown in Fig. 3. The platform has two
KUKA lighweight arms, each of which has 7 degrees of free-
dom. All experiments were performed on one arm resulting
in a 21-dimensional input for the online learning problem.
Without loss of generality we only investigated the prediction

TABLE II
DESIRED ACCELERATION TRACKING ERROR.

Simulation Real

I II III IV I II III IV

0.20: CONST 1.76 1.77 2.58 3.66 1.20 0.95 1.38 0.80
0.20: +GP 1.85 2.09 2.60 3.49 1.50 0.84 1.52 0.99

0.05: CONST 1.93 1.36 2.48 3.29 1.28 0.91 1.28 0.68
0.05: +GP 1.77 1.93 2.41 3.29 1.28 0.74 1.46 0.91

0.01: CONST 2.87 1.78 2.82 3.29 1.42 0.98 1.37 0.56
0.01: +GP 1.76 1.96 2.33 3.18 1.16 0.81 1.37 0.80

TABLE III
ONLINE OFFSETS FOR DESIRED ACCELERATION TRACKING.

Simulation Real

I II III IV I II III IV

0.20: CONST 1.96 1.57 1.53 1.10 0.70 0.79 0.32 1.05
0.20: +GP 0.13 0.13 0.14 0.08 0.47 0.09 0.19 0.13

0.05: CONST 1.61 1.51 1.06 0.64 0.53 0.60 0.21 0.31
0.05: +GP 0.07 0.04 0.05 0.03 0.06 0.03 0.08 0.07

0.01: CONST 0.65 0.53 0.44 0.22 0.20 0.25 0.08 0.13
0.01: +GP 0.04 0.02 0.02 0.01 0.03 0.01 0.02 0.04

for a single joint, using the inputs of all joints. Notice,
prediction for all joints is a simple extension, since each joint
can be treated as an independent learning problem. Since
our predictions and optimizations are performed in a hard
real-time loop of 1 kHz, the current naive implementation
requires 0.8 ms for optimization and prediction of the
Gaussian process model with a window size of 50 plus online
adaption of the feedback terms. By exploiting the intrinsic
parallelism of the problem, this approach can be scaled to
any number of joints.
The experiment consists of a pre-planned sequence of LQR
[13] policies. These policies generate the desired accelera-
tions online and if the end configuration of a policy is reached
the next policy in the sequence is performed. Both the
simulation and real robot experiments use the same policies
and robot model. In the simulation case we add artificial
noise to the accelerations obtained from the system which is
dependent on the magnitude of the acceleration. Additionally,
in simulation, we add both a torque bias and noise, to
simulate model misspecifications. Thus, even without noise
on the accelerations the system starts drifting since the
feedforward torque computed with the inverse dynamics
model would not compensate for our artificially introduced
perturbations and noise.
In Table II we present the average acceleration tracking error
for the 4 different policies, both for our very noisy simulation
and the real system. Each experiment is performed with and
without the online GPR model for three different learning
rates of the online learning adaptive control. Notice that the
highest learning rate results in good tracking, yet, it also
applies higher torques. Furthermore, higher learning rates re-
sult in slightly worse results when combining online learning
adaptive control with our proposed GPR model. For lower
learning rates these two models perform very well together

and for the lowest learning rate, the combination of both
learning processes outperforms the high learning rate online
adaptive control approach. Hence, our approach allows to
significantly reduce the learning rate, thus achieving more
compliant behavior, while increasing tracking performance.
In Table III the average offsets predicted by the online
learning adaptive control approach are presented for the same
experiment run. This illustrates that the proposed GPR model
can patch the inverse dynamics model almost perfect, with
the help of the online learning adaptive control which will
compensate for minor errors and thus, automatically provide
more meaningful data for the online GPR training.

V. DISCUSSION AND FUTURE WORK

We have presented an online learning control framework,
that combines recent advances on online learning of feedback
terms with an online Gaussian process regression to learn a
locally valid inverse dynamics error model. We have shown
that the Gaussian process model can estimate the larger
inverse dynamics model, which has the effect of smaller feed-
back terms. This already works effectively, for low learning,
however future work could explore reducing the learning
rate further, once the nonlinear function approximator has
reached a certain level of accuracy.
The presented framework uses a fixed size Gaussian process
model, and due to hard real time constraints cannot use a
large window size. In the future we plan to explore sparse
approximations of Gaussian processes to be able to explore
the effect of the window size. Furthermore, the approach
presented here opens up the possibility of exploiting the
uncertainty estimates of the Gaussian process model. We
believe one interesting avenue to pursue is to use the uncer-
tainty estimate to determine how much influence the online
updated GP model should have on the total torque command.

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control, 2nd ed. Springer, 2010.

[2] D. Nguyen-Tuong, J. R. Peters, and M. Seeger, “Local Gaussian
process regression for real time online model learning,” in Advances
in Neural Information Processing Systems, 2008, pp. 1193–1200.

[3] M. F. Huber, “Recursive Gaussian process: On-line regression and
learning,” Pattern Recognition Letters, vol. 45, pp. 85–91, 2014.

[4] A. Gijsberts and G. Metta, “Real-time model learning using incremen-
tal sparse spectrum Gaussian process regression,” Neural Networks,
vol. 41, pp. 59–69, 2013.

[5] F. Meier, P. Hennig, and S. Schaal, “Incremental Local Gaussian
Regression,” in NIPS, 2014.

[6] N. Ratliff, F. Meier, D. Kappler, and S. Schaal, “DOOMED: Direct On-
line Optimization of Modeling Errors in Dynamics,” arXiv:1608.00309
[cs.RO], Cornell University Library, Tech. Rep., 2016.

[7] F. Meier and S. Schaal, “Drifting Gaussian Processes with Varying
Neighborhood Sizes for Online Model Learning,” in ICRA, 2016.

[8] C. H. An, C. G. Atkeson, and J. M. Hollerbach, “Estimation of
Inertial Parameters of Rigid Body Links of Manipulators,” in 24th
IEEE Conference on Decision and Control, 1985.

[9] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning for control,” Artificial Intelligence Review, 1997.

[10] S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural Computation, 1998.

[11] M. Zinkevich, “Online Convex Programming and Generalized In-
finitesimal Gradient Ascent,” in ICML, 2003.

[12] R. Stengel, Optimal Control and Estimation. Dover, New York, 1994.

	INTRODUCTION
	Background
	Direct Optimization of Inv. Dynamics Modeling Errors

	Online Learning of Inverse Dynamics Modeling Error
	Online Learning of Inverse Dynamics Error
	Robust Learning and Prediction

	Experiments
	Simulated 2D System
	Robot Experiments

	Discussion and Future Work
	References

