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i

Abstract

Detecting and identifying the different objects in an image fast and reliably is an
important skill for interacting with one’s environment. The main problem is that in
theory, all parts of an image have to be searched for objects on many different scales
to make sure that no object instance is missed. It however takes considerable time
and effort to actually classify the content of a given image region and both time
and computational capacities that an agent can spend on classification are limited.
Humans use a process called visual attention to quickly decide which locations of
an image need to be processed in detail and which can be ignored. This allows us
to deal with the huge amount of visual information and to employ the capacities
of our visual system efficiently.

For computer vision, researchers have to deal with exactly the same problems,
so learning from the behaviour of humans provides a promising way to improve
existing algorithms. In the presented master’s thesis, a model is trained with eye
tracking data recorded from 15 participants that were asked to search images for
objects from three different categories. It uses a deep convolutional neural network
to extract features from the input image that are then combined to form a saliency
map. This map provides information about which image regions are interesting
when searching for the given target object and can thus be used to reduce the
parts of the image that have to be processed in detail. The method is based on a
recent publication of Kümmerer et al., but in contrast to the original method that
computes general, task independent saliency, the presented model is supposed to
respond differently when searching for different target categories.
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Chapter 1

Introduction

For humans and many other animals, visual perception is one of the most important
senses. We heavily rely on vision whenever we interact with our environment: When
we pick up an object, when we move through our environment and avoid bumping
into everything on the way or when we recognise our friends by their faces. For all
those tasks, object recognition and localisation is essential. In order to pick up a
glass, we need to first determine which part of our visual impression corresponds
to the glass before we can find out where we have to move our hands in order to
grasp it. And if we want to recognise another human, we first have to find out
which part of the image we see represents him or her and where in this part the
face is.

Of course, we never think about these basic processing steps actively. But what
seems so effortless for our brain still poses a major challenge for artificial systems
like robots that need to process image content. Existing algorithms most often only
tackle a small subset of the different tasks necessary for understanding an image
and are very demanding in terms of computational resources and runtime. In order
to reproduce at least a part of the human visual perception abilities, one would
have to combine several different algorithms. Making such a combined system run
in real time with today’s hardware is a big challenge. A small step towards this goal
is explored in this work by training a neural network model to learn which parts of
an image are interesting to human observers that search for a specific object. This
knowledge can then be used to speed up object search in computer vision.

In this chapter, first, the concepts of visual attention and saliency are explained.
In Section 1.3, the computer vision task of object detection is introduced and the
state-of the-art for this discipline is presented. Section 1.4 contains the objective
of this thesis and the motivation for the presented approach.

1.1 Visual Attention and Saliency

Human vision and visual perception appear extremely fast and precise despite the
fact that it receives constant input from about 120 million receptors and the retina
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2 CHAPTER 1. INTRODUCTION

transmits approximately 1.1 MB
s

to the visual system of the brain [1]. This is only
possible because we have means of ignoring a big part of this information and can
focus our attention only on the part of the scene that is currently relevant. We are
usually not conscious of this, as the brain has its ways of filling in the missing parts
from memory and expectation. A famous example for how this mechanism makes
us miss other things is the experiment that was first conducted by Simons and
Chabris [2] in 1999: Subjects are shown a video of two teams passing a basketball
around while walking criss-cross through the room. The subjects are asked to
count the passes of the team that wears white shirts. After the experiment, most
subjects are very surprised when they are shown that a man dressed as a gorilla
slowly crosses the scene on the video. Being completely occupied with tracking the
movements of people in white clothes, the dark gorilla becomes invisible to them.

The mechanism responsible for our selective perception is called visual attention.
While research is far from fully understanding how attention works, scientists agree
on it being a selective process that distributes the limited computing capacity of
the brain [3, p. 5]. A common notion is that groups of neurons in different locations
in the visual field compete for capacities. To determine which location should be
attended, a certain set of features needs to be computed in parallel at every location.
This pre-attentive stage is then followed by further processing of those locations
that won the competition. There exist numerous theories about which stages of
processing are pre-attentive and which only happen when the stimuli is attended.
Two famous examples are the early and late selection theories: Broadbent proposed
the early selection model [4], where no semantic analysis occurs pre-attentively.
Many other authors (e.g. Deutsch and Deutsch [5]) instead belief that a certain
level of semantic processing is necessary for determining which stimuli to attend.
This late selection theory seems more plausible, because it can explain why certain
objects like faces draw our attention and others usually do not.

Visual attention as a means of coping with huge amounts of data under con-
strained computing capacities has not only been studied by biologists: As computer
vision is very demanding both in terms of computational resources and time, com-
puter vision researchers have always been interested in reproducing the abilities of
humans to quickly detect which regions of an image are important to a task and
which are not for their algorithms.

The quality of an image location that corresponds to how likely a human deploys
attention to this location, is called saliency. As a simple example, a red ball on a
green lawn is very salient because it stands out both in colour and in shape. How-
ever, saliency is not only governed by “low-level” features like contrast, orientation,
shape and colour, but also by higher-level concepts. Faces are an example for such
a highly salient higher-level concept: They might not always stand out very much
from the background in terms of visual features, but attract a big amount of at-
tention nevertheless (see for example [6]). The cause for this is presumably the
huge behavioural importance of interactions among humans. The face plays an
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important role in these interactions, as we look to the face e.g. for identification of
persons or judgement of their emotional state and intentions.

In other cases, an object or a location in an image might become more salient
than usual when we look at the scene with a certain goal. If we are for example
searching for our key, a small piece of metal is more likely to draw our attention
than when we are searching for our wallet. This is because we have a model of the
object that we are looking for in mind and automatically look for stimuli that are
similar to this model.

But how to measure whether an image location is more or less salient? Here the
anatomy of human eyes comes in handy: As humans only see a sharp image with
a very small patch of their retina (the so called fovea), we need to move our eyes
constantly in order to bring the regions we are currently interested in into focus.
The direction of the human gaze can thus directly be used as an indicator for
attention and therefore saliency. For this reason, the movements of human eyes
have been studied since the 19th century. Nowadays, so called eye trackers enable
researchers to register the direction of their subject’s gaze with up to 2000 Hz and
accuracies below 0.5◦. Several datasets with images or videos and the corresponding
fixation data exist.

However, while gaze direction is a good indicator for the saliency of an image
location, it does not give full information about where a human is currently focusing
his or her attention. Humans are also able to deploy attention on areas which they
are not currently looking at. This phenomena is called covert attention (while
attending the point on which the gaze is directed is called overt attention). Covert
attention is especially necessary if we are attending multiple objects simultaneously
or do not want to give clues about our plans by moving our eyes. Findings in
psychophysical studies imply that, for tracking tasks, humans are able to attend
up to eight targets at the same time under certain conditions [7]. So despite of the
fact that it contains only incomplete information, the fixation data from human
subjects is frequently used as the ground truth for the saliency of an image.

1.2 Saliency Modelling

Both in neuroscience and in computer vision, scientists have been trying to find
algorithms and models that are able to explain and reproduce the mechanisms of
saliency and attention. Saliency models are often divided into two groups: The
so called bottom-up saliency models are concerned with saliency under free viewing
conditions, i.e. which image parts are salient when we look at an image without
any conscious intentions, while top-down saliency models deal with the influence
of tasks, such as searching for a certain object, on saliency.
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1.2.1 Bottom-Up Saliency

One of the most influential models of saliency was published by Itti et al. in 1998 [8]
and introduced the term saliency map: Following the Feature Integration Theory
[9], they extract a set of topological feature maps from the image and combine
them into a saliency map. This map contains a measure of saliency for each image
location and was used as the basis for a simple attention mechanism. The extracted
features are purely low-level: colour, intensity and orientation. Feature maps are
computed at different scales and normalised to enhance the maps with few strong
maximum peaks while suppressing those with high values almost anywhere. The
maps for the three feature types are summed and normalised independently and
the three resulting conspicuity maps are averaged to form the final saliency map.

Later works began to focus more strongly on the impact of semantic content on
bottom-up saliency: As some object classes like faces, pets or text reliably draw
human attention, the necessity to include such higher-level concepts in the models
soon became apparent. For example, Judd et al [10] added detectors for the horizon
line, faces and persons to the low-level features used for saliency prediction.

It is not consistent whether the saliency of objects such as faces are termed
bottom-up or top-down saliency: For a face to be salient because of being a face,
it first needs to be detected as one and one could argue that such a learned clas-
sification of image content is already a top-down influence. On the other hand,
face detection is an automatic behaviour that does not need any conscious inten-
tion and can therefore be considered bottom-up. For being able to clearly assign
eye-tracking experiment conditions to resulting saliency models, the latter inter-
pretation is adopted here: Bottom-up saliency is what can be observed during free
viewing experiments and therefore the saliency of an object because of its semantic
content is viewed as bottom-up saliency.

As stated in [11], adding explicit, hand-crafted detectors for all object classes that
might be relevant to model human free viewing behaviour is not feasible. Instead,
they trained a model consisting of three layers of sparse coding and pooling units
on 150× 150 pixel sized patches that were extracted from image regions with local
maxima of human fixations.

The features that were learned this way were then combined to a saliency map
with weights optimised by a linear SVM (support vector machine). Visualisation of
the learned features showed that the neurons of the third layer mostly responded
to behaviourally relevant stimuli like text and faces. Similar results were also
found when visualising the preferred stimuli of the neurons in the higher layers
(3 to 5) of deep convolutional neural networks that had been trained for object
classification (see the next section and Section 2.2 for details) [12]. Those findings
motivated Kümmerer et al. to train a model that linearly combines features that
are computed by such a convolutional network [13]. Their work, called Deep Gaze,
will be explained in detail in Section 2.3.
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1.2.2 Top-Down Saliency

In order to create saliency maps that differ depending on the current task under
which an image is viewed, the special properties of the task (e.g. a model of the
search target) need to be known first. A common approach that was first presented
in the Guided Search model by Wolfe [14] is to compute multiple different feature
maps based on different properties (channels) of the image. Then, one especially
characteristic feature map from each channel (i.e. the map for red from the colour
channel and the map for horizontal orientation from the orientation channel) is
selected to be used for the construction of the overall saliency map. The chosen
feature map should be the one that best distinguishes between the target and the
distractors in the image.

For computing saliency under a search task, in [15], a representation of object
categories is learned during a free viewing phase. For this, feature vectors (i.e.
the response of the different features in use to one location) are sampled from
several locations across the currently attended object, where attention is modelled
using the bottom-up saliency model from [8]. The sampled feature vectors are
hierarchically combined into increasingly general object representations. When
searching for one of the represented objects, the combination of feature maps to
form the saliency map is biased towards the features that are considered most
important for the representation. The importance is determined by looking at the
mean value of the feature and its variance across the different samples from the
learning stage: A feature is important if the mean response is high and the variance
of the response is low.

A similar approach is used by the authors of [16]: They calculate different
feature maps by applying convolutional filters to the input image. In a second
convolution step, the different feature maps are combined into a so called “priority
map”, that should ideally have maximum response at the location of the target
and minimal response elsewhere. The weights for this convolution are hereby the
output of a neural network that receives the task as an input.

1.3 Object Detection in Computer Vision

The ability to identify the objects present in an image or scene is one of the most
basic requirements when it comes to interacting with ones environment. While
it seems completely effortless with humans and in fact most animals, trying to
teach computers to see - and also “understand” what they are seeing - has proven
extremely difficult.

The key to understanding visual scenes are three closely related sub-problems.
The easiest one will be called classification in the following. For classification, the
one dominant object in a given image should be determined and labelled. The next
more demanding task is object localisation: In addition to labelling the dominant
object, it also needs to be localised in the image, usually by determining a bounding
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box around the image region that is occupied by the object. The difficulty of this
task again increases if not only one but all objects in an image need to be labelled
and multiple objects of the same category can appear in one image. This task is
called object detection. Numerous variations of this tasks exist and the terminology
used in this thesis will not always be conform with other sources. In addition, object
detection is a big and very active field of research, so the following paragraph will
only give a very brief overview about recent advances.

1.3.1 A Short History of Object Detection

A good means of judging how close the computer vision community has come to
solving the problems of object detection is to look at the results of challenges like
the PASCAL Visual Object Challenge (VOC) and later the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC)[17].

Pascal VOC started out in 2005 and was held annually until 2012. Among other
tasks, it always featured classification as well as localisation tasks. In 2009, the
organisers published a paper that presented the challenge and the contributions of
this year in more details [18]. Back then, most of the submissions employed the
bag-of-visual-words technique based on hand-crafted features like SIFT [19] and
HOG [20], where feature vectors are computed at keypoint locations in the image
and then a kind of histogram over the feature vectors is used to classify the image
content.

From 2010 on, the ILSVRC was also held annually and became the main bench-
mark for object detection when the PASCAL VOC ended in 2012. It uses images
from the huge ImageNet dataset (more than 14 million images) that include up to
1000 different classes for the classification task and 200 classes for detection.

In 2012, the challenge saw a big improvement in performance, when Krizhevsky
et al. [21] entered a deep convolutional neural network (CNN) for the first time.
They were able to bring down the top-5 classification error1 from 25.2 % (for the
second best entry) to 15.3 % and the localisation error from 50 % to 34.3 %. Since
then, the ILSVRC has been dominated by convolutional neural networks of increas-
ing depth. In 2014, it seems that the classification task has become relatively easy
with the winning entry [22] achieving a top-5 error of 6.7%. The localisation error
has dropped to 25 % [23] and the best detection mean average precision (mAP) has
risen from 22.58 % in 2013 to 43.93 % in 2014.

1.3.2 Object Localisation with CNN

For image classification, the output of the CNN is a 1000-dimensional vector that
contains a probability of being the most prominent object for each of the possible
classes. If only this one most prominent object should be localised, the network

1As it is sometimes ambiguous which of the objects in an image is most prominent, each model
is allowed to give five predictions and the prediction counts as correct if any one of them is correct.
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can simply be expanded to produce bounding box coordinates (either only one
bounding box or one bounding box per possible object class). This was first done
in [21] and is still used successfully by recent models like [23].

The big drawback of this approach is that it is not applicable if the number of
bounding boxes that need to be predicted (i.e. the number of objects detectable in
the scene) is not previously known. But this is precisely the case in object detection
tasks. A simple cure would be to apply a network for classification and localisation
to every part of the image (at different scales) successively and to accumulate the
boxes with the best results along the way.

This sliding window approach is of course extremely expensive due to the huge
search space. To reduce the amount of times that the classifier (a CNN) needs to
run, it could be applied on a coarser grid, but this has the risk of missing the ideal
bounding box in some cases. Ideally, one would like to have an initial set of some-
how proposed regions that need to be evaluated. It should be minimal while still
containing all ground truth bounding boxes of objects in the image. This approach
was successfully introduced by Girshick et al. [24] in their work called R-CNN.
To generate the region proposals, they employed the Selective Search algorithm
[25] that generates regions based on an hierarchical segmentation approach and is
described in more detail in Section 2.4.

Unlike most other authors in this field, the authors of R-CNN also report how
much time the computations take: Using a GPU, their algorithm spent about 13 s
on computing the region proposals for one image and then extracting the features
from the proposed regions. On a CPU, this process took almost one minute per
image. Even with improvements through optimization and better hardware, it is
clear that this algorithm could not be used as is in a system that needs to operate
in real time (and perform other tasks in parallel as well).

1.4 Objective

Motivated by the recent success of convolutional neural networks on many different
vision tasks and the good performance of the CNN based saliency model Deep
Gaze, the objective of this work is to train a top-down saliency model for the task of
searching for (possibly multiple) instances of a target object category. The saliency
maps that are produced by the model are meant to be used to focus classification
and localisation effort to image locations where the target is likely to be found.

In order to train the model, a dataset containing images with annotated object
bounding boxes and fixation data from humans is collected using an eye tracker.
The subjects from which the data is recorded had the task of counting the ap-
pearances of objects of a certain category in the images. The hypothesis is that
fixations made during search are sufficiently distinct across different target cate-
gories to allow for learning of task specific search strategies and heuristics. As the
goal of the saliency map is not only to highlight the target object’s location but
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also other locations where it could be expected to be found, human fixations promise
to offer more information than the pure object locations that could have been used
instead.

It is demonstrated how the saliency maps could in principle speed up region-
proposal based detection algorithms like R-CNN: The task-dependent saliency is
used as additional information in the process of computing region proposals for the
task of searching for objects of a certain category. In the best case, this should
allow a method to be faster than Selective Search while still retaining a comparable
performance in terms of generating a reasonably small set of proposals. In contrast
to the object detection scenario, that was described in Section 1.3, for object search,
the target object category is given as part of the task. This means that prior
knowledge about the target object can be used for the search. Therefore, the
proposed regions should ideally be specific for the target category and not category
independent like the ones used in R-CNN.

The appeal of the approach to saliency modelling described in Deep Gaze [13] is
that the same features that are computed for calculating saliency (which in turn
is used for generating region proposals) can also be used for object classification.
However, depending on how far up in the processing chain the features for the
saliency computation are extracted, further processing of the features will of course
still be necessary for good classification results. Nevertheless, the computational
overhead for generating region proposals could be greatly reduced by relying on
the same features as for the classification step instead of running an algorithm like
Selective Search that is completely independent from the classification framework.

This approach also nicely fits with the theory of attention as a computational
bottleneck. As explained in Section 1.1, many models of attention claim that in
a first, pre-attentive step, the whole input is processed and different features are
calculated in parallel. At some point, the computational cost of parallel processing
gets too high, so attention is used to determine which stimuli are processed further.
The pre-attentively computed features are thus necessary to decide which region
to attend, but they also form the input for consecutive processing stages.

To summarise, the contributions of this work are the following: First, a small
dataset of eye tracking data from participants performing a search task is collected.
Second, based on the results of a thorough evaluation of the Deep Gaze model, a
task-specific saliency model is trained for three different tasks. The saliency maps
that are computed by this model are demonstrated to be beneficial for object search
as they can help to reduce the amount of regions that have to be processed for object
classification by adding task-specific information. In addition, methods based on
the saliency maps can save computational overhead compared to other approaches
by relying only on features that have to be computed for the classification step
anyway.



Chapter 2

Foundations and Related Work

This chapter contains a closer look on basic concepts and related published work
that are essential for the work in this thesis. The first section introduces con-
volutional neural networks (CNN) and explains their relation to models of visual
perception in computational neuroscience. In the following, the first CNN that was
successfully employed for large scale image classification is presented. Section 2.3
presents the Deep Gaze bottom-up saliency model and finally, Section 2.4 gives
details about how region proposals are used for object detection and how they can
be generated in general.

2.1 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are named after the mathematical operation
convolution: The convolution of a function f with another function g is defined as

(f ∗ g)(t) =

∫ ∞
−∞

f(x) · g(t− x)dx (2.1)

(f ∗ g)(t) =
∞∑

x=−∞

f(x) · g(t− x) (2.2)

in the continuous or discrete domain.

Convolution is often encountered in the context of image processing, where f
is the intensity of a given pixel and g is a 2-dimensional weighting function that is
called kernel. g is usually non-zero only for a few values in the close neighbourhood
to the central pixel and therefore the sum has to be computed only over those values
instead of the whole image. The kernel g is often defined as a small square matrix
whose size is called the kernel size k.

Depending on the values of the kernel, convolution can be used for several image
manipulation operations: If the weights are all positive and for example reflect a
Gaussian function with its maximum at the centre, a blurring effect is achieved by

9
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convolving the image with the kernel. If on the other hand the kernel’s values are
set similar to −1 0 1

−2 0 2
−1 0 1

 or

 1 2 1
0 0 0
−1 −2 −1


it can be used to detect vertical or horizontal edges. The kernel crudely approxi-
mates the local gradients of the intensities (in x or y direction) around the centre
pixel. This specific kernel is called Sobel operator [26] and forms the basis of many
edge detection algorithms.

Very similar kernels are also used in computational neuroscience to model the re-
ceptive fields of neurons in the visual system: A simple example is lateral inhibition:
Neurons receive excitatory input from the receptor at their location and weaker in-
hibitory input from the neighbouring receptors. This causes the neurons to respond
more strongly in the vicinity of abrupt intensity changes. Figure 2.1 visualises this
concept in the 1-dimensional case. The ganglion cells in the human retina perform
this kind of operation, which is the reason why two neighbouring tiles of different
intensities seem brighter or darker at the edge between them [27]. In 2D, a similar
behaviour leads to the so called centre-surround receptive fields: A neuron either
reacts to a big intensity on a less intense background or the other way around.
These operations were also modelled by Itti and Koch [8] to extract features for
their saliency map model in a biologically plausible way (not with convolutions
though).

Adopting the principle of convolution to neural networks led to convolutional
neural networks. The probably first CNN, the Neocognitron, was introduced by
Fukushima in 1980 [28]. In 1998, LeCun et al. created a CNN for character recog-
nition called LeNet-5 [29], which became one of the most famous examples for
this technique. Its structure of alternating sub-sampling and convolution layers
followed by fully connected layers for the classification of the input into characters
is still used (although with modifications) in many of today’s CNNs (compare, for
example, Section 2.2).

In convolutional neural networks, the convolution is 3-dimensional. It is carried
out across C input images (channels) and outputs N output channels. At the first
layer, the number of input channels is usually either one (for greyscale images) or
three (for RGB colour images).

For the nth output channel, the definition of the convolution is

(I ∗ w)(n, x, y) =
C∑
c=0

k
2∑

p=− k
2

k
2∑

q=− k
2

I(c, x+ p, y + q) · w(c, n, p, q) (2.3)

Here, I(c, x, y) is the pixel at location (x, y) in channel c. k is the kernel size,
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Figure 2.1: A simple model of lateral inhibition in the retina: While the bar on
top shows the real intensities of the stimulus, the bottom one shows the perceived
brightness. The neurons receive excitatory input relative to the intensity of the
stimulus at their location. Their response is the sum of input minus the inhibitory
input from their neighbours. As this inhibition is also dependent on the stimulus
intensity, neurons in darker locations inhibit their neighbours less strongly. Thus, of
all neurons on the brighter side, the one directly at the border to the dark region
is inhibited least strongly its response is highest. The same principle makes the
border-neuron on the dark side respond less strongly than its neighbour.

that determines how much of a pixel’s neighbourhood is taken into account for the
convolution. Finally, w(c, n, p, q) gives the weights of the network.

It should be noted that w only depends on the input and output channel number
(c and n) and on the pixel offsets within the kernel (p and q). It is therefore
independent of the location of the “base” pixel (x, y). This means that the number
of parameters (weights) of a convolution layer is independent of the size of the
input images, which is a very desirable property, as it keeps the total number of
weights of a CNN relatively small compared to a traditional neural network with
the same number of layers.

But despite of their relatively small amount of parameters, for a long time,
convolutional neural networks were too expensive to train for images with a higher
resolution than the 32×32 pixels used by LeCun et al. or for deeper network archi-
tectures (i.e. networks with more than three convolution layers). Recent advances
in both hardware (especially GPUs) and efficient implementations of 2-dimensional
convolution brought them back into the focus of attention of the research commu-
nity. Yamins et al. recently showed that a strong correlation exists between the
output of deep CNN and the firing of neurons in the human visual cortex (V4 and
IT) [30] and thereby again suggested that convolutional neural networks process
images in a biologically plausible way.
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2.2 ImageNet Classification with Deep CNN

The convolutional neural network that Krizhevsky et al. [21] published in 2012
for image classification and object localisation had a huge impact on the computer
vision community. This was not only due to the big improvement in classification
performance. It also soon became clear that the convolutional layers of the network
learned image features that are applicable for a wide range of vision related tasks
like scene recognition and domain adaptation [31]. In the remainder of this work,
the network will be called Krizhevsky network, but by other authors, it is also
frequently referred to as AlexNet.

The network consists of five convolutional layers (abbreviated with conv in the
following). Each convolution layer is followed by a layer of Rectified Linear Units
(relu-layer), that apply the function f(x) = max(x, 0) to every pixel of their in-
put. The first and second relu layers are followed by a response normalisation
step (norm) that encourages some small amount of competition between the differ-
ent output channels of the convolution layers. After each response normalisation
layer as well as after the fifth convolution layer, overlapping max pooling (pool)
is employed. Maximum pooling means that each pixel in the output is set to the
maximum value of a small square region (again called kernel) in the input image.
In this case, the kernels have dimension 3×3 and are applied at every second pixel,
so that the pooling regions overlap. This results in a reduction of the size of the
output images by factor 2 with each pooling layer. The first convolution layer also
reduces the image size because the convolution is applied with stride 4, i.e. there
is one output neuron for every fourth input pixel. Table 2.1 gives an overview over
the layers used for feature extraction.

While the first part of the layers of the network computes increasingly global
feature representations of the input image, the last three layers are only for the
classification. Their output is a distribution over the 1000 potential object cate-
gories from which the dominant object in the image could be taken. Donahue et
al. also showed that for classifying one image, more than half of the computational
time is spent on those three layers [31].

The training of the network was done using an optimization algorithm called
stochastic gradient descent (SGD) with minibatches, momentum and weight decay.
For each training iteration i, the image is fed through the network in a forward
pass and the loss L of the prediction in comparison to the ground truth label is
calculated. Then all gradients of the loss with respect to the weights w of the
respective layers are calculated in the backward pass. Finally, the weights of the
layers are updated according to
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layer
kernel
size

stride
output
channels

output
size

receptive
field size

receptive field size
in % of image area

conv1 11 4 96 56 11 0.24%
relu1
norm1
pool1 3 2 96 28 19 0.72%

conv2 5 1 256 28 51 5.18%
relu2
norm2
pool2 3 2 256 14 67 8.95%

conv3 3 1 384 14 99 19.53%
relu3

conv4 3 1 384 14 131 34.2%
relu4

conv5 3 1 256 14 163 52.95%
relu5
pool5 3 2 256 7 195 75.78%

Table 2.1: An overview over the feature extraction layers of the Krizhevsky network.
All values are in pixels if not stated otherwise. The convolution kernels and therefore
also the receptive fields are square, so only one side length is given. The percental
size of the receptive field is given for the expected size of the input images of 224×224
pixels. Note that the input images were downscaled to 256 × 256 pixels before the
224× 224 pixel sized patches are extracted.

vi+1 = m · vi − λ · α · wi − α ·

〈
∂L

∂w

∣∣∣∣
wi

〉
Di

(2.4)

wi+1 = wi + vi+1 (2.5)

Here, m · vi is the momentum term (m = 0.9 was used) that should smooth the
updating. λ·α·wi is the weight decay, which is a regularization term that encourages
the algorithm to learn small weights. λ was set to 0.0005. α is the learning rate
of the algorithm. It started at 0.01 and was reduced by factor 10 two times during
the training. The core part of SGD is the last term α · 〈 ∂L

∂w
|wi
〉Di

. ∂L
∂w
|wi

is the
gradient of the loss with respect to the weights. In normal gradient descend, this
derivative would be computed over all training examples. As this is not feasible for
big training sets, the gradients are approximated using a number of samples from
the training set (Di) instead. The Di are called minibatches or, shorter, batches.

For training the network, the authors had to use two GPUs in parallel because the
network would not have fit into the 3 GB of memory of a single GPU. As their
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model has 60 million parameters, even with the 1.2 million training images from
ImageNet, the model was still very prone to overfitting. To deal with this problem,
two measures were taken: The first one was to artificially increase the amount of
training data by extracting a number of slightly smaller random patches from the
images and also including the horizontal reflections of all patches in the training
set. In addition, a technique based on principal component analysis (PCA) was
used to systematically change the values of the RGB channels of the images.

The second technique that was successfully employed to tackle overfitting is
called dropout: At each training iteration, the output of each neuron in the first
two fully connected layers was set to zero with a probability of 50 %. This means
that a different architecture of the network (with roughly half of the neurons in
those two layers) is sampled at every iteration. In this way, the neurons are forced
to learn more robust features, as they cannot rely on the other neurons in their
layer. For testing, the architectures sampled during training are approximately
averaged by simply multiplying each neurons output by 0.5.

2.3 Deep Gaze

One classical approach to saliency computation is to linearly combine multiple
feature maps of an image into one saliency map. While the feature maps in [8]
were calculated using hand crafted features, the authors of Deep Gaze [13] use
the feature representation learned by the fully trained Krizhevsky network that
was presented in the previous section. They did tests on the output of all layers
detailed in Table 2.1 but for their end result, they only used the output of the fifth
convolution layer (conv5 ).

For training, the authors used images and fixation maps from the MIT data set
[10]. They rejected all images that did not have the desired dimension of 1024×768
pixels and used roughly half of the remaining images for training.

For each image from their training set, the 256 output channels from the conv5
layer of the Krizhevsky network are used as an input for the saliency map compu-
tation. The input is linearly combined into one saliency map with weights learned
from the free viewing eye tracker data. The output of this combination is then
blurred with a Gaussian convolution kernel and a constant term representing the
centre bias is added. The centre bias describes the tendency of humans to look
at the centre of an image more frequently when free-viewing images. Finally, the
softmax of the output is computed to normalise the saliency values in such a way
that they form a proper distribution over the image pixels:

p(x, y) =
exp (I(x, y))∑

x′,y′ exp (I(x′, y′))
(2.6)

Again, I(x, y) denotes the value of the pixel at location (x, y).



2.4. SELECTIVE SEARCH 15

The loss function that is minimised during the learning is is

− 1

N

N∑
i=1

log p(xi, yi) + λ
‖ w ‖1

‖ w ‖2

(2.7)

where N is the number of fixations on the image and p(xi, yi) is the output of the

softmax function at the pixel coordinates of fixation i. λ‖w‖1‖w‖2 is a regularization
term on the weights of the linear combination.

Using this method, the authors could outperform many other saliency models listed
in the MIT saliency benchmark set [32] [33] in terms of AUC and sAUC score,
as well as in terms of the Information Gain score from [34] (not included in the
benchmark). An explanation of AUC and sAUC can be found in Section 4.1.
They concluded that the features learned by the later convolution layers of the
Krizhevsky network reflect high level concepts like faces and therefore are a good
basis for learning of bottom-up saliency, which is largely driven by the behavioural
relevance of stimuli.

2.4 Selective Search

As explained in Section 1.3.2, localisation and classification of multiple (different)
objects in one image is not easily done with a single application of one CNN. In
theory, one would instead need to classify every object in the image separately
by running the CNN on a subregion of the image that contains only the current
object. Then this region could either be used directly as the bounding box that
localises the object or further refinement could be done to improve the bounding
box prediction.

The big challenge is how to find the right regions for all objects in the image
without first detecting the objects. As simply testing all possible regions is not
efficient, instead a relatively small set of best guesses for the regions that should be
classified is used. In the following, the Selective Search algorithm [25] for generating
such region proposals is presented. It was used in state-of-the-art algorithms like
R-CNN and GoogLeNet [22].

Selective Search is a hierarchical approach that tries to determine all possible ob-
ject locations by segmenting the image in different ways. It can output either
segmentation masks or bounding boxes for the segmented regions. As only bound-
ing boxes are relevant for this work, the terms region and bounding box are used
interchangeably from now on.

The algorithm starts with a set of rather small regions that should not span
multiple objects. Those initial bounding boxes are repetitively merged and the new
boxes are added to the set. The order in which the regions are merged is determined
greedily: For all pairs of neighbouring regions, a similarity value is computed and
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the pair with the highest similarity is merged. All similarity values for the two
regions that were merged are removed from the set and the similarities of the new
bounding box and its neighbours are computed. The algorithm runs until only one
region that spans the whole image is left. By not rejecting any of the bounding
boxes that get generated along the way, the algorithm has a good chance to find
suitable bounding boxes even for composite objects that consist of very different
looking parts.

The strength of Selective Search is that this hierarchical merging is not run
only once but multiple times, with different measures of similarity, different initial
regions and in different colour spaces. The rational behind using different measures
of similarity is the following: In order to determine whether two image patches
belong to the same object, different features need to be regarded depending on the
object. Texture for example will not help to tell an orange from a lemon, but colour
will. In addition to colour and texture, the authors use a criterion that encourages
smaller regions to merge earlier and a criterion that helps to merge two regions
if one is contained in the other. At each run of hierarchical grouping, a different
combination of those four criteria is used as similarity measure.

Finally, all regions are combined and loosely sorted by the order in which they
were generated, starting with the region from every run of merging that was gen-
erated last. This order is thought to reflect the likelihood of the regions to contain
an object. After the sorting, duplicate bounding boxes are removed. This is not
done before sorting as it helps to promote bounding boxes that were generated by
multiple grouping strategies.

In practice, Selective Search produces about 2000 proposals for one image and
achieves a coverage of about 92 % of all ground truth object bounding boxes on the
training data for the ILSVCR 2014. However, depending on how many different
grouping strategies are used, the algorithm is relatively slow. The way it is currently
used in algorithms like R-CNN, it seems like a waste of resources to process the
image as far as Selective Search does, only to then compute completely new features
for all the regions it proposed.
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Methods

The aim of this work was to create a saliency model for object search. As a
reference, the bottom-up saliency model Deep Gaze (see Section 2.3) was used.
However, in contrast to Deep Gaze, the proposed model should account for the
top-down influence of different search tasks.

The presented model is a very basic neural network that uses the output from
the Krizhevsky network (Section 2.2) and learns to combine these feature maps
into saliency maps that reflect the search behaviour of human test subjects. As an
application for the saliency data generated by the model, it is demonstrated how
the saliency maps could be used in the generation of bounding box proposals for
object search tasks.

Section 3.1 describes how the training data for the model was acquired. In
Section 3.2, the model and its training are described. Section 3.3 explains how
the saliency maps are used for either sampling region proposals or pruning the
proposals from another algorithm.

3.1 Eye Tracking Data

To train a neural network for task dependent saliency prediction, a dataset of
images with recorded gaze data had to be acquired first. Although there are a few
datasets that include eye tracking data from search tasks freely available, none met
the exact requirements described in the following paragraph. Therefore, a set of
images had to be chosen and viewed by participants while their gaze direction was
recorded.

3.1.1 Design of the Dataset

There were several requirements for the images that would be used as stimuli for
the data collection. First of all, for the sake of easy evaluation, the images had
to meet some technical requirements: The dataset should contain annotations on
the images, listing the depicted objects and their positions in the image. This

17
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position information could either come in the form of bounding boxes or, more
accurately, as segmentation masks. To allow for an uncomplicated comparison of
fixated locations, the images should ideally have the same size or at least the same
aspect ratio. Also, the images should not be too small (on average at least 400
pixels in the smaller dimension).

Those first requirements left a couple of freely available datasets of annotated
images to chose from. In the end, Microsoft’s COCO (common objects in context)
dataset [35] was chosen, as the content of the images seemed most appropriate
to the task: The COCO dataset was collected with the intention of depicting
objects in their natural environments, as opposed to other image datasets (like
ImageNet), that contain a lot of images that only show a single object centred on a
relatively plain background. Avoiding this so called photographer bias and showing
natural scenes with rich context is hoped to enable learning algorithms to gather
contextual information about objects, like where a certain object is likely to be
found and which other objects often appear in its close proximity. It should also
keep learning algorithms from overfitting to simply focus on the centre of an image.

Two subsets of images were taken from the validation set of COCO that was re-
leased in 2014: one for training the model (again split into training, validation and
testset) and one for evaluating the benefit of the generated saliency maps for the
generation of bounding box proposals (see Section 3.3). Fixation data was only
recorded for the training image set. Some statistical information about the subsets
can be found in Table 3.1. The two datasets were completely disjoint. Note that
the set for training contained two additional object categories that are not included
in the statistics (umbrellas and mobiles) to make the images more diverse and al-
low for later expansion of the fixation dataset. This reduces the average number of
targets and different target categories per image compared to the evaluation set as
umbrellas and mobiles were not considered for the computation of this values.

3.1.2 Experimental Setup

The Hardware

For the data recording, an eye tracker by The Eye Tribe [36] was used at a pub-
lishing rate of 60 Hz. The device uses infra-red projections and a camera to detect
corneal reflections relative to the centre of the pupil. Both eyes are tracked and the
gaze coordinates are averaged between them. The producer advertises accuracy
values between 0.5◦ and 1◦ at a spacial resolution of 0.1◦. The accuracy reported
by the device after calibration was frequently observed to be lower (i.e. better) than
the advertised value of 0.5◦.

The images were presented on a 22’ LG Flatron W2261VP flat screen which was
placed at 65 cm distance from the subject. Participants were required to use a
chin rest for keeping their head as stable as possible during the experiment. The
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Training Set Evaluation Set

average number of target instances 0.938 1.049
average number of different object categories 0.743 1.086
average scaling factor for presentation 1.687 1.687

(a) Image statistics

clocks laptops beds

average bounding box size 5.1 % 22.27 % 52.96 %
minimum bounding box size 0.007 % 0.1 % 1.03 %
maximum bounding box size 85.1 % 93.83 % 100 %
average segmentation area 4.02 % 14 % 32.43 %
average number of instances per image 0.275 0.408 0.255
number of images containing the target 94 110 93

(b) Target statistics of the training set

clocks laptops beds

average bounding box size 4.17 % 22.65 % 50.98 %
minimum bounding box size 0.012 % 0.05 % 0.2 %
maximum bounding box size 98.04 % 99.48 % 100 %
average segmentation area 3.18 % 14.39 % 32.06 %
average number of instances per image 0.345 0.391 0.313
number of images containing the target 229 243 236

(c) Target statistics of the evaluation set

Table 3.1: Statistical information about the sets of images that were used for
training and evaluating the saliency model. All size information is in percent of the
total image size.

eye tracking device was mounted on a tripod approximately 15 cm in front of the
screen, but the distance between screen and eye tracker had to be varied between
different participants to allow for stable tracking of the eyes. This was necessary
because the tracking device was found to work best if the angle in which it was
pointed upwards to see the participant’s eyes was kept as low as possible. Figure
3.1 shows the experimental setup.

The Presentation GUI

A program was written in Java to control image presentation, calibration and eye
tracking. Participants are presented with images and asked to count the number
of objects of a certain category in the image.
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Figure 3.1: A photograph of the experimental setup used for recording the fixation
data.

Upon start up, the GUI first informs participants about the task and explains the
controls. The user has to press Enter to continue from each stage of the program to
the next. The first stage is the calibration of the tracker: The participant is asked
to fixate and track a point that appears at twelve different locations on the screen.
From these locations and the recorded gaze data, the mapping from data to screen
coordinates is calculated by the device (being a commercial product, the method
of this calculation is not public). If the overall error as well as the maximum error
for a single point are not too high, the calibration is accepted and the user can
continue. Otherwise, the user is asked to repeat the calibration.

In the next stage, the error between calculated and intended gaze coordinates
is assessed again, this time in terms of on pixel distance. This value is necessary
for the later processing of the fixation data (see Section 3.2.2) and the procedure
can be used to validate the calibration quality reported by the device.

Like for the calibration, the user is asked to fixate points on known locations.
Then the measured coordinates of all fixations are clustered using k-means into as
many clusters as there were points to fixate. The distances between the cluster
centres (their average location) and the closest target point are calculated and the
average of those distances is recorded for later use. If the average error is too high,
the user is asked to calibrate the device again and the process of calibration and
error assessment is repeated.

If the device is calibrated accurately enough, the images are presented. Each
image is upscaled to 1024 × 768 pixels and displayed in the centre of the screen
on a gray background. Each time a new image is shown, a new logfile for the
fixation data is created, where the accuracy of the calibration (averaged and for
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both eyes separately), the pixel error from the accuracy check, the factor by which
the image was upscaled and the gaze coordinates are logged. For each gaze data
point, a timestamp, the raw and smoothed coordinates (averaged and for both eyes
separately) and the classification into fixation and non-fixation are reported. The
images are presented for a maximum of 10 seconds each. The user can abort the
presentation by pressing Enter, but has to view the image for at least 1.5 seconds.
After each image, a screen appears that asks the user to enter his or her count of
the target objects in the image. To give feedback, when the user has pressed enter,
the background colour of the screen changes from gray to green, yellow, orange
or red, depending on how accurate the count was. For each batch of 40 images,
another logfile records the users counts, the correct number of targets and the time
for which the images were viewed.

Before starting a new batch, the calibration quality is assessed again. Also, the
user is given the opportunity to issue a new calibration him- or herself before the
accuracy test. This might be a good idea if the user changed position between the
batches and therefore already knows that the calibration quality will be found too
low.

Data Recording

Participants were shown a total of 410 images divided into ten regular batches of 40
images each and a smaller training batch to start with. The dataset is composed of
images that contain at least one of the following object instances: Laptops, clocks,
umbrellas and sunshades, mobile phones and beds (see Table 3.1 for details). In
the end, three of those categories, namely clocks, laptops and beds were used
as targets for the search task. 15 subjects (five female, ten male) who signed a
consent form, participated in the experiment. They were aged between 24 and 57.
One participant used contact lenses during the experiment and three wore glasses.
Each object search task was completed by five subjects, whereby each subject only
completed one task to avoid learning effects due to seeing the images multiple times
and loss of interest.

The experiment was carried out in a separate room under as constant lighting
conditions as possible. Also, the presented images were modified in order to keep
brightness changes between the images low. Keeping the brightness changes small
during the whole experiment is desirable, because changes in the subject’s pupil
size between calibration and stimulus presentation were found to affect the eye
tracker’s accuracy [37].

The adjustment of the overall image brightness was done by converting all images
to the CIE L*a*b* colour space, in which the L-component denotes perceived
brightness and is independent of the colour defining components a and b. L ranges
from 0 to 100, where 0 is black and 100 is white. The average value of L across
all images and all pixels was 44.8; the desired brightness was set to 42. Then



22 CHAPTER 3. METHODS

the brightness of the images was adjusted by the following equations, where Lx,y

denotes the value of the L-component at pixel (x, y):

LI =

∑
x,y Lx,y

size(I)
(3.1)

d = LI − 42 (3.2)

αx,y =

{
tanh(0.075 · Lx,y) if Lx,y < 42

tanh(−0.1 · Lx,y + 10) else
(3.3)

L′x,y =

{
Lx,y −min(d · α,Lx,y) if d > 0

Lx,y + min(−d · α, 100− Lx,y) else
(3.4)

The factor α is basically a slightly smoothed step function with values close to 1
between 0 and 100 and 0 otherwise. It drops less steep for values close to 0 in
order to avoid setting too many pixels to 0 in the process of the adjustment. All
background colours in the image presentation GUI were set to have L = 42, too.

3.2 Learning a Saliency Model

Having acquired the dataset of human fixations for search tasks, the next step was
to train a top-down saliency model on those examples. In the best case, the model
should identify search strategies that are employed by human viewers and learn to
apply them to previously unseen images. Again, the goal was not to only find the
real target location, but to distinguish between regions that are likely to contain
the target and regions that are not.

All learning and network implementation was done in Caffe, a framework for
convolutional neural networks with a focus on large-scale visual processing tasks. It
includes most common layer types for those tasks and allows to use CUDA for fast
computations on GPUs [38]. The GPU implementation is especially valuable for
convolutions, as their calculation takes very long on CPUs. In addition to the C++
and CUDA network implementation, Caffe also features MATLAB and Python
interfaces for convenient training, deployment and inspection of the networks.

3.2.1 Reimplementing Deep Gaze

The Deep Gaze architecture (see Section 2.3) was chosen as the basis for the saliency
model architecture. As Deep Gaze was implemented in Theano [39], the architec-
ture had to be recreated in Caffe. Caffe includes a fully trained version of the
Krizhevsky network, so implementing everything in Caffe makes it possible to
train the whole pipeline from the input image over the feature extraction with
the Krizhevsky network to the saliency map calculation in the same framework.
The resulting model was then trained on the MIT dataset [10] to test whether the
author’s results could be reproduced.
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Implementation in Caffe

As the output of the Krizhevsky network does not change during the training
process for the Deep Gaze model, this data was prepared in advance in order to
save computation time during experiments. For each training, validation and test
image, the output filters of each layer of the Krizhevsky network were calculated
and saved together with the associated fixation maps in hdf5 format.

The linear combination of the input feature maps is implemented by a standard
Caffe convolution layer with kernel size 1× 1 and stride 1. Likewise, the Gaussian
blur, that is applied after the combination, is implemented with a convolution
layer whose kernel size is dependent on the width of the Gaussian function. The
necessary weights were calculated in Python and set manually via Caffe’s Python
interface before training. As the blurring layer is a mere image manipulation step,
its weights were fixed to not take part in the learning process.

The loss function used in Deep Gaze [13] is

− 1

N

N∑
i=1

log p(xi, yi) + λ
‖ w ‖1

‖ w ‖2

(3.5)

where N is the number of fixations in the image, w represents the weights of the
model and p(xi, yi) is the output of a softmax function applied to the blurred linear
combination of the input feature maps at the pixel coordinates of fixation i. The
regularization term λ had not to be modelled explicitly as Caffe takes care of this.
Caffe’s layer catalogue also already includes a layer for the softmax computation
as well as an optimised “softmax loss layer” for this kind of loss functions. Those
layers were only meant for 1-dimensional data though, and did not include the
normalization over the number of fixations. For this reason, the softmax layer was
adapted to support 2-dimensional data and the loss layer was changed to account
for the normalization.

However, it was not possible to adapt the gradient function of the loss layer in
such a way that it passed all unit tests that compare the calculated gradient against
one obtained by finite differencing. This is probably due to numerical inaccuracies
that arise in the softmax layer and the fact that the logarithm is not defined at
zero (where the minimum float number is used for computations instead). To be on
the safe side, a different loss function was used for training instead: The softmax
output of the network was compared pixelwise to the softmax of the label data (the
fixation maps) by computing the Euclidean Loss.

This loss also has the advantage of explicitly penalizing false positives (i.e. high
values of the predicted saliency maps at non-fixated locations) in comparison to
the function defined in Equation 3.5 which only looks at fixated pixels. So in the
original loss function, false positives only matter in so far as they result in smaller
values of the softmax function at other locations of the image. While the calculation
of the softmax would not be necessary for the Euclidean Loss, it was kept because
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it establishes competition between different locations. This is desirable because
saliency itself is a competitive quantity, describing how much a region stands out
compared to its surroundings.

As the purpose of the network was to capture task dependent fixations, the
term for the centre bias, employed by Kuemmerer et al., was not used.

Preprocessing

The Krizhevsky network had been trained on 224× 224 pixel sized image patches
that are extracted from the downscaled original images from ImageNet. The av-
erage size of the original images is about 482 × 415 pixels for the subset that was
used in the 2013 ILSVRC. Values for the 2012 challenge could not be found but
are expected to be similar. Using the full resolution of the 1024× 768 images from
the MIT dataset and the gathered task fixation dataset was therefore not possible:
The receptive field of a neuron in the topmost layer (pool 5), that covers about 76%
of a 224× 224 input image would only cover about 1% of the bigger sized images.
This means that the network would only be able to capture very local features
of the image. The authors of Deep Gaze downscaled the input images by factor
two, which is roughly the same downscaling factor as was used for the images from
ImageNet. In this configuration, the maximum receptive field size is about 14% of
the total (downscaled) image size. This was also found to work best in experiments
described in 4.3.1 and therefore adopted.

Fixations on the MIT dataset are given in form of raw data logfiles, separately
for each participant. They were preprocessed in order to exclude non-fixations and
invalid points with MATLAB code provided by the authors of the dataset. For
each image, the fixations from all participants were combined and saved in image
form, where each pixel’s value is the the number of fixations on this pixel for all
participants. The fixation maps were not blurred as the loss function used by the
authors of Deep Gaze assumes that pixels were either fixated or not and the fixation
map therefore has discrete integer values.

For calculating the loss, the saliency map produced by the model and the ground
truth fixation map have to be of the same size. While Kuemmerer et al. upscaled
the input feature maps prior to the computations, in this work, the fixation maps
were downscaled to the network’s output size instead using nearest neighbour in-
terpolation. Upscaling before doing the computations was no option because the
GPU that was used1 “only” had 6 GB RAM: The data format used by Caffe is float
(32 Bit). Therefore, the input data with 256 input channels (as produced by the
conv5 layer) alone needs 32Bit · 256 · 768 · 1024 = 6, 442, 450, 944Bit ≈ 805, 3MB
per image. Network training was carried out using stochastic gradient descend with
minibatches in order to improve the approximation of the gradients used for calcu-
lating the weight updates (see Section 4.2 and Section 2.2 for details). This means
that a couple of images are loaded into memory and processed at the same time

1Nvidia GeForce GTX TITAN Black Edition
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and the updating of the weights is only done once per batch. The more images are
used for one batch, the better the approximation of the gradient gets. However,
the GPU’s RAM would not even have sufficed for eight images per batch if full
resolution had been used.

After calculating the feature maps for all images in the dataset, the images were
divided into training, validation and test set and were normalised to have zero mean
and unit standard deviation (pixelwise) across the respective set. The data was
saved in hdf5 format together with the corresponding fixation maps and some meta
information like source image names, source directory and dataset size. Chapter
4.3 contains detailed information about all experiments done with the Deep Gaze
model and their results.

Experiments with Deep Gaze

The Deep Gaze architecture has two main parts that can be varied without changing
the overall architecture: The first is which layers of the Krizhevsky Network are
used as the input feature maps for the model. The second is how much the original
input images are downscaled before the feature maps are calculated. While the
authors of Deep Gaze report experiments for comparison of the performance with
different feature maps, no results for different input image sizes are included in the
paper. So for finding the best possible configuration for the reimplementation of
Deep Gaze and for better understanding which factors are important for the success
of the model, a range of experiments with different configurations was done. Details
on this experiments and their results can be found in Section 4.3.

3.2.2 Learning Top-Down Saliency

In order to change the reimplementation of Deep Gaze from a bottom-up into a
top-down model, not much had to be changed: The most important difference is in
the training data: Instead of fixations from free viewing, the top-down model gets
search task dependent fixations as ground truth data. In addition, the model needs
a specification of the object category for which it should search as additional input.
Depending on this target category, the model should then learn to use different
weights in the linear combination of the feature maps. This specific weights can be
viewed as the model’s internal representation of the object.

One way to implement such a model would be to represent the target category
with a binary code. A sub-part of the model gets this code as input and outputs
the corresponding weights that are then used to compute the saliency map. This
approach is very close to the one described in [16]. However, implementing such a
model in Caffe is not straight forward, as the framework offers no way of setting
the weights of one layer with the output of another.

So in order to save time and to also be more flexible with the training schedule,
I instead trained a separate model for each target object category. Without the
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Figure 3.2: Overview over the model’s architecture. The separate weight network
that gets the task as input and sets the weights of the linear combination of the
feature maps accordingly was not actually implemented. Instead, separate models
were trained for the three tasks. The only difference to the original Deep Gaze model
is that no centre bias is added after the blurring step.

necessity for a task representation as input, the architecture of the separate top-
down models is therefore exactly the same as for the bottom-up case. Figure 3.2
visualises the model’s architecture and how the network for setting the weights
according to the task representation could be integrated.

Preprocessing of Fixation Data

To learn from the humans that participated in the experiment described in Section
3.1, the fixations from the individual participants had to be combined into fixation
maps for the different images and tasks first. For every image and participant sepa-
rately, the fixations were first roughly clustered over time to exclude the first cluster
of fixations. This was done because the first fixations on an image usually reflect
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the centred text and text field from the previous screen of the GUI and therefore
do not contain useful information. Afterwards, each fixation was marked in an
empty image with a Gaussian with σ of half of the average pixel error measured for
the current participant and batch (see Section 3.1.2). This results in a Gaussian
function whose width at half of its maximum value is approximately equal to the
pixel error. The function is normalised to unit integral to account for different cal-
ibration qualities among participants: A high pixel error that was measured before
the recording makes the Gaussian around a fixated point wider but at the same
time decreases its maximum value. For each image and task, the fixation maps of
all users who completed this task were averaged for the final fixation maps.

Experiments with the Model

As done before with the reimplementation of Deep Gaze, again different configu-
rations of input feature maps and input image sizes were evaluated. The previous
experiments had already reduced the number of input feature maps to a few promis-
ing layers. However, especially concerning the size of the input images, it was not
clear whether the best configuration for the MIT free viewing data would also be
the best for the new dataset with task dependent fixations. Section 4.4 contains all
experiments that were done to find the best combination of input image size and
feature maps for the top-down saliency model.

3.2.3 Modifications of the Ground Truth Fixation Data

When analysing the fixation data that was collected during the experiment (see
Section 5.1), it turned out that bottom-up effects had a big influence on the fix-
ations: Independent of the task, the participants fixated for example faces and
animals quite reliably.

As a result, the fixation data includes a bias towards objects that are be-
haviourally relevant for the human observers. To make things worse, this bias
is independent from the search task, so the fixation maps for the same image do
not differ much for different target categories. It seems like the remaining differ-
ences between the fixations for the three tasks did not suffice for the model to learn
task-specific weights. Visual inspection revealed almost no difference between the
saliency maps produced by the models that should search for clocks, laptops or
beds. Instead, all three models essentially behaved like bottom-up saliency models
(see Section 5.3).

In order to improve the task-specificity of the fixation data and confirm whether
the bias in the fixation data really is the cause of the problem, two different methods
of modifying the fixation data were evaluated.
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Removing the Bottom-up Bias

The first option is to try to remove task-unrelated fixations from the fixation maps.
It is of course not possible to precisely determine which fixations are task-related
and which are not. A good heuristic is probably to reduce the fixations in areas
that were fixated by participants from all three tasks.

Modifying the fixations in this way could be considered bad scientific style: The
reason why learning algorithms are used in the first place is that the underlying
processes are not known. Removing fixations that are thought to not be relevant
for the task has always the risk of excluding too many fixations and thereby los-
ing information that the model could have used otherwise. Or in other words, by
assuming that regions that were fixated under all tasks were not relevant for the
search task, one introduces one’s own assumptions about the process of human
search into the data. In this way, the model is constrained to learning a represen-
tation of the process that fits the researcher’s expectations.

Despite those concerns, a dataset with such modified fixation maps was gen-
erated for each tasks and evaluated, as it might also help to confirm whether the
many common fixations in the training data really are the main problem. This
fixation maps will be called purified fixation maps in the remainder of this work.

To determine which fixations have to be removed in each task-specific fixation
map (target map), first the fixation maps from the other two tasks are loaded. In
a new empty image, the pixels that have values above a certain threshold in both
fixation maps are marked. This threshold is currently set to 110 % of the minimum
non-zero value in the fixation map, with the idea to avoid excluding regions that
were only fixated once by a single participant. The resulting image is blurred with
σ = 20 and scaled to have a maximum value equal to 65 % of the maximum value
of the current target map. In the last step, the image is subtracted from the target
map and possibly occurring negative values are set to zero again. Figure 3.3 shows
the visualisation of original and remaining fixations, as well as the areas where
fixations were removed, exemplary for one image and fixation data from the clock
search task.

Adding Target Location Information

The second possibility to make the ground truth data more task-specific is to add
the knowledge about position and form of the target objects. The analysis of the
fixation data showed that the targets usually drew no especially high amount of
attention, so the actual location of the targets is not emphasised by the fixation
data. In addition, fixations are usually only on one point of the target, so they
contain even less information about the form and size of the objects.

To add this information, for each target bounding box, a Gaussian function
with σ = 8 is drawn in a 20 × 20 pixel sized image. This image is then reshaped
to fit the bounding box and the values are rescaled such that the maximum of the
Gaussian has half of the maximum value of the fixations for the image. Then, the
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(a) Original fixation map (b) Remaining fixations (c) Removed fixations

Figure 3.3: Example visualisation of a fixation map for the clock search task, from
which fixations were removed in the locations that were also fixated under both other
tasks. As some fixations might be difficult to see, it might help to view this image
in the electronic version of the text.

(a) Task: clocks (b) Task: laptops (c) Task: beds

Figure 3.4: Example visualisations of fixation maps after the locations of the target
objects were marked.

image with the Gaussian is added to the fixation map at the target location. Figure
3.4 shows three example fixation maps. The markers for the target location are
kept relatively small both in value and in area, to prevent them from dominating
the fixation map and thereby rendering the fixations useless.

3.3 Region Proposals

A possible scenario for using the generated saliency maps is for creating region
proposals for an object search or detection task. The hypothesis is that the saliency
information could help to either reduce the effort for creating the bounding box
proposals or to reduce the amount of created proposals. The latter would help as
the classification network, that determines if an object is present in the region and
to which category it belongs, would need to run fewer times.

Two approaches for this are explored: The saliency maps could be used as an
heuristic score to determine which of the bounding boxes proposed by some other
method lie on interesting parts of the image, and to filter out the ones that do not.
Alternatively, the saliency could be used as a prior over the spatial distribution
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of the bounding boxes when generating the proposals. The hope is that by using
the saliency information, fast but inaccurate methods for generating bounding box
proposals could be improved to perform similar to slower methods like Selective
Search.

3.3.1 Pruning Bounding Box Proposals with Saliency

For evaluating how useful saliency is for pruning bounding box proposals, first of
all, proposals need to be generated. This is done using three different methods:
Random sampling, statistical sampling and Selective Search (see Section 2.4). Gen-
erating region proposals by random sampling is the easiest method and has least
computational overhead. However, it will produce many bounding boxes with sizes
and forms that are very unlikely to fit any object (for example very long and thin
bounding boxes) and has no guaranty to cover the image evenly.

Statistical sampling aims at generating more reasonable bounding box forms by
using statistical information about the target object category. To do so, one first
needs to compute the distributions of the aspect ratio and size of the ground truth
bounding boxes for the target category. While the location is still sampled ran-
domly, the form and size of the generated boxes are drawn from this distributions.
Region proposals that are created in this way are of course not object category
independent. As a result, this method is not applicable, if the objects present in
the image are not known in advance. On the other hand, if the task is not to
detect all objects but to search for instances of a specific object category, the use of
statistical information about the target object is a good way to include top-down
task information.

To make the two sampling methods comparable, in all cases, the centre of the
bounding box as well as its width and height are sampled. For random sampling,
if bounding boxes exceed the image’s dimensions, they are simply clipped to fit.
This of course cannot be done for statistical sampling: If one first determines a
scale for the bounding box by using prior knowledge, it does not make much sense
to cut of the parts that do not fit in the image afterwards. Instead, the location
and aspect ratio are sampled first. Then the maximum possible scale of the box is
determined from those two values and the scale is sampled from the distribution
of the remaining scales that fit into the image.

Before applying the saliency maps for bounding box pruning, they need to be
upscaled to the original image size and normalised to a defined value range. There
are different ways to decide whether or not to reject a proposed bounding box
based on the saliency map for the image. The easiest options are to calculate sum,
maximum or average of the saliency values in the proposed bounding box and apply
a threshold.

Summing is difficult, as a threshold would need to be found, that does not
always reject small bounding boxes and at the same time is high enough to not let
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all bounding boxes of a certain minimum size pass. Using the average value on the
other hand could put very large bounding boxes at a disadvantage, as the saliency
cannot be expected to be spread evenly over an object. For example, for a person,
the face will usually be more salient than the feet, but both should be contained
in the bounding box. The maximum is agnostic to the bounding box size and
therefore probably the best choice. In addition, the low resolution of the saliency
maps guarantees that there are no large bounding boxes with only a tiny but high
saliency peak. A high maximum value thus usually comes with a reasonably big
area of high saliency. Experiments were nevertheless done with all methods (see
Section 5.4).

While the softmax computation is good for training the network, using the “soft-
maxed” version of the saliency maps for pruning bounding boxes is inconvenient:
If there are for example multiple target objects in an image, even if the saliency
map was perfect (i.e. had maximum values at the targets and zero elsewhere), the
absolute saliency values in the bounding boxes would still be lower than for an
image containing only one target, as the total saliency has to sum up to one. The
maximum of the saliency values is thus dependent on the proportion of the image
that is salient. Accordingly, thresholds on the maximum or average saliency in a
bounding box would have to be set relative to the maximum saliency value in the
image and no single absolute value could be used as a threshold.

3.3.2 Sampling Bounding Boxes with Saliency as Spatial
Prior

Instead of first sampling bounding boxes and then rejecting the ones in uninterest-
ing regions, one could also already prefer high saliency regions during the sampling
process. As the resolution of the saliency maps is many times lower than the res-
olution of the images, it gives little information about bounding box sizes. Also,
especially big objects might have regions that are more salient than others, so just
fitting bounding boxes around highly salient regions will not suffice. Instead, the
pixels of the (“softmaxed”) saliency map can be used as a distribution from which
the centre of the bounding box is sampled. In contrast to the pruning scenario
explained above, for this application, the softmax is useful, as it turns the saliency
values into a distribution. A distribution generated by the softmax function cannot
have zero values. This allows the sampling process to still generate region proposals
in non-salient image regions, although with very low probability.

Due to the low resolution of the saliency map, it can only be used to sample a
region for the location of the centre pixel (in the current implementation, one pixel
of the saliency map corresponds to a 16 × 16 pixel region in the original image).
Within this region, the final centre coordinates are thus chosen randomly. From
this point on, one of the sampling methods explained in the above section can be
used to determine aspect ratio and scale of the bounding box.
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Chapter 4

Tuning the Networks

This chapter describes the experiments that were done to find the best network
architecture and parameters for the saliency model as well as their results. Section
4.2 contains general information about the method used for training the models.
In Section 4.3, the experiments done on the reimplementation of Deep Gaze are
described: First, different variants of the Deep Gaze bottom-up saliency model are
evaluated. The best architectures and parameter configurations are then used as
a starting point for the experiments on the top-down model, that are presented in
Section 4.4. For comparing the performance of the different models, a measure is
necessary and thus, this chapter starts with a section about different scores and
their advantages and disadvantages.

4.1 A Word on Scores

There exist a wide range of scores for the evaluation of saliency models. The
MIT benchmark [32, 33] uses seven different scores, including two different im-
plementations of AUC (area under curve for ROC curves), sAUC (shuffled area
under curve), SIM (similarity), EMD (earth mover’s distance) and CC (corre-
lation coefficient). A MATLAB implementation of the scores is provided at
https://github.com/cvzoya/saliency/tree/master/code_forMetrics.

This big variety of different scores suggest a great uncertainty about the correct
score. And indeed, a closer look at the scores reveals flaws in most of them: While
almost all scores behave good for a good model, some scores also favour models
that display a specific kind of error. Other scores give different results for different
types of saliency and fixation data (e.g. whether the data is given as a distribution
or not) or their score depends on the ratio between fixations and non-fixations
in the ground truth data and therefore do not allow for a fair comparison across
different datasets and tasks.

33
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Area Under Curve (AUC)

The AUC score expects a saliency model to account for the centre bias. It favours
models that predict a high saliency almost everywhere near the centre of the image,
while punishing models that give sparser predictions if they are only the tiniest
bit inaccurate. A simple implementation of the centre bias alone (a Gaussian
distribution with maximum value at the centre of the image and distorted to fit the
image’s aspect ratio) achieves an AUC score of about 78% on the MIT benchmark
dataset [33] and thereby outperforms a good portion of the real saliency models.

This problem is addressed by the sAUC score, which in turn punishes models
who include the centre bias, by sampling negative examples (non-fixated points) not
randomly but from the distribution of fixations of the other images in the training
set. In [33], the authors also found that blurring the saliency maps increased the
AUC score about 10 % for most models and up to 16 % for models that produce
predictions with extremely sharp borders between salient and non-salient regions.

For this work, AUC was implemented as follows: First, all pixels from the
target fixation map are divided into fixations and non-fixations. Since the number
of positive and negative examples should be the same for the calculation of AUC,
all points from the smaller class are used and an equal number of samples from
the other class is chosen randomly. Note that this introduces a small amount of
randomness into the score and will result in slightly different scores for the same
input every time the score is calculated.

Then, for 100 different thresholds between the minimum and maximum value
of the test fixation map, the number of false positive (FP ) and true positive (TP )
predictions is counted. The AUC is calculated form the true positive and false
positive rates (TP

P
, FP

F
with P being the total number of positive examples) at the

different thresholds. The negative and positive examples are chosen anew for every
value of the threshold.

Similarity (SIM)

The similarity score is a measure for the similarity of two distributions P and Q
and is defined as

SIM =
∑
x,y

min(p(x, y), q(x, y)) (4.1)

The SIM score rewards models that output saliency maps that have either very
low or very high values in almost all locations. As it is the sum of the minima of
the predicted and the target distribution at each pixel, it generates almost perfect
scores if one of the compared distributions has lower values than the other in a big
proportion of pixels. The implementation used here follows the implementation
used for the MIT benchmark set: First, the fixation map is blurred. Then the
blurred fixation map and the saliency map are turned into distributions by first
rescaling the values to lie in [0, 1] and then dividing by the sum over the whole map
to make them sum to one. This approach for turning the data into distributions
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seems to be more robust against the above mentioned problem than turning them
into distributions by taking the softmax1. A reason for this could be that it leaves
zero values at zero instead of assigning a very small value to them.

Earth mover’s distance (EMD)

Earth mover’s distance intuitively seems the best score to judge the performance of
a saliency model, as it not only captures if the predicted saliency values are correct
pixelwise, but also, how close predicted salient locations are to the next fixated
location. It is defined as

EMD(P,Q) =

(
min
fij

∑
i,j

fijdij

)
+

∣∣∣∣∣∑
i

Pi −
∑
j

Qj

∣∣∣∣∣ ·max
i,j

dij (4.2)

s.t. fij ≥ 0∑
j

fij ≤ Pi∑
i

fij ≤ Qj

∑
i,j

fij = min

(∑
i

Pi,
∑
j

Qj

)
where the distributions P andQ can be interpreted as piles of soil on the image. The
EMD is then the minimum cost of moving soil around such that one distribution
is turned into the other. The cost of moving soil is defined by the amount that
is moved from location i to j (fij) times the distance between the locations (dij).
Unfortunately, EMD is also very hard to calculate for large images because of the
global optimisation that cannot be computed in closed form (EMD is usually only
used for histogram comparison, where the number of bins is significantly below 100,
compared to a full resolution image with a total of 786432 pixels).

Correlation Coefficient (CC)

The correlation coefficient is defined as

CC =

∑
x,y(p(x, y)− p̄)(q(x, y)− q̄√

(
∑

x,y(p(x, y)− p̄)2)(
∑

x,y(q(x, y)− q̄)2)
(4.3)

It produces values between −1 and 1, where 0 indicates no correlation, 1 indicates a
perfect positive and −1 a perfect negative correlation. It is symmetric and invariant
to value ranges and magnitudes. Again, for the implementation, the fixation map
was blurred previous to the computation to achieve comparable results with the
MIT benchmark.

1When using the softmax approach, similarity was constantly at 99 %.
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Kullback-Leibler Divergence (KL)

Another score that is sometimes used if ground truth and saliency map are viewed
as distributions is the Kullback-Leibler divergence:

DKL(P ‖ Q) =
∑
x

p(x) · log2

(
p(x)

q(x)

)
(4.4)

It measures how much information is lost when the distribution P is approximated
by Q. However, for the very sparse ground truth fixation data, the result is largely
dominated by the non-fixated locations and results for the comparison of two sparse
distributions will be almost perfect, even if the peaks are at completely different
locations. Also, it is largely sensitive to the value range of the distributions that
are to be compared: a larger value range makes for larger possible values of p(x)

q(x)

and can easily change the magnitude of the KL divergence by a factor of 10000.
This is especially a problem because the KL divergence is not defined for q(x) = 0
if p(x) 6= 0 and a common practise is to replace zero values with something close to
zero, thereby introducing extremely small values and taking quotients up to very
high values. This can for example be done by calculating the softmax of the data
in order to turn it into a distribution: as it exponentiates all values, a zero value
is turned into exp(0)∑

x,y exp(I(x,y))
= 1∑

x,y exp(I(x,y))
.

Summary

Using the entries on the MIT Saliency Benchmark as samples, the correlation be-
tween the different scores can be calculated (using Pearson’s correlation coefficient).
This shows that all the AUC scores are not correlated to EMD very much. Espe-
cially sAUC is not highly correlated to any other score. This again underlines that
different scores judge different aspects of the saliency maps and therefore, models
should always be compared in terms of several different scores.

For this work, the results of the network training were evaluated using AUC,
CC, KL and SIM scores. The KL divergence was later excluded again, because
it was found to not be comparable with results by other authors and not add
any further information. The InfoGain score developed by the authors of Deep
Gaze [34] also could not be used, because not all information necessary to recreate
their gold-standard model could be found in the paper at that time. The loss
function that was used for training (Euclidean Loss, see 3.2.1) is also a score and
was reported, too. However, it includes a regularization term on the weights of
the network and is therefore not really comparable between models with a different
number of weights.
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4.2 Training

All models for the experiments in the following two sections were trained using SGD
(stochastic gradient descend, see Section 2.2) with momentum 0.9 and a batch size
of at least 50 (the exact value depends on the size of the training and validation
set). Every 100 iterations, the loss on the validation set was computed. As in [13],
the weight λ of the regularization term in the loss function was set to 0.001. The
learning rate for the optimisation algorithm can be decreased after a fixed amount
of steps, by multiplying it with a constant factor γ. A range of different values for
the initial learning rate, the step size for decreasing the learning rate and for γ were
tried out for each model. During training, the ordering of input data is constantly
shuffled to avoid getting stuck in a cycle of contradicting weight updates.

4.3 Experiments with the Reimplemented Deep

Gaze Model

The implementation of the Deep Gaze architecture was studied thoroughly to de-
termine the best possible setup for the later learning task. Experiments were per-
formed with different input feature maps and input image sizes. In addition, the
effect of the blurring that is applied to the generated feature maps was quantified.
I expect that the results from training on the MIT dataset [10] with free viewing
gaze data will also apply to the training of a model for task dependent top-down
attention, as the parameters in question (such as input image size) mainly affect
the feature extraction and not so much the saliency learning itself. Nevertheless,
the two datasets in use (the MIT dataset for bottom-up saliency and part of the
COCO dataset [35] for top-down saliency) might be different enough in terms of
e.g. average object size, that this assumption needs to be validated.

Every 100 iterations of the training process, a snapshot of the model was saved.
The best model in terms of the validation loss as well as every thousandth iteration’s
model were saved in order to plot the development of scores over the learning
process. To better monitor the process, the development of the weights was also
plotted. In addition, the output of the network for some random example images
was saved as an image for all iteration snapshots.

4.3.1 Comparison of Input Features and Input Image Size

The first experiment was carried out on the most basic setup to determine which
layers of the Krizhevsky network provide the best input for the saliency model
and which size the input images should have for the feature extraction. For this
evaluation, three datasets (each split into training, validation and test set) had to
be constructed, that included all output feature maps of the Krizhevsky network
[21] for all its layers. For the set big, input images were used at full resolution
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(1024 × 768 pixels), for medium the resolution was halved (512 × 384 pixels) and
for small halved again (256 × 192 pixels). As the feature maps of the different
layers have different sizes, all were rescaled to 64 × 48 pixels, which is the size of
the biggest output feature map for the smallest input image size.

The network that is trained only consisted of the input layer that loads the data
form the hdf5-files, the linear combination layer, a softmax calculation and the loss
layer. The blurring employed in the Deep Gaze paper is expected to bring equal
benefit to all layers and input sizes and was therefore left out for this comparison.
The effect of the blurring step is evaluated in Section 4.3.2. In the following, a
separate model was trained for each combination of input size and input layer. All
models were trained with a range of different solver parameters (e.g. learning rate
and interval of learning rate adaptation) and the best model in terms of validation
loss was chosen for evaluation.

SGD Parameters

Learning turned out to be very “quick”: In most cases, the model had already
converged when the snapshot at iteration 1000 was taken. Learning rates were
mostly 1 and learning rate adjustment did not seem to play a big role, as it mostly
happened only after the model had already converged. Only for the layers of the
first two stages, the selected learning rates were smaller and the convergence took
more time. Figure 4.1 shows an example of the plots of the weights, the validation
loss and scores over time.

Results

The comparison between the input layers showed that the saliency models that are
trained on the features from the first processing stage of the Krizhevsky network
(conv1, relu1, norm1 and pool1) perform considerably worse than those who got
layers from later stages as input. Figure 4.2 shows plots of the AUC and CC
scores achieved by the different layers and input image sizes. The SIM score is not
included, but behaves very similarly to the AUC score. A table with all scores can
be found in the appendix (8.1).

An interesting behaviour can be observed when looking at the results for the
maximum pooling layers, especially for the CC score: At the first pooling layer
(where the input image is subsampled by a factor of two), the scores increase for
all tested sizes of the input images. At the second pooling stage, the score for the
small input images suddenly drops below the other two’s score. And at the last
pooling layer, both the medium images’ and the small images’ score drop by a very
big amount. The only score that still improves is the one for the biggest input
images.

So on the one hand, the quality of the extracted features is increased by the
subsampling steps. But on the other hand, the relation between a neuron’s response
and the region of the image that caused this response gets weaker with every layer,
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(a) Development of the loss on the validation set.

(b) Development of the scores of the model during training.

(c) Development of the weights of the linear combination layer during training.

Figure 4.1: Example of plots that were used to monitor the training process. The
plots are from the training on the relu5 feature maps and medium sized images. It
can be seen that the model converges very fast.
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as the size of the receptive fields of the neurons (when projected to the input
image) increases. For pooling layers, this increase in size is even stronger. So
at some processing stage, the point where the increase in feature quality cannot
compensate for the decrease in spatial information anymore is reached.

Interestingly enough, the results of the layer type comparison differ from the re-
sults the authors of Deep Gaze reported: They found an overall better performance
of the convolution layers in comparison to the corresponding further processing
layers, especially the normalisation and pooling layers. At a closer look on their
evaluation, it seems like they averaged over the results of all layers of the different
types instead of regarding the layers on the different processing stages separately:
This method gives worse results for the normalisation and pooling layers, as they
appear only on the first two (and the last, for pooling) processing stages which
show an overall worse performance independent from the layer type.

In the end, the layers norm1, norm2, relu3, relu4, relu5 and pool5 were chosen
for further experiments. While the layers from the first two parts of the network
(norm1 and norm2) do not give very good results in comparison to the other layers,
they were kept as representatives of those processing stages for later comparisons
nonetheless. The same is true for the pool5 layer, which only gives really good
results for full resolution input images.

Concerning the size of the input images, the medium input image size was
chosen, as the overall best scores could be achieved with this configuration and
the relu5 layer. All in all, it seems to be the best trade-off between increasing the
receptive fields of the neurons of the Krizhevsky network in relation to the image
size on the one hand and keeping an acceptable resolution for the output feature
maps on the other.

4.3.2 Effect of Blurring

The benefit of applying a Gaussian blur to the linear combination of the input
feature maps was evaluated by testing its effect with the selected input layers on
the medium image size testset. After initializing a new test network, the weights
were adapted according to a Gaussian function with a specific σ. Two different
values for σ were evaluated: σ = 0.7 was found to fit best into a convolution kernel
of size 5× 5 and σ = 1.1 was used for a 7× 7 kernel.

While a stronger blurring (i.e. a bigger σ) might have been even more beneficial,
this kernel size was found to be the biggest size for which the backpropagation step
of the network training could still be computed without running out of memory
(supposedly, this problem is no longer present in more recent versions of caffe).

Results

The blurring was found to increase all scores, but by a smaller amount than ex-
pected. The average percental increase can be found in Table 4.1a. Blurring had
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Figure 4.2: Comparison between the model performance for different layers of the
Krizhevsky network as input and different input image sizes.
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AUC CC SIM

σ = 0.7 1.09 % 4.73 % 1.03 %
σ = 1.1 1.76 % 6.29 % 1.56 %

(a)

AUC CC SIM

no blur 66.81 % 0.256 0.225
σ = 0.7 67.67 % 0.269 0.228
σ = 1.1 68.01 % 0.271 0.229

(b)

Table 4.1: The effect of Gaussian blurring with different values for σ. All scores in-
crease with stronger blurring, but only by an overall small amount. Table 4.1a shows
the average of the percental increase in scores over the models getting input from
the norm1, norm2, relu3, relu4, relu5 and pool5 layers of the Krizhevsky network.
In Table 4.1b, the absolute values of the scores achieved by the best model (relu5
input) for the different amounts of blurring are shown.

the strongest effect on the CC score while the AUC and SIM scores only improved
by less then 2 %. The absolute values for the scores for the model based on the
relu5 layer (which performed best in all scores) can be found in Table 4.1b.

4.4 Experiments for the Top-Down Saliency

Model

For the training of a task dependent top-down saliency model, a collection of the
best performing configurations found in the previous tests on the Deep Gaze reim-
plementation was evaluated. As explained in Section 3.2.2, a separate model was
trained for each target object category and thus, there are no architectural differ-
ences between the networks for the top-down saliency model and the reimplemen-
tation of Deep Gaze. However, the images on which the model is trained come
from another source (the COCO [35] dataset instead of the MIT data set [10])
and so the experiments with the different input image sizes had to be repeated.
To some extend, the different images might also influence the performance of the
model with different feature maps from the Krizhevsky network, but it is expected
that layers that did perform best for the reimplementation of Deep Gaze will also
perform well for the task dependent models.

4.4.1 Comparison of Input Features and Input Image Size

Again, the performance of the model was evaluated with three scales for the input
images: big (1024×768 pixel), medium (512×384 pixel) and small (256×192 pixel).
While the performance with the different layers from the Krizhevsky network as
feature maps also depends on the initial rescaling of the input image, not all layers
had to be evaluated again: The results from 4.3.1 show, that relu layers generally
perform slightly better than the corresponding convolution layers. As there is also
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no difference in receptive field size between the two layer types, it suffices to evaluate
the relu layers. The layers from the first two processing stages are also unlikely to
perform better than the layers from later stages. So again, only the layers norm1,
norm2, relu3, relu4, relu5 and pool5 were chosen for the evaluation. In contrast
to the initial tests on the Deep Gaze reimplementation, the blurring step with the
7× 7 kernel (see Section 4.3.2) was already included in the model architecture for
this evaluation.

Results

The first result of this comparison is that it was indeed necessary to try out all
input sizes again: The overall scores achieved when using the smallest input image
scale were in many cases better than those for the medium sized images. Also,
the performance with the pool5 layer for the medium sized images improved in
comparison to the tests on the MIT dataset. Figure 4.3 shows the AUC and CC
scores that were achieved with the different input image sizes exemplary for the
model that was trained on the fixations from the laptop search task. For both
scores, the performance is best when using small input images and the feature
maps from the relu4 layer of the Krizhevsky network.

The observed results are plausible, as the average image size in the COCO
dataset is smaller than the 1024× 768 pixels of the images from the MIT dataset.
For the eye tracking experiment, all used images from COCO were however rescaled
to 1024 × 768 pixels. Because of this, the 512 × 384 pixel size is actually closest
to the original image size, the big images have about double and the small images
have about half of the original resolution. As a result, the critical point, where the
receptive fields of the neurons in the Krizhevsky network become too big to still
give enough spatial information, is only reached after a few more processing steps
than for the images from the MIT dataset.

Figure 4.4 shows a comparison of the AUC and CC scores that were achieved
by the models trained on fixation data from the different tasks on the smallest
input image scale. For comparison, the results of the reimplementation of Deep
Gaze (with the same amount of blurring, but on the medium sized images from
the MIT dataset) are also reported. It can be seen that the results for the clocks
and laptops tasks are much better than for the beds task. Both models achieve
higher scores than the reimplementation of Deep Gaze, while the model trained on
fixations from the bed task performs worse.

This big difference in the performance of the models is most probably due to the
fact that human observers do not need to actively search an image for determining
whether there is a bed in it or not. Beds are usually big enough to be noticed on
first glance. Because of this, the average recording time was much shorter (between
2.2 seconds and 1.9 seconds, see 5.1.2) than for the other tasks and also than the
3 seconds per image that were used to record the fixation data for the MIT data
set. As a result, the ground truth fixation data for the bed search task is sparsest
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Figure 4.3: Comparison between the performance of the model trained with fixa-
tions from the laptop search task on the different input image sizes.

and probably also contains the least usable information.

In the end, one input image size and one set of input feature maps had to be
chosen for the model. As in principle, the models for the different tasks should
be integrated into one single network that only adjusts the weights of the linear
combination depending on the task, it was preferable to use the same setup for all
tasks. Table 4.2 shows which combinations of input size and feature maps from the
Krizhevsky network achieved the best scores for the different target objects. Only
three combinations are present: The AUC score was best for small input images
and the relu4 layer for all tasks. For beds, the same holds true for the CC score,
while the best CC for clocks was achieved by the medium + pool5 combination.
The SIM score was best for the combination of medium sized images and the pool5
layer for both clocks and beds. Only the results from the laptops task diverged
from this, with the medium + relu5 combination working best for both SIM and
CC.

Eventually, the combination of small input images and features from the relu4
layer was chosen as the final model configuration, as it performed best for the most
target objects and scores. Using the relu4 instead of the pool5 layer also saves
three processing steps during the feature extraction (the last stage of convolution,
relu and maximum pooling layers).

4.4.2 Comparison of Input Features for Modified Fixation
Maps

As described in Section 3.2.3, two different methods of modifying the ground truth
fixation maps (as well as their combination) were tried out: excluding fixations that
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(a) Comparison of the AUC scores on small sized images.
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(b) Comparison of the CC scores on small sized images.

clocks beds laptops Deep Gaze

Figure 4.4: Comparison between the performance of the top-down saliency models
for the different tasks. All scores were calculated on 256 × 192 pixel sized images.
For comparison, the scores achieved by the reimplementation of Deep Gaze are also
reported. Note that they were calculated on a different dataset (the MIT free viewing
data set) and on a different input image size (512 × 384 pixels), that, however,
corresponds to the same average downscaling factor of the images.

Best AUC Best CC Best SIM

value size layer value size layer value size layer

clocks 73.2 % small relu4 0.342 medium pool5 0.324 medium pool5
laptops 70.9 % small relu4 0.281 medium relu5 0.258 medium relu5
beds 66.5 % small relu4 0.222 small relu4 0.22 medium pool5

Table 4.2: For each task and score, this table shows the best performing combination
of input image size and the layer of the Krizhevsky network that was used as input
feature map.
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are common to the fixation maps for all three tasks (which is termed “purifying the
fixations” in the remainder of this work) and adding markers for the target objects.
While the best size for the input images should not be affected by this, the altered
ground truth data could well result in other features from the Krizhevsky network
being better suited to model the fixations. To test this, different models were
trained for all combinations of task, modification method and input feature maps.
Concerning the input image size, the smallest scale was used. The feature maps
from the pool5 layer as well as from the norm1 and norm2 layers were excluded as
they did not promise good results and only the three remaining layers relu3, relu4
and relu5 were used in the evaluation.

Results

A first look at the results showed that the AUC and CC scores achieved by the
models trained on all variants of modified fixation maps were generally worse than
the scores with the unmodified fixation maps. An exception are the SIM scores
for the models that were trained on the original fixation maps with added target
markers.

This decrease in score does not come as a surprise, as both modification methods
make it slightly more difficult to recreate the exact pattern of the ground truth:
The responses on the different feature maps most often roughly follow the structure
of the image. So generating a saliency map where for example one part of a sofa is
salient and the rest is not, is hard if all feature maps either respond to the whole
sofa or do not respond to it at all. The Gaussian function that is used as a marker
for the target objects is also a structure that is very unlikely to be represented in the
feature maps and likewise, it is difficult to exactly recreate this structure accurately
from them. Nevertheless, the markers pose only a small problem because of their
rather small values in comparison to the fixations. Therefore, the scores achieved by
the variant with purified fixations were lower than those of the variant with markers.
The models that were trained on the combination of both variants performed even
worse in terms of AUC and CC. Only the SIM scores of the combination increased
in comparison to the variant with purified fixations.

In Figure 4.5, the results of the models trained on the purified fixation maps
are shown for the AUC, CC and SIM scores. For the variant with markers on
the target locations, all scores but the SIM score of the model for the clock task
were highest when using the feature maps from the relu4 layer of the Krizhevsky
network. Results with the purified fixations or the combination of both were less
consistent: For clocks and laptops as target, the relu4 layer performed best in terms
of AUC and CC in both cases. The performance in terms of the SIM score was
mostly best with the relu5 layer. Only for the model that was trained for the bed
task, the AUC and CC scores achieved with the feature maps from the relu3 layer
were highest.

In the end, the relu4 layer was again found to perform best in most cases, so
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Figure 4.5: Comparison between the performance of the top-down saliency models
for the different tasks when trained on the fixation maps from which the fixations in
regions that were fixated by participants from all were deleted.

AUC CC SIM

clocks laptops beds clocks laptops beds clocks laptops beds

original 73.2 % 70.9 % 66.5 % 0.333 0.277 0.222 0.301 0.253 0.211
marker 71.4 % 71.9 % 63.8 % 0.326 0.309 0.202 0.311 0.269 0.267
purified 68.7 % 67 % 58.8 % 0.238 0.19 0.081 0.232 0.176 0.136
both 66.8 % 65.7 % 55.5 % 0.231 0.188 0.076 0.24 0.206 0.205

Table 4.3: The scores achieved by all models that were used for the further evalu-
ations described in Section 5.3 and Section 5.4.

those models were used in the following experiments on region proposals, that are
described in Section 5.4. Table 4.3 summarises and compares the scores of all final
models.
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Chapter 5

Evaluation and Results

This chapter starts with descriptions of the experiments done to evaluate the quality
and characteristics of the gathered fixation data and their results. In Section 5.2,
the success of the reimplementation of the Deep Gaze bottom-up saliency model is
discussed. The saliency maps generated by the different versions of the top-down
saliency model are analysed in Section 5.3, before the results of the experiments
on generation region proposals with saliency maps are shown in Section 5.4.

5.1 Evaluation of Eye Tracking Data

Multiple evaluations were carried out on the fixation data acquired through the ex-
periment described in Section 3.1.2. They mostly aim at validating the assumption
that fixation locations are roughly consistent between subjects for the same task
and differ for subjects that view the same image under different tasks. While these
findings were documented by Yarbus [40] and were later validated by Mathe and
Sminchisescu in [41], this was still necessary to validate the experimental setup
(especially given the rather cheap eye tracking device) and for having a kind of
benchmark on which to measure the produced saliency maps.

5.1.1 Experiments

All fixation maps used in this evaluation were created in the way described in
Section 3.2.2. For visual inspection of the fixation patterns, the fixations were
overlaid over a greyscale version of the presented images in two different ways:
First, the combined fixation maps of all participants for each task are overlaid over
the image separately as a heatmap. In the second variant, the fixation maps for
the different tasks are thresholded and then overlaid on one image together, where
every task is displayed in another colour channel. This highlights image areas that
were viewed by observers from different tasks. Figure 5.1 in the results part of this
Section shows two examples for the visualisations.

49
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Agreement of Fixation Patterns Across Subjects

The agreement of fixation patterns from different participants that viewed the same
image under the same task was calculated in the following manner: For each partic-
ipant and each image, the participant’s fixation map is compared to the averaged
fixation maps from the other participants on this image. For comparison, AUC and
CC are used (see Section 4.1 for the definitions). For AUC, the single fixation map
is the target, so that the score describes how well the other participants’ combined
fixations can be used to predict the target fixation map.

Agreement of Fixation Patterns Across Images

As a comparison to the consistency of fixations among subjects, the agreement
between fixations of the same participant on different images was measured: For
each image and participant, the participant’s fixation map is compared to the av-
eraged fixation maps from the same participant on four other images. The number
of other images was chosen this small to ensure comparability with the comparison
between subjects described above: In [33], the authors found that comparing two
fixation maps for the same image from different observers results in increasingly
better scores, the more observers are used to create the fixation maps. In their case,
the AUC score increases from 86.5 % for two observers to 89.9 % for 39 observers.
The other scores they tested (EMD ans SIM) also increased, but more slowly. As
every task was completed by five subjects in the above described experiment, the
fixations from one participant are always compared to an average of the remaining
four other participants.

The hypothesis is that the agreement between fixations for different images
should be small. This is because the pure location of a fixation in one image
(without any image features) should give no information about the fixated locations
in another image. If the images in the COCO dataset [35] are as diverse and free of
the photographer bias as the authors suggest, there should be no common geometric
structure to the images and therefore fixated locations in one image should not be
able to predict the fixations in other images well.

Agreement of Fixation Patterns Across Tasks

To evaluate how different the search behaviour of humans is across different tasks,
the combined fixation maps for the different tasks were compared in the same
manner as described above. To make results comparable to the results from the
cross-subject and cross-image comparison, not all participants’ fixation maps were
used for the combined fixation maps of the different tasks. Instead, for each task,
each participant’s fixations were separately compared to the fixations of two ran-
domly drawn participants from each of the two other tasks and then averaged. Like
this, the agreement scores are again computed from the comparison of a fixation
map from one participant with the combination of four other fixation maps, which
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is in line with the other evaluations.
It can be expected that the fixation patterns of participants that perform dif-

ferent tasks are less similar than for participants with the same task. However, the
agreement should be higher than for the comparison across different images, as the
image is the same and some details might draw attention independent from the
tasks.

Percentage of Fixations on Targets

To measure the proportion of fixations on the actual targets, the raw fixation points
were used and the number of fixations lying in target bounding boxes was counted.
As the bounding boxes usually cover more than the actual target, the proportion is
slightly overestimated. This should compensate for the underestimation resulting
from not blurring the fixation points. In a second analysis, it was evaluated how well
the target locations predict the participants fixations. For this, the regions enclosed
by the bounding boxes are approximated by a Gaussian function with maximum
at the centre of the box, that is resized such that its values that are noticeably
different from zero fit the boxes dimensions (thereby slightly underestimating the
boxes area).

Influence of Reaction Time and Target Size

The percentage of fixations on the targets as well as the agreement of fixation
patterns between subjects were also plotted against the time the subjects viewed
a certain image in the presentation, to determine if the reaction time influences
this values. The same was done for the proportion of the whole image’s area that
the target took up (although only for images that include a single instance of the
target object). Finally, reaction time was plotted against target area, to validate
the assumption that smaller targets make for a more difficult search task. 1

5.1.2 Results

Visual Inspection

Visual inspection of the overlaid fixation maps from the different tasks showed that
for example faces, hands, food, cats and dogs do reliably draw attention irrespective
of the task under which the image is viewed.

While the fixations differ for different tasks in most cases and different search
patterns and strategies can be observed, the differences are not as pronounced as
expected. There are many potential reasons for this: First, as mentioned above,
certain objects will draw attention no matter the task. Also, some subjects re-
ported that they were not always able to resist the temptation to look at certain

1The plots turned out to not contain much interesting information. They are therefore not
included in this document, but can be found on the enclosed CD.
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pictures a little bit longer than necessary. Second, the tracker might not always
separate fixations and saccades correctly and therefore wrong fixations might show
up between two salient objects. And finally, the target objects often show up in
similar locations: Laptops tend to be left on beds and clocks will often be found
on desks next to laptops or on bedside tables. Therefore, task dependent search
behaviour might often result in similar fixations despite of different tasks.

It can also already be observed that the targets of the search tasks do not always
draw a peak of fixations. Participants are able to notice very prominent objects
without directly fixating them (covert attention, see Section 1.1). Noticeably large
peaks of fixations on the target are most often only encountered if participants are
uncertain about the identity of the object they are looking at or about whether
or not it is included in their target category. So instead of sparse peaks on search
targets, the fixations are usually spread out widely across regions that are relevant
for the search task and regions that are just interesting anyway. Or, to put it
the other way around, fixations omit “boring” regions like the sky and plain walls
pretty reliably.

Figure 5.1 shows two examples for the visualisations. The first image (Figures
5.1a to 5.1d) is a case where fixation patterns differ perceivably for the different
tasks: While subjects looked at the faces of people in the image in all tasks, the
wrists were only interesting when searching for clocks. When looking for laptops,
the table in the foreground (with a laptop on it) becomes interesting, as well as the
screen in the background (which could belong to a laptop). Fixations for the bed
task are less specific, mostly because there is clearly no bed in the image.

The second image is an example where the task does not influence the fixations.
In all cases, viewers fixated the prominent dog in the centre of the image while
mostly not noticing the laptop on the left edge of the image. In fact, all of the five
participants that searched for laptops counted zero laptops in this scene.

Counting Task Results

The first quantity that was evaluated was the counting performance of the subjects:
If one subject had had noticeably worse scores than the others, the data would have
had to be excluded from the evaluation. This was not the case and performance
was relatively constant among subjects, with slightly better results in the case that
no target was present in the image. The most common source of mistake that was
observed during the experiment and also reported by the participants afterwards,
were disagreement with the classification of objects in the dataset and incomplete
labelling. For example, in some cases, sofas are labelled as beds and often, watches
are not labelled at all (presumably because only the wristband is visible). Results
are shown in Table 5.1.
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(a) Overlay of all tasks (b) Task: Clocks

(c) Task: Laptops (d) Task: beds

(e) Overlay of all tasks (f) Task: Clocks

(g) Task: Laptops (h) Task: beds

Figure 5.1: Visualisation of fixations on the same image for the different tasks. In
(a) and (e), the colour codes for the task that fixations are from: Red is for clocks,
blue for beds and green for laptops. Mixed colours indicate areas fixated by viewers
from multiple tasks, white areas were fixated under all tasks. In the other images,
redder colour indicates a higher amount of fixations at this point.



54 CHAPTER 5. EVALUATION AND RESULTS

average clocks laptops beds

target present 76.08 % 72.94 % 77.68 % 77.6 %
target absent 88.02 % 84.62 % 90.16 % 89.29 %

Table 5.1: Percentage of correct answers averaged over all participants as well as
averaged separately for the different tasks.

average clocks laptops beds

target present 3.089 s 3.884 s 3.199 s 2.183 s
target absent 2.667 s 3.707 s 2.411 s 1.882 s

Table 5.2: Times for which the images were viewed averaged over all participants
as well as averaged separately for the different tasks.

Image viewing times

During the eye tracking experiment, the time for which the image was visible was
recorded (remember that participants had the possibility to abort the image pre-
sentation whenever they felt ready). The average time that participants viewed the
images is slightly higher if targets were present in the images. Averaging the times
for the different tasks separately shows that participants spent the longest time
when searching for clocks, while participants that searched for beds regarded the
image not significantly longer than the minimum presentation time of 1.5 seconds.
Times are shown in Table 5.2.

Plotting the time for which the images were viewed against the percentage of the
image area the target took up showed that images with very small targets were on
average viewed slightly longer than images where the target takes up almost the
whole image. This was to be expected as small targets are harder to spot and also
more difficult to classify.

Agreement of Fixation Patterns Across Participants for the Same Task

Results of the experiment are depicted in Table 5.3. The results are fairly constant
between tasks, with slightly worse scores for the bed search task. This could be due
to this task being the easiest and having the lowest average reaction times: If the
search task could be solved in less than the minimum viewing time of 1.5 seconds,
participants had to spent the rest of the 1.5 seconds essentially free viewing the
image.

Plotting the agreement of the fixation patterns against the time the images were
viewed revealed no significant or systematic differences between different viewing
times. The same is true for the influence of the target size on the agreement.
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overall clocks laptops beds

AUC CC AUC CC AUC CC AUC CC

target present 67.18 % 0.21 69.23 % 0.28 69.07 % 0.24 63.23 % 0.12
target absent 67.7 % 0.2 68.82 % 0.23 70.11 % 0.24 64.15 % 0.14

Table 5.3: Agreement of fixation patterns between participants on the same task
and image.

overall clocks laptops beds

AUC CC AUC CC AUC CC AUC CC

55.7 % 0.039 55.16 % 0.033 56.28 % 0.043 55.87 % 0.041

Table 5.4: Agreement of fixation patterns on different images for the same partici-
pant.

Agreement of Fixation Patterns Across Images

As a comparison, the agreement between the fixation patterns of the same par-
ticipant on different images was calculated (cross-image control). Results can be
found in Table 5.4. As expected, agreement scores were lower than for the across
participant agreement, with the AUC score only slightly above chance (50 %).

Agreement of Fixation Patterns Across Tasks

The agreement values for the fixation patterns on the same image and different tasks
can be seen in Table 5.5. It is lower than for the comparison among participants
that did the same task, but still higher than the cross-image control. This is
in line with the hypothesis formulated above: Fixations on the same image are
more similar than those on different images regardless of the task, as certain image
elements draw attention from all participants in a bottom-up manner. Still, the
agreement between two participants that perform the same task is higher, as the
task also guides attention in a top-down manner. However, the difference between
the agreement of the fixation patterns with different tasks and with the same task is
not very significant, especially not if the target object of the search is not present in
the image. The consequences of this for the top-down saliency model and possible
ways for improving the situation are presented in Section 5.3.

Fixations on Target Objects

The average percentage of fixations that fell into the bounding boxes of the target
objects was surprisingly low with 16.88 % for beds, 11.33 % for laptops and 3.77 %
for clocks. The differences of values can be explained by the different object sizes
and the inaccuracy of the tracker, which plays a much bigger role for small bounding
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overall clocks laptops beds

AUC CC AUC CC AUC CC AUC CC

target present 62.34 % 0.123 62.84 % 0.151 63.15 % 0.124 61.03 % 0.095
target absent 65.31 % 0.155 62.91 % 0.157 67.6 % 0.18 65.42 % 0.127

Table 5.5: Agreement of fixation patterns between participants viewing the same
image under different tasks.

overall clocks laptops beds

AUC CC AUC CC AUC CC AUC CC

61.17 % 0.12 55.04 % 0.12 61.55 % 0.14 66.93 % 0.09

Table 5.6: Agreement of fixation patterns of participants with predictions based on
the target bounding boxes.

boxes. When using the bounding boxes as a prediction of fixations, the AUC and
CC scores were mostly higher than the cross-image control but lower then the
agreement between participants on the same image (both for participants doing
the same or different tasks). Only for beds, the AUC score is higher, which is
probably due to the fact that beds are usually very big and the AUC score tends to
reward a bigger amount of positive predictions. When looking at the CC score, the
results are however worse, reflecting that the spatial distribution of the fixations is
mostly different from the bed locations.

The agreement of the fixations with the region defined by the target objects
was of course higher for bigger objects. As observed before for the agreement
between participants, the plot of the agreement versus the time that the image was
viewed revealed no systematic effect of the presentation time. It can thus be noted
that neither the size of the target objects nor the reaction time of the participants
influence the fixation patterns in a consistent way.

5.2 Reimplementation of Deep Gaze

Reimplementing Deep Gaze was an important step for this work, as the model
forms the basis for the top-down saliency model that was implemented. In order to
confirm that the reimplementation was successful, one needs to compare the scores
achieved by the two models. There are, however, some problems in doing so:

The first is that the authors of Deep Gaze added a model of the centre bias to
their saliency map predictions. The MIT saliency benchmark contains a very simple
centre bias model (a Gaussian function that is resized to fit the image’s aspect ratio)
for comparison, which alone achieves an AUC score of 78 %, a similarity score of
0.39 and a correlation coefficient of 0.38. The Deep Gaze implementation of the
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centre bias is learned from the combined fixations on the training set and can
therefore be expected to perform even better.

At least for the comparison of the AUC score, this problem could be solved by
comparing the AUC score of the presented model with the sAUC score of Deep
Gaze: This score was designed to punish models that implement the centre bias.
Therefore, the authors of Deep Gaze used no centre bias for the computation of
the saliency maps that were evaluated using sAUC. The 71.69 % that Deep Gaze
achieves for this score are much closer to the AUC score of 68 % that was found
for the best configuration of the reimplementation.

However, as sAUC was not implemented for this work, this comparison is not
quite fair either. So instead, for the best performing reimplementation (based on
input from the relu5-layer of the Krizhevsky network), a simple Gaussian centre
bias model was combined with the predicted saliency maps and the scores on the
test set were calculated again. The bias was calculated on a 512× 384 pixel sized
grid according to

c(x, y) = exp

(
−(0.425x)2 + (0.575y)2

2σ2

)
(5.1)

with σ = 35. After computation, it was downscaled to 64 × 48 pixel. For combi-
nation with the predicted saliency maps, it was rescaled to have a maximum value
of 7.5 % of the maximum value of the saliency map. Then, the softmax of the
combination was calculated.

A comparison of the scores can be found in Table 5.7. The first result is that
the combination of the presented model with the simple centre bias achieves much
higher scores than the model without the bias or the bias without the model.
However, the scores, especially the CC and SIM scores, are still worse than those
achieved by Deep Gaze.

As a second result, it should be noted that my own model of the centre bias has
the same AUC score as the one present in the MIT benchmark set, but its SIM and
CC scores are also worse than those of the MIT bias. The amount of difference is
hereby almost the same as the difference between the scores of Deep Gaze and the
presented model (with centre bias). This observation implies that the difference in
scores does not come from a difference in the models but from a difference in how
the scores are computed.

A careful reader might have already noticed the second problem for the comparison
of the scores: While the results reported for Deep Gaze are for the 300 test images
of the MIT saliency benchmark dataset, all results in this work are based on the
test split (107 images) of the MIT dataset. Both sets come from the same authors
and the fixations were recorded with the same eye tracker. It seems reasonable to
assume that the two data sets are not substantially different in terms of content,
especially because the authors recommend to use the MIT dataset for training
models that should be evaluated on the benchmark set. However, while the MIT
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model AUC CC SIM

Deep Gaze 84 % 0.48 0.39
centre bias MIT 78 % 0.39 0.38
centre bias own 78 % 0.29 0.3
relu 5 68 % 0.27 0.23
relu 5 with centre bias 82 % 0.38 0.3

Table 5.7: Scores achieved by Deep Gaze (as reported on the MIT saliency bench-
mark), the centre bias model included in the MIT saliency benchmark, an own centre
bias implementation on the test set and the best reimplementation of Deep Gaze done
in this work with and without centre bias.

dataset contains fixations from 15 observers, the benchmark dataset was viewed
by 39 observers. As was already discussed in Section 5.1, better prediction scores
can generally be achieved by combining fixation data from more observers for the
labels. This leads to the assumption that the model presented in this work would
have achieved slightly better scores on the MIT benchmark dataset, but it could
of course also be the other way around.

Finally, the last problem for comparison is the blurring of the ground truth fixation
maps: For the scores reported on the MIT saliency benchmark, the binary fixation
maps were blurred with a Gaussian filter with σ = 8√

log(2)
≈ 9.6 in the frequency

domain. As the fixation maps used in this work are by factor 16 smaller than
the original image size, σ = 9.6

16
= 0.6 was used for blurring instead. A quick test

showed that doubling σ to 1.2 improved both CC and SIM scores of the model with
added centre bias by 0.09 to 0.46 and 0.39 respectively. As AUC is the only score
that is not affected by blurring (because the unblurred fixation maps are used for
its calculation) and the AUC scores of the original model and the reimplementation
are already close, this suggest that differences in the blurring of the fixation maps
could be responsible for the worse CC and SIM scores.

5.3 Saliency Map Analysis

For analysing the saliency predictions of the different models, the 859 images of
the evaluation set described in Section 3.1.1 were used. It should again be noted
that no fixation data was collected for these images and none of them was used in
the training or the quantitative evaluation of the models.

A first visual comparison of the saliency maps that were produced by the
saliency models for the three different search tasks was sobering: The saliency
predictions for the same image are almost identical, independent of the task for
which the model was trained. Figure 5.2 shows an example of the saliency maps
for one image from the evaluation dataset.
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However, while no top-down effects of the task are noticeable, all models show
the behaviour of a bottom-up saliency model that is driven mostly by the semantic
content of the depicted objects: Humans for example are predicted to be very
salient, with highest values of saliency on the faces. The same holds true for
animals like cats and dogs.

This suggests that the reason for the missing task specificity lies not in the
model or a mistake during the training procedure but in the collected fixation
data: The object categories mentioned above are very strong drivers of attention
and participants are usually not able to avoid fixating them. The influence of
those bottom-up distractors on the data could be so big that the remaining task
specific fixations are not plenty enough to keep the model from learning bottom-up
saliency. This would also explain the small difference in the agreement of fixation
patterns of different participants depending on whether or not they had the same
task (see Section 5.1). For testing this hypothesis, different methods of modifying
the fixation data were tried out and results are reported in the following section.

5.3.1 Results with Modified Fixation Maps

As described in Section 3.2.3, two different ways of modifying the fixation maps for
the training data were tried out: Purifying the fixation maps and adding markers
for the target locations. They reflect two possible causes for the missing task
specificity of the model: For once, the fixations on objects that are not related to
the task are thought to dominate the fixation data. As a result, the model is not
forced to learn anything task dependent, because it gets good enough scores by
simply learning bottom-up saliency.

The second possible problem is that the target objects might not be emphasised
enough by the fixations. There usually are fixations on the search targets, however,
they are not more plentiful than on other interesting parts of the scene and do not
reflect the objects shape and size. Thus, the model could probably benefit from
more direct information about how the target of the search actually looks like. Such
knowledge is of course less important for contextual information like that people
usually look to tables to find laptops. On the other hand, search is not only guided
by such higher-level considerations but also by simply matching the stimuli with
the internal representation of the target object.

For evaluating the impact of the modified training data, the average agreement
between the saliency maps that two different models produce for the same task and
image was computed in terms of CC and SIM score. The results of this comparison
can be found in Table 5.8. It can be seen that the saliency maps for the bed task
are the most dissimilar between the models and those for the clock task have a
higher agreement than those for laptops.

Saliency maps produced by the model trained on fixation maps with markers on
the target objects are most similar to those produced by the original version. The
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(a) Original image (b) Task: clocks

(c) Task: laptops (d) Task: beds

(e) Trained on MIT free viewing data

Figure 5.2: Example of the saliency maps produced by the models trained for the
different task as well as by the reimplementation of Deep Gaze. The saliency maps are
almost identical and mainly emphasise the face and the hands of the person depicted
in the original image. In comparison, the clock on the wall in the background has
low saliency values, even for the model trained to find possible clock locations. The
predictions of the top-down models also do not differ much from the output of the
reimplementation of Deep Gaze, despite the fact that the models were trained on
different datasets and use different feature maps as input.
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original - marker original - purified original - both

clocks laptops beds clocks laptops beds clocks laptops beds

SIM 0.96 0.94 0.92 0.95 0.95 0.87 0.94 0.9 0.81
CC 0.99 0.97 0.91 0.97 0.97 0.75 0.96 0.88 0.46

marker - purified marker - both purified - both

clocks laptops beds clocks laptops beds clocks laptops beds

SIM 0.94 0.93 0.88 0.95 0.93 0.86 0.95 0.91 0.85
CC 0.97 0.95 0.74 0.98 0.94 0.67 0.98 0.91 0.55

Table 5.8: This table shows how similar the saliency predictions of the models
trained on different variants of modified fixation data are for the three tasks.

clocks & laptops clocks & beds laptops & beds

CC SIM CC SIM CC SIM

original 0.967 0.942 0.944 0.927 0.957 0.932
markers 0.901 0.9 0.832 0.873 0.847 0.887
purified 0.903 0.907 0.545 0.82 0.648 0.837
both 0.777 0.862 0.301 0.776 0.393 0.807

Table 5.9: Comparison of the similarity of the saliency predictions on the same
image for different tasks.

combination of both modification methods results in the biggest differences to the
original model. Finally, the resulting saliency maps when using both modifications
are slightly more similar to the predictions of the model based on the fixation maps
with markers. This seems plausible as for big target objects like beds, the markers
are also very big and therefore have a bigger impact on the model than the removal
of a few fixations.

In addition, for each variant of fixation map modification, the average agree-
ment between the saliency maps produced by the models that were trained for the
different tasks was computed to measure the task specificity of the models. Finally,
as baseline for the maximum amount of dissimilarity that can be expected, the av-
erage similarity between the saliency maps of different images was approximated
by comparing each saliency map to the maps for the following three images. This
was done separately for each model and task.

Unmodified Fixation Data

The high similarity of the saliency maps for the different tasks that was found by
visual inspection was confirmed by the agreement data: The lowest CC was 0.944
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for the comparison between the saliency maps for clocks and those for beds. The
SIM score was also lowest for this comparison with a value of 0.927. All results
about the agreement between the saliency predictions for the different tasks can be
found in Table 5.9.

The average agreement of the saliency maps for different images was judged
differently by the CC and SIM scores: While the average similarity score lies be-
tween 0.688 for the laptop saliency maps and 0.723 for those from the bed task,
the average correlation coefficient ranges from 0.024 for clocks to 0.031 for beds.
So the SIM score thus still finds a rather strong similarity between the saliency
maps while the correlation coefficient indicates that the maps are not correlated at
all. This extreme difference in the scores can at least partially be explained by the
higher value range of the CC score: it can take values from −1 to 1 while the SIM
score is limited to values between 0 and 1.

Markers for Target Locations

Adding markers for the target locations to the fixation maps slightly decreased the
similarity between the saliency predictions for the different tasks, as can be seen
in Table 5.9. The baseline agreement between saliency maps for different images
on the other hand was a bit higher than for the unmodified fixation data, with a
maximum SIM of 0.749 and maximum CC of 0.047 for the bed task.

Purified Fixation Maps

In comparison to the variant with markers on the target object locations, for the
purified variant, the agreement between the fixation maps for clocks and laptops
increased slightly. At the same time, the agreement between the saliency maps for
the bed task and those for the other two tasks showed a strong decrease in CC. It
fell to 0.545 for the comparison of the saliency maps for clocks with those for beds.
This is probably a sign for an increase in task specificity, as intuitively, the locations
viewed when searching for clocks or laptops should be quite similar (as for example
both frequently stand on desks), while locations should differ strongly between
searching for clocks and searching for beds. The agreement between the saliency
maps for different images again slightly increased for the bed task in comparison
to the variant with markers, but decreased for the laptop task.

Purified Fixation Maps with Markers for the Targets

The combination of the two modification methods turned out to be most promising.
A visual inspection of the saliency maps showed that while the models trained for
searching laptops and clocks still produce quite similar saliency predictions, the
model for beds has learned to highlight large areas of uniform colour. Therefore,
the saliency maps produced by this model differ perceivably from the predictions of
the models for the other two tasks. The observed behaviour of the bed model makes
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sense, as a bed is mostly a large area of uniform texture and colour, especially if
it is made. Figure 5.3 shows two example images and the corresponding saliency
maps produced by the model for the clock and the model for the bed task. While
the bed model performs well in the first example, in the second image it seemingly
takes the tennis court for a bed.

A look at the results of the the comparison between the saliency maps of the
same image for different tasks confirms the impression that the saliency predictions
for the bed task are very different from those for the other two tasks: The average
CC between saliency maps for the bed task and those for the clock task dropped
to 0.301 and the agreement between the models for beds and laptops is not much
higher (0.393). Even the difference between the predictions for clocks and laptops
increased; the CC of 0.777 is relatively low in comparison to the results found for
the models trained on fixation maps without or with only one modification.

At least for the bed task, the agreement between the saliency maps for differ-
ent images again increased strongly to a CC of 0.109. This is probably due to
the model’s tendency to predict very large patches of saliency, which slightly in-
creases the chance that the output for two different images is similar. On the other
hand, a correlation coefficient of 0.1 is still very low and usually interpreted as no
correlation.

(a) Original image (b) Task: beds (c) Task: clocks

(d) Original image (e) Task: beds (f) Task: clocks

Figure 5.3: Two examples for the saliency maps produced by the models for beds
and clocks that were trained on the purified fixation maps with markers. It can
be seen that the model for beds responds to large areas of roughly uniform colour
and texture. The model for clocks performs very well in the first example where it
highlights the alarm clock on the bedside table and the pictures on the wall, but it
still reacts strongly to the tennis player in the second example.
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All in all, both, agreement scores and visual inspection of the saliency maps, show
that the task specificity of the predicted saliency was improved by the modifications
of the fixation maps. However, while there are cases in which the predicted saliency
matches the image and the task very well, there are also examples for which the
prediction makes no sense at all. This is most often the case for images that clearly
do not contain an instance of the target objects (for example street scenes or the
tennis court in Figure 5.3 for beds or a picture of a building for laptops ). So
it seems like the model is missing a mechanism that suppresses the response to
certain features depending on the overall scene content. For example, if the image
is classified as showing a room, the bed model should react to the roughly uniform
area that could be a bed, but it should not do so if the scene is found to show a
tennis court.

5.4 Region Proposals

In this section, the images from the evaluation dataset are used to find out how
beneficial the saliency information is for generating or pruning region proposals for
an object search task. To do so, first, a list of all images in the set that contain
at least one instance of the target object had to be created for every task. The
experiments described in this section were then all done on the set of positive
examples for the corresponding task.

5.4.1 Experiments

Bounding box predictions in object detection tasks are usually evaluated using
the intersection over union (IoU) score (also known as Jaccard index ). For two
bounding boxes with areas A and B, it is simply defined by

IoU =
A ∩B
A ∪B

(5.2)

It is 1 if the bounding boxes are identical and smaller otherwise, as the intersection
of the bounding boxes is always smaller than or equal to the union of both areas. In
the two object detection challenges PASCAL VOC and ILSVRC, a bounding box
prediction for an object is counted as correct if the IoU score is at least 0.5. This
may seem like a very lenient score, but at least for small ground truth bounding
boxes, it is very likely that a predicted bounding box is at the right location but
still does not count as a hit, because it is more than twice as big as the target
bounding box.

Bounding Box Sampling

In a first set of experiments, it was evaluated how many bounding box proposals per
image need to be created by the presented methods for the different target objects
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to achieve a coverage of at least 95 %. A coverage of 95 % means having at least
one bounding box proposal that has an IoU score of over 0.5 for each ground truth
bounding box in 95 % of all images. The evaluated methods are random sampling,
statistical sampling, random sampling with prior, statistical sampling with prior
and Selective Search (see Section 3.3 for details).

The necessary numbers soon turned out to be extremely high for tasks other
than beds. Therefore, a maximum number for how many samples are considered
was set and the best score that could be achieved with this number was reported
if the 95 % coverage could not be achieved with fewer samples.

This experiment was done to both evaluate the different sampling methods (and
mainly the sampling with the saliency map as prior over the spatial distribution of
bounding boxes) and to ensure meaningful results for the following experiments on
pruning the proposals with saliency: For comparing the numbers of bounding boxes
that could be rejected, unnecessary high amounts of samples should be avoided.

After the necessary number of samples was determined, for each saliency model, a
set of bounding box proposals was generated with each of the methods. To keep the
time that was necessary for the experiments on pruning within reasonable bounds,
only 25000 samples instead of 50000 were used in cases where 95 % coverage had
not been achieved in the previous experiment.

When using Selective Search, the number of generated samples cannot be con-
trolled directly, but it can be influenced by decreasing the minimum size of the
initial segments (minSize in the MATLAB implementation provided by the au-
thors). The default value used for Selective Search in Caffe was 200. This was
reduced to 100 in order to allow the algorithm to generate more bounding boxes
and to better reflect the very small bounding boxes from the clock task.

Bounding Box Pruning

The different pruning methods were evaluated on samples generated by all sampling
methods: For a range of different thresholds of the value that is used for pruning
(average, maximum or total saliency in the bounding box), all bounding boxes
below the threshold are rejected and the remaining boxes are scored using two
different scores: The average IoU score of all proposals and the coverage of the
ground truth bounding boxes. All scores were averaged over all evaluated images.
The value of interest is then the number of proposed bounding boxes that can be
pruned away before the regarded score drops for the first time or, less strict, before
it drops below 95 % of its maximum value.
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5.4.2 Results

Saliency in Target Bounding Boxes

For each manner of scoring bounding boxes with saliency (maximum saliency, aver-
age saliency or summed saliency), the three images with the best and worst saliency
scores in the ground truth bounding boxes were saved for inspection. As could be
expected, the results for the summed saliency were rather uninteresting: The best
results could be achieved for bounding boxes that spanned the whole image and
the worst results for very small bounding boxes. For images with ground truth
bounding boxes that had the highest maximum and average saliency, the corre-
sponding saliency maps generally also look plausible. For the maximum saliency,
this also works the other way around and thus it can be concluded that given a
good saliency map, a low maximum saliency score should not occur in the region of
a target object. When on the other hand the bounding boxes with the lowest aver-
age saliency score are regarded, it can be seen that some of them in fact contained
a small but high peak of saliency on the target object. This confirms the concern
that the average saliency value in the bounding boxes is not a good measure for
the quality of bigger bounding boxes. Some examples images of objects with high
or low saliency scores for their bounding box can be found in the appendix (see
Figure 8.1).

Bounding Box Sampling

The number of samples necessary to get a coverage of 95 % in three consecutive
trials or the coverage achieved with 50000 samples is shown in Table 5.10. The
coverage that Selective Search achieves is reported for comparison along with the
average number of proposals generated by the algorithm. For the sampling with
prior, the used saliency maps were generated with the model trained on the fixation
maps that were purified and had markers for the target objects.

Figure 5.4 shows a plot of the coverage versus the number of generated samples
per image for the different tasks, exemplary for the random sampling method. The
shape of the curves is almost the same for all tasks and sampling methods: An
initial strong increase in coverage is followed by a very slow increase of coverage
with further samples. The slope is so small that it almost seems as if the coverage
saturates and going from 10000 to 20000 samples does not reliably improve the
results at all. The only difference between the three tasks is the maximum coverage
that can be reached with a certain number of samples. While sampling for the bed
task easily reaches the 95 % mark with fewer than 2000 samples, sampling for clocks
does not even get close to 50 % coverage with 10000 samples.

It turned out that for the clock task, none of the proposed sampling methods could
cover more than 61 % of the ground truth bounding boxes. This might partly
be due to the very small size of many of the clock bounding boxes, which makes
them hard to hit and makes it even more unlikely that a bounding box in the
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clocks laptops beds

# coverage # coverage # coverage

random sampling 50000 36 % 50000 90.8 % 1500 96.5 %
random sampling with
spatial prior 50000 41.2 % 50000 90.9 % 900 96.4 %
statistical sampling 50000 58.9 % 9000 96.3 % 1400 95.5 %
statistical sampling with
spatial prior 50000 61.1 % 7000 95.4 % 1100 96.1 %
Selective Search 2187.7 90.5 % 2281.4 96.3 % 1960.7 98.2 %

Table 5.10: The number of bounding box samples per image (#) that are necessary
to get at least one sample with an intersection over union score of 0.5 for 95 % of the
ground truth bounding boxes or the coverage achieved with 50000 samples if 95 %
could not be reached beforehand. For Selective Search, the number of generated
proposals can not be chosen directly, so the results are reported simply as is for
comparison.
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Figure 5.4: Development of the average coverage of ground truth bounding boxes
(in percent) versus the number of bounding box proposals generated using random
sampling. It can be seen that the coverage quickly stops to increase much with more
samples for all tasks and only the amount of the initial increase in coverage differs
quite strongly.
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right location also has the right size to count as correct. The same probably holds
true for bounding boxes of closed laptops that are shown from the side, as those
result in very long and thin bounding boxes. It is however not quite clear why
the coverage of ground truth bounding boxes only increases so slowly with more
samples and almost seems to saturate. This could probably be dependent on the
random number generator that is used for sampling (for this work, the functions
from the Python library NumPy were used), but no experiments were done to check
this hypothesis.

Using statistical knowledge about the target objects improves the achieved coverage
strongly for laptops, where the 95 % coverage could be achieved with fewer than
10000 samples. For the clock task, the average coverage also increased, but is still
far away from the 95 % mark.

Only for beds no big advantage of the statistical over the random sampling could
be found, but this can probably be explained by the already very low number of
samples necessary to cover most of the ground truth bounding boxes.

However, the results with the statistical sampling could be further improved by
increasing the number of bins of the histograms that were used to approximate the
distributions of aspect ratio and scale of the ground truth bounding boxes. The
results presented are based on 100 bins for both aspect ratio and scale. In a small
test with higher values (250 bins for aspect ratio and 500 bins for scale), over 80 %
coverage could be reached for the clock task with fewer than 20000 samples using
statistical sampling.

Sampling with the saliency maps as prior for the spatial distribution of the centre
of the bounding boxes did not bring the big improvement that was expected. The
coverage achieved for clocks could be improved by about 2 % when sampling with
statistic and up to 6 % for random sampling. For laptops, the number of necessary
samples when using statistical sampling decreased by about 2000 with the use of
the prior. This number decreased also for the bed task, but only by 200 to 600
samples, which can also be a matter of luck during the sampling. Table 8.2 in
the appendix contains the comparison of the effectiveness of sampling with prior
using the saliency maps produced by the models based on the different variants of
fixation data. It shows that the results do not vary much between the models. This
suggests that the information encoded in the saliency maps is not well used by the
proposed sampling method, because using the different modification methods for
pruning had a much more noticeable effect on the performance.

A possible problem with the proposed method of sampling the centre of the
bounding boxes can be identified by considering the bed search task: In many
images, the beds take up the whole scene or at least a big part of it. So if the
saliency map has high values for the whole bed (and thereby points it out correctly),
the sampling algorithm has nevertheless only a relatively small chance to pick a
pixel from the centre region of the bed. This is however necessary for the bounding



5.4. REGION PROPOSALS 69

box to be positioned correctly and thus a correct saliency map is no guaranty for
good sampling results.

For smaller objects like clocks this should not be such a big problem, as ideally,
the salient regions that really do mark clocks are small. In their case, the reason
for the modest effect of sampling with prior could also be much simpler: Many of
the proposed saliency maps have only few regions of very low saliency. Thus the
effect of sampling fewer bounding boxes in those regions is probably simply not big
enough to make a difference when the overall chance of hitting a target bounding
box is as low as for the clock task.

Pruning Bounding Box Proposals

For comparing the results of of the different pruning methods and to find out
which saliency model produces the most useful saliency maps for pruning, it is most
interesting to look at the results with bounding box proposals produced by Selective
Search. The reason for this is simply that Selective Search is the only method that
achieves a very good coverage for all three tasks with roughly the same number of
bounding boxes per image. Figure 5.7 shows the number of rejected bounding boxes
and the coverage achieved with the remaining proposals for different thresholds on
the maximum saliency of the proposals.

Looking at the plots in the bottom row of Figure 5.7 it can be seen that pruning
works best for the bed task and has the lowest effect for the clock task. If the
average coverage of the ground truth bounding boxes is not allowed to change at
all, less than 10 % of the proposed bounding boxes can be rejected when searching
for clocks, slightly more then 10 % for the laptops task and up to 20 % for beds.
However, by allowing a decrease of the maximum achieved coverage by 5 %, the
proportion of bounding boxes that can be excluded from further processing rises
to about 30 % for clocks and laptops and 40 % for beds. With the roughly 2000
regions per image proposed by Selective Search, this means a total of about 600
to 800 fewer times that a classification network would need to run to process all
bounding boxes.

For the proposals generated using Selective Search or the statistical sampling
with the saliency maps as spatial prior, more than 75 % of the proposed bound-
ing boxes can be rejected before the average over the IoU scores of all remaining
proposals drops for the first time. This however is only true if the maximum or
the sum of the saliency maps is used for pruning. So in general, the pruning with
maximum and summed saliency has a high chance to remove low quality proposals
while keeping the proposals with high IoU scores most of the times. The fact that
this is not true if the average saliency value is used confirms the impression that
the average saliency is not a good choice for judging the quality of a bounding box
proposal.

If not the average IoU score of the proposals but the coverage of target bounding
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Figure 5.5: Comparison of the amount of bounding boxes that could be rejected
by using a threshold on the average, maximum or summed saliency in the bounding
boxes. In the first plot, the results for each task are averaged over the different
models types that produced the saliency maps for the respective task. The second
plot shows the performance of the different model types averaged over the different
search targets. All bounding box proposals were generated using Selective Search
and the overall coverage was allowed to decrease by 5 %.

boxes is used as score, the highest amount of proposals could be rejected when
thresholding the summed saliency values. However, this only worked well for lap-
tops and beds. As was already expected, the ground truth bounding boxes of the
clock task are generally too small to possibly contain a higher amount of saliency
than any random proposal that is considerably bigger. Using a threshold on the
average saliency in the bounding boxes again did not work well for any target ob-
ject. In theory, this method should work best for the small bounding boxes of the
clock task, as with small bounding boxes a high average saliency is much easier
to achieve than with the large bounding boxes that are typical for the bed task.
However, this was not the case and in the end, as expected, the maximum score
again proved to be the best choice, as it treats all bounding box sizes the same.
The results of the different pruning methods on the regions proposed by Selective
Search can be seen in Figure 5.5a.

Figure 5.5b shows the performance of the proposed pruning methods when using
the saliency maps from models trained on the different variants of the fixation
data. In general, it can be seen that the models trained on the unmodified fixation
maps or the fixation maps with markers are less useful for pruning than the models
trained on the other two variants. The overall best performance for pruning by
maximum and summed saliency could be achieved with the fixation maps that
were both purified and had markers for the target objects. Only for the method
based on the average saliency the purified fixation maps alone achieved a better
result.
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Figure 5.6: Comparison of the rejection rates of pruning with the maximum saliency
value on the proposals generated by the different methods that were explored. The
values are averaged over all tasks and the coverage was allowed to decrease by 5 %.

In the plots (d) to (f) of Figure 5.7, the performance of the different models with
the maximum pruning method can be compared for the different tasks. There it
can be seen that the ordering in performance of the different modification methods
is not the same for all tasks. For example for laptops, the fixation maps with only
markers work slightly better than the purified fixation maps while the combination
of both is still best. The model trained to search for beds on the other hand
performs best for the purified fixation maps alone. This could be due to the fact
that the markers for beds have the highest influence on the fixation maps, because
the average bed bounding box is very big. As a result, they encourage the model to
output very large patches of saliency and thus pruning with the produced saliency
maps can reject fewer bounding boxes than with sparser maps.

Finally, in Figure 5.6 the average performance of the pruning with saliency maps
from the models trained on the differently modified fixation maps is compared for
the different methods of generating the region proposals. The highest amount of
proposals could be rejected (using the threshold on the maximum saliency) when
generating them by sampling statistically with the saliency maps as prior.

This is kind of surprising, as the proposals generated when sampling with prior
should have a higher quality than the ones generated without and there should
therefore be fewer candidates for rejection. On the other hand, for Selective Search
the number of rejections is also higher than for the random sampling methods
(with and without prior) and Selective Search is thought to propose the bounding
boxes with the overall highest quality. A possible explanation is that both methods
produce a high number of proposals that cover the same target bounding box. So
if some of them are accidentally removed by the pruning, the coverage does not
drop immediately and thus the thresholds can be set higher.



72 CHAPTER 5. EVALUATION AND RESULTS

0.2 0.4 0.6 0.8 1

0

0.5

1

threshold

p
er

ce
n
t

(a) Task: clocks

0.2 0.4 0.6 0.8 1

0

0.5

1

threshold

(b) Task: laptops

0.2 0.4 0.6 0.8 1

0

0.5

1

threshold

(c) Task: beds

coverage rejected proposals

o
ri

g
in

a
l

m
a
rk

er

p
u

ri
fi

ed

b
o
th

0

0.1

0.2

0.3

p
er

ce
n
t

re
je

ct
ed

(d) Task: clocks

o
ri

g
in

a
l

m
a
rk

er

p
u

ri
fi

ed

b
o
th

0

0.1

0.2

0.3

(e) Task: laptops

o
ri

g
in

a
l

m
a
rk

er

p
u

ri
fi

ed

b
o
th

0

0.2

0.4

(f) Task: beds

not changing the coverage

95 % of the original coverage

Figure 5.7: The plots in the upper row show the coverage of ground truth bounding
boxes as well as the percentage of proposals that was rejected for different thresholds
on the maximum saliency value in the bounding boxes. All proposals were generated
using Selective Search, so the initial coverage is close to 100 % for all three tasks.
The saliency maps used for pruning come from the model that was trained on the
purified fixation maps with markers. The bottom row shows the percentage of re-
jected bounding boxes with saliency maps from the models trained on the different
variants of the fixation maps.



Chapter 6

Discussion

The results of this work have shown that a saliency model can be trained from
human fixations and that the saliency predictions of the model can be used to
improve region proposals for object search or detection tasks. However, strong
modifications of the fixation data are necessary for the model to learn task-specific
behaviour instead of task unrelated bottom-up saliency. Even with the help of
those modifications, the model does not perform well in all cases. Possible reasons
for this, as well as ways of improving the model, are discussed in the following
chapter.

6.1 Learning Top-Down Saliency from Eye

Tracking Data

Consistency of Fixation Patterns

Since the classic experiments by Yarbus [40], it has been widely believed that
human gaze behaviour is influenced by top-down tasks in a way that is largely
consistent among individuals. This has only recently been verified on a large scale
dataset by Mathe and Sminchisescu [41]. Ehinger et al. [42] studied fixations of 19
subjects that had to search for pedestrians in images. They found an agreement of
the fixations of 93 % in the target absent case and 95 % in the target present case,
when predicting the fixations of one participant with the combined fixations of the
others. For the cross-image control, the AUC scores were still high, with 68 % if
pedestrians were present and 62 % otherwise.

Such high values of agreement were not found for the eye tracking data collected
for this work. The average of the AUC score over all three tasks is only 67 % and
the cross-image control lies at 55.7 %. A good part of this difference in scores can
probably be explained by the rather small number of subjects that participated in
the experiment. Combining only few other fixation maps to predict the fixations of
one participant has been demonstrated to reduce the agreement scores (see Section
5.1). The absolute difference between the agreement of fixation patterns of partic-
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ipants with the same task on the same image, and the agreement of fixations on
different images is still high enough to confirm the expected consistency of human
gaze behaviour during search.

However, what is more important for this work is the difference of fixation
patterns of participants that searched for different target objects in the same image.
For the saliency model to learn to predict task-specific saliency, the fixations that
are used as training data need to differ noticeably between the different tasks.
While the overall agreement between the fixations from different tasks was found
to be lower than the agreement of fixations of participants with the same task,
the difference in scores was rather small (between 3 % in the target absent case
and 5 % if the search target was present). A visual inspection of the fixation maps
showed that the reason for this lies mainly in distracting image elements like faces,
that are very salient in a bottom-up manner and reliably draw human attention,
independent from the task.

Unfortunately, the two above mentioned studies did not include a comparison of
fixation patterns for different search tasks, so there are no other scores that could
be used to compare the values found in this work to. Despite the fact that the
heuristic approach of removing fixations from image regions that were fixated by
participants of all three tasks seems to improve the task specificity of the data and
the model that is trained on it, it remains unclear to what extend human search
behaviour really differs for different search targets.

Information Content of Fixation Data

Even if the eye tracking data can be modified to only contain task specific fixations,
the question remains if the data contains enough information about the search
process for the model to learn a good representation. This was found to be largely
dependent on properties of the object that is the target of the search. It quickly
became apparent that no real search (i.e. eye movement) is necessary if the targets
are too obvious: Especially when searching for beds, the number of fixations per
image was usually very low (because of very short viewing times) and the few
fixations made could often be explained by the centre bias and task unrelated
bottom-up saliency.

The information content of the recorded fixations is thought to increases with
the difficulty of the search task. This in turn is dependent on the average size of the
target object, the variety in the appearance of its instances and also on the variety
of locations where it can be found: The clock search task was not only the hardest
because many clocks are so tiny, but also because the clock category includes many
different types like watches, alarm clocks and built-in digital clocks in different
kitchen devices. In addition, clocks can appear in many locations, for example in
almost all rooms of a house, on buildings, in train stations and on people’s wrist.
A bed in comparison will only very seldom appear outside of a sleeping room.

Apparently, humans process a scene not only in terms of image features, but also



6.1. LEARNING TOP-DOWN SALIENCY FROM EYE TRACKING DATA 75

on a semantic level, before overt attention is employed. A recent study by Potter et
al. found that humans are able to judge the semantic content of an image, like that
it shows a smiling couple, in as few as 13 ms [43]. This time span is thought to not
be long enough to allow for any feedback loops like deploying attention. Therefore,
measuring overt attention will not give much information about the human search
strategy if the semantic content of the scene already sufficed for solving the search
task. For example, if an image is recognised to show a highway at first glance, it is
very unlikely that a bed will be present in the image and thus no further detailed
processing of different image locations will be done to validate this assumption.

Another difficulty in learning saliency for search from human fixation data is that
the fixations are very punctual and therefore do not give any information about the
extend of the object that was fixated. This makes it hard for the model to learn
to associate the fixations with the underlying objects, especially if the objects are
relatively big. Thus it was not surprising to see that adding markers for the target
objects and their shape and size had the most noticeable effect for the bed search
task.

Summary

In summary, the analysis of the eye tracking data and the results of the saliency
model that was trained with it showed that the unmodified fixation data is too
heavily biased towards bottom-up saliency to use it for training a top-down saliency
model for search tasks. If this bias is removed, the results look much more promis-
ing. However, because of pre-attentive processing and covert attention, the fixation
data does not contain complete information about the search process. It is most
useful for targets and scenes where global processing of the scene content is not
very helpful for the search task.

In contrast to bottom-up saliency, top-down saliency is a much more difficult
process that needs a higher level of semantic processing. It is possible that the
model would eventually uncover the hidden regularities behind the fixations, if it
only had enough examples. This is of course based on the assumption that the
feature maps provided by convolutional neural networks contain all information
that is necessary for doing so, but the good results that could be achieved with
those features on various different vision tasks suggest that this might be the case.

The 400 images that were used for training in this work are a very small sample
of the real world and it cannot be expected that a model would learn more than
the most obvious characteristics of the data when trained on them. Under this
consideration, the performance of the model is already quite impressive. However,
as the amount of training data that can be provided is limited (mostly by the time
that eye tracking experiments take and the number of pictures that any person will
willingly search), it seems like a good alternative to provide additional information
to the model, like it was demonstrated with the markers for the target objects in
this work.
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6.2 Discussion of the Model Architecture

First of all, it can be stated that the model and the training on fixation data work in
principle: Despite the slight differences in implementation, the reimplementation of
Deep Gaze presented in this work achieves similar results to those reported by the
authors of the original model. As described in Section 5.2, most of the differences
in the scores between the two models can be explained by different evaluation
conditions and the missing centre bias.

The results on the evaluation set do not differ much between the model trained
on the MIT dataset and the one trained with the fixation data collected during this
work. So on the unmodified fixation data, the model still learns a representation
of bottom-up saliency that is plausible. In addition, despite of the low number of
training images, the model does a surprisingly good job in learning task-specific
saliency if the fixation maps are preprocessed to emphasise the target objects and
the differences of the search behaviour.

Advantages of the Proposed model

One advantage of the presented architecture is that it only makes use of biologically
plausible features that generalize well to other vision tasks like classification and
does not need any complicated or expensive calculations itself. So if the computed
features could be reused in other parts of the application, saliency comes almost
for free.

The uncomplicated architecture also makes it easy to analyse the model and
keeps the amount of parameters that have to be trained low. While a small number
of parameters limits the model in its possible responses, this is still an advantage
under the constraint of extremely few training data. As saliency itself is only an
heuristic, it seems preferable to train a model that can only learn a simplified
version of the process over having a model that could potentially reflect the whole
process correctly but is bound to overfitting as it cannot get enough examples for
training.

If more different target object categories are used, it could turn out that the
current number of parameters is too small for the model to respond adequately
different for different categories. In this case, the degrees of freedom that the model
has, could be increased by using feature maps from multiple layers of the feature
extraction network. By doing so, one could not only capture a broader range of
different features (higher-level and low-level features). In addition, the different
layers work on different scales of the input image, so the lower-level features can
capture objects of smaller scales and also provide more fine-grained information
about the locations of objects.

The scalability of the model to more tasks thus mostly depends on how the
weights are set for the different tasks. Training separate models for every object
category is of course not practical and with a higher number of target categories, a
separate neural network for setting the weights of the linear combination according
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to the task specification would be necessary (see Section 3.2.2 for a more detailed
explanation). This network would be the only part of the proposed architecture that
grows if the number of feature maps or the number of target objects is increased.
The network needs at least as many input units as the code for representing a
target object is long and has one output unit for every weight that needs to be
set in addition to its hidden units. With tens of thousands of object categories
this could probably become quite big (and its calculations quite slow) but for a
more modest amount of different objects the model should still work sufficiently
fast without consuming too much additional memory.

Things to Improve

The proposed model of course also has some disadvantages. The first one is the
rather low resolution of the produced saliency maps. This could to some extend
be improved by reducing the downscaling during the feature extraction process.
Especially the first subsampling by factor 4 in the conv1 layer1 seems unnecessary
strong. Presumably, the authors of [21] did this mostly to reduce the amount
of memory necessary for the following calculations and similar results could be
achieved with less subsampling and a deeper architecture. This line of thought was
addressed by Zeiler et al. in [12], with the result that a decrease in the stride of
the first convolution layer (as well as in its kernel size) led to an increase of the
overall performance of the Krizhevsky network for object classification.

However, a certain amount of downscaling is also necessary to ensure high
quality features. This can be seen for example in Figure 4.2 in Section 4.3, where
the performance of the bottom-up saliency model increases with each pooling layer
(that reduces the scale of the image by factor two), at least until a critical amount
of subsampling is reached. In addition, the memory that the feature extraction
network consumes is still a limiting factor for the network depth and the size of its
layers. As convolution is much faster when carried out on a GPU, it is preferable
to limit the network to a size that fits in the comparably small RAM of a GPU2.
Thus the resolution of the saliency maps cannot be increased endlessly by simply
avoiding the downscaling during the feature extraction process. But, as described
above, the resolution could also be improved by combining low-level feature maps
that have a comparably high resolution with the upscaled higher-level features.

This leads to a second, rather small problem: Because convolutions take the
neighbourhood of a pixel into account, they cannot be applied at the edge of the
image, where the kernel would exceed the image’s dimensions. So with every con-
volution, the feature maps get a bit smaller. To avoid this change in size, for Deep
Gaze and also in this work, the input image and intermediate feature maps are

1The downscaling is achieved by applying the convolution kernel with stride 4, i.e. only at
every fourth pixel of the input.

2To the author’s knowledge, the maximum amount of RAM available in a GPU is currently
24 GB and more affordable models have between 2 GB and 6 GB RAM
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padded with zeroes so that the convolution can be computed at every image pixel.
This of course results in inaccurate values at pixels on the edge region, and the
boundary area for which results are not precise gets bigger with every convolution.
The resulting artefacts can be observed in the results of the proposed saliency
model, although they are not as strong as expected. Nevertheless, when combining
lower-level features and high-level features, it should be taken into account that
the lower-level features have a smaller boundary region and should therefore have
more weight in the areas for which the higher-level features cannot provide accurate
results.

The probably biggest drawback of the proposed model architecture is that it is
not flexible enough: The example saliency maps for the bed search task shown in
Figure 5.3 illustrate this problem quite well: In terms of image features, the tennis
court in the one picture looks quite similar to the bed in the other, and thus, the
model responds to both with high saliency values. A human can in this case use
the overall scene context to quickly rule out the possibility that the tennis court is
a bed.

But even if the model could figure out the overall semantic content of the scene,
it has no possibility to react to it, because the weights of the different features are
fixed for each task. Enabling such behaviour would require either feedback loops
or a global scene representation that can be used to suppress the response of the
saliency map in some regions of the image. Such an approach can be found in
[44]. The authors combine a saliency map that is based on local features with a
low-dimensional global scene representation in a Bayesian framework. The global
features are used to predict the vertical position of search targets in the image and
the authors demonstrate that the combination of this global features with saliency
has a higher rate of detecting the search targets than the saliency model or the
global features alone.

Another minor problem that might also impair the model’s performance, espe-
cially for images that are very “uninteresting” under a certain task (for example a
wide landscape when searching for laptops) is the softmax computation during the
training. Normalising the saliency as well as the fixation values before computing
the loss has the effect that the model does not get any feedback about the absolute
amount of fixations in the image. It can therefore not distinguish between an image
where only few fixations are for example in the centre, because the subjects had
to look somewhere while classifying the scene (and finding that it is very unlikely
to contain the search target) and an image where all participants fixated a certain
region for a longer time because it was very interesting under their given task.
However, in the proposed architecture, the softmax function is the only part that
enforces competition between different regions of the saliency map. As this is an
important aspect of saliency, another way of doing so would need to be found if
the softmax function was going to be replaced.
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Summary

To conclude, the proposed top-down saliency model architecture demonstrates a
promising performance given the extremely small set of training examples. With
more (and better) training data and some small changes like the combination of
feature maps from multiple layers, the performance can be expected to increase
even further. A lot of interesting research could still be done with the proposed
model and an overview of promising options for improving it will be given in the
next chapter.

However, the results also demonstrated that the model’s performance is limited
by its inability to react to features flexibly depending on the overall context of the
scene. So if further research on the model is done, this should probably be the first
point to be addressed.

6.3 Saliency for Region Proposals

The experiments with pruning region proposals demonstrated that the information
encoded in the produced saliency maps is beneficial for reducing the search space
for an object search task. Even for a sophisticated algorithm like Selective Search,
the number of proposed bounding boxes could be reduced by up to 10 % with-
out impairing the coverage of the ground truth bounding boxes and up to 35.5 %
without losing more than 5 % of the previous coverage.

The comparison between the pruning performance with the saliency maps pro-
duced by models that were trained on the original or the modified fixation maps
showed that performance was better with the modified fixation maps. As the mod-
els trained on the unmodified fixation data are de facto bottom-up saliency models,
this confirms that preprocessing the fixation data allows the model to learn useful
task-specific behaviour and that the task-specific saliency information is indeed
more helpful for the search for a specific object than general bottom-up saliency.

Despite its slightly worse pruning performance, bottom-up saliency is of course
useful as well. If the task is not to search for a certain target category but general
object detection, bottom-up saliency can still help to reduce the number of regions
that have to be classified by pointing out whether or not the proposed regions lie
in an interesting part of the image.

In comparison to applying the saliency maps for pruning, using them as a spatial
prior for sampling bounding box proposals did not bring as much benefit. This is
probably due to the way in which the information was used, namely to sample the
centre of the bounding boxes. For small peaks of saliency, this assumes that the
most salient part of an object is located in the middle of its bounding box, which
is for example not true for persons, where the face is usually most salient but lies
at the upper end of the bounding box. Bigger patches of saliency on the other
hand could indicate a large object of more or less constant saliency (like beds, that
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usually do not contain any point that is more or less salient than the rest). For
them, the algorithm would need to place the centre of the bounding box in the
centre of this saliency patch. Instead, in the current implementation, the location
is drawn with more or less uniform probability from all pixels of the patch, what
can result in large misplacements of the bounding boxes.

The only real contribution of the sampling with saliency as prior is that it
reduces the number of proposals in clearly uninteresting regions of the image, such
as the sky. This would probably be different if the spatial resolution of the produced
saliency maps was higher and the saliency maps therefore contained more accurate
information about the location of highly salient regions. In addition, both the
proposed sampling methods as well as pruning with the saliency maps would benefit
if the saliency prediction was sparser.

Summary

All in all, other than for beds, none of the proposed alternative methods could
actually match the performance of Selective Search in terms of coverage of the
ground truth bounding boxes or the number of necessary samples per image. This
is partly due to the quality of the saliency maps that could still be improved, but
also due to the rather unsophisticated methods that were proposed.

Developing those methods was however also not the main goal of this thesis.
Instead, the experiments with pruning and sampling are intended as an in principle
demonstration of how saliency could be used to improve the process of generating
region proposals. Under this conditions, the experiments can be considered a suc-
cess: Not only did they show that even with very simple methods, the number of
proposed bounding boxes that have to be processed further can be reduced by a
considerable amount without impairing the overall coverage of the target bounding
boxes much. They also again confirmed that the proposed model is able to learn
task-specific saliency if provided with appropriately preprocessed training data and
that this top-down information is more beneficial for the search task than bottom-
up saliency.

In addition, the results especially with statistical sampling already look promis-
ing and can without doubt be improved further if more time is invested.
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Outlook

Modelling human visual search behaviour and saliency is a challenging area of
research. The saliency model proposed in this work already performs well given
the small amount of training examples it could use to learn from. However, there are
a lot of possibilities to still improve its performance, with and without changing
the proposed architecture. Some of these possibilities will be discussed in the
first part of this chapter, before some thoughts on how saliency maps could be
better integrated in the process of generating region proposals for object search are
presented.

7.1 Improving the Saliency Model

Feature Extraction

To further increase the quality of the presented saliency model, two possibilities
come to mind quickly: The first was already suggested by the authors of Deep Gaze,
namely to use even more sophisticated convolutional networks such as GoogLeNet
[22] or VGG [23] for feature extraction. The depth and layer size of the used network
is however limited by the amount of memory that is available. In addition, simply
increasing the number of processing stages will only work to a certain point where
either the resolution of the saliency maps gets too low or the boundary area where
convolutions do not give exact results gets too big (remember that at the edge of
the image, the convolution cannot be computed exactly because the window over
which it is computed exceeds the image’s dimensions).

As already explained in Section 6.2, it would be desirable to use a feature
extraction network that does not reduce the resolution of the input images as fast
as the Krizhevsky network does. GoogLeNet is an interesting candidate, as in this
model, multiple different kernel sizes (as well as maximum pooling) are used in
parallel on each of the later processing stages and their output feature maps are
concatenated to form the input of the next stage. Intuitively, this should enable
the model to capture image structures on a bigger range of scales, as in effect,
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a larger number of different receptive field sizes is used. The good results of the
model in object detection prove that the generated features not only work better
for classification but that they also preserve the spatial information in the image
better.

It also remains to validate whether the features produced by convolutional networks
that were trained for object detection or classification really generalise well for
saliency modelling for visual search. Intuitively, this is the case, as the features
by which one recognises an object should be the same as those one uses to search
for an object. The results achieved with the proposed model also indicate that the
features work well for modelling saliency, especially bottom-up effects. In order to
test the pure feature generalisability, a simple way would be to include the feature
extraction network in the training process and to check whether the features change
dramatically if the network is allowed to learn. Training the network from scratch is
not possible without much more data than currently available, but also finetuning
it could prove difficult with so few examples.

Training Data

The second obvious way for improving learned saliency models is to increase the
size and quality of the training data. For once, it is unclear to which extend the
accuracy of the eye tracking device used for creating the fixation maps influences
the models. It can be expected that a higher accuracy of fixations and a bigger
amount of subjects will have positive effect on the model quality.

The number of images that are used for training and the number of participants
per image are however much more important: Ideally, datasets should contain
examples from a huge variety of locations and scenes, sampling many different
variants of all relevant object classes. At the same time, all those images should be
viewed by as many subjects as possible for every task. The five subjects per task
in this work are clearly too few to get a really good approximation of the ground
truth distribution of fixations (see Section 6.1), as are the 400 training images.

However, most of today’s eye tracking datasets contain at most 1000 images and
the number of viewers per image is seldom higher than 20, which is mainly due to
the big time consumption of eye tracking experiments and the still high price of high
accuracy eye tracking devices. An alternative for eye tracking data could be mouse
tracking: In [45], the authors demonstrated that the data gathered from a large
scale mouse tracking experiment conducted via Amazon Mechanical Turk could be
used to learn a bottom-up saliency model that beat all other models in the MIT
saliency benchmark by a large margin (notably in all scores). In the mouse tracking
experiment, the participants are basically shown a blurred version of the image,
that is only sharp at a small region around the current mouse cursor position. So
by moving the mouse, participants can explore the parts of the image that they
find interesting. The authors already implied that their method of generating data
could easily be employed to other viewing tasks such as search.
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What is most interesting about this approach is that it might provide a cleaner
way to get rid of the influence of behaviourally driven bottom-up saliency, that has
to otherwise be reduced by further processing of the fixation data. As gaze direc-
tion is to a large extend controlled subconsciously, participants in an eye tracking
experiment can hardly avoid looking at for example faces. If in contrast they have
to move the mouse for exploring an image, they will presumably act more conscious
and can therefore omit task unrelated “fixations”.

While the method for removing task unrelated fixations that was explored in
this work might have a similar effect, it comes with the risk of cancelling out task
related fixations as well, if they coincided with location of something that is salient
in a bottom-up way: For example, the dataset used in this work contains a lot of
images that show cats lying on either beds or laptops. Thus, deciding whether a
fixation near or on a cat was task-related or not is not really possible.

Combining Features From Multiple Processing Stages

As already explained in the Discussion Chapter, using feature maps from multiple
layers of the feature extraction network can be expected to improve the performance
of the model, at least if enough training data is available to train the additional
parameters.

The idea is that feature maps that are produced by different stages of the
Krizhevsky network encode different features that might be beneficial for different
aspects of saliency: The lower layers produce low-level features that are best fit
to model pop-out effects or the basic geometric shape of small objects, whereas
the later layers will react to objects and patterns that are salient because of there
semantic content. In addition, the earlier layers cover objects of smaller scales and
the feature maps have a higher spatial resolution. The bigger amount of parameters
can also be expected to help the model to better adapt to different tasks, as with
more features, it can form a richer representation of the search task.

As was also done for Deep Gaze, all feature maps could simply be linearly
combined in one step, if they are normalised before to avoid that some features
dominate the others because they have overall higher values. An alternative ap-
proach would be to first combine the feature maps of each layer separately and to
then combine the resulting intermediate saliency maps in a separate step. This
would not add too many parameters (as many as different feature layers are used)
and has the advantage that the overall weight the model assigns to the different
layers can be easily observed from the weights of the final combination. In addition,
it might be helpful that in this way the weights of the separate linear combinations
could be initialised with the weights learned when only the respective layer of the
feature extraction network was used.
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Providing Additional Information

The results with training the model on modified fixation maps have shown that
the model can benefit from getting additional information along with the fixations.
Removing the fixations that were made by participants from all tasks clarified
which of the fixations were specific to the current task. As discussed before, this
step could perhaps be made unnecessary by using mouse tracking instead of eye
tracking.

Adding markers for the target locations included information about the size
and shape of the target objects. Instead of approximating them with a Gaussian
that fits the shape of the bounding box, it would of course be more accurate to use
the segmentation of the objects as marker. Segmentation information is already
included in the COCO dataset, so there would be not much extra effort necessary
to include it.

Global information about the scene layout and the overall scene classification could
be very valuable for the model. However, providing such information is not straight
forward and including it into the saliency computation would probably require big
changes in the model architecture.

A comparably easy approach could be to include a coarse segmentation of the
scene as layout information. The model could then learn which parts of a scene are
often fixated for a search and which parts do not have to be searched further (for
example, when searching for beds, street, lawn or sky do not have to be considered,
but surfaces in rooms should be). This information could be used to suppress or
enhance the response of features dependent on the region they lie in. With this
mechanism, mistakes like predicting a tennis court as a bed, because they look
similar in terms of visual features, could be avoided and the model would gain
flexibility.

However, for this approach to work, the model also needs a possibility to gen-
erate a scene layout representation. This is a completely different field of research
that has not been explored during this work, so no statements can be made about
how easy or difficult this problem is and whether it could be integrated in the cur-
rent feature extraction scheme, but it would certainly be an interesting direction
for further research.

In the line of providing more information to the model, it would also be interesting
to somehow include 3D information: Object classification and localisation perfor-
mance heavily depend on segmenting the object from the background and it seems
reasonable to assume that depth information would be very beneficial for this task.
This is also supported by Finlayson’s 2013 PhD thesis [46], where the author comes
to the conclusion that depth information from stereo vision is used at multiple pro-
cessing steps in the human visual system, including search and object classification.
However, she suggests that depth should not be used as an additional feature but
rather as a third dimensions for feature response localisation. This seems rather
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difficult as visual information becomes sparse in the third dimension. As stated in
[22], our current hardware is highly optimised for dense calculations, so including
a third dimension would increase the computation time even more than one would
first expect for the extra data.

7.2 Using Saliency for Region Proposals

The simple methods for creating or pruning bounding box proposals that were
presented in this work can certainly be improved in many aspects. For example,
the thresholds for rejecting proposed bounding boxes could be changed depending
on the size of the bounding box. This can be expected to improve results because
the bigger an object (and therefore its bounding box) gets, the higher the chance
is that the object has different sub-parts that are more or less salient. Thus, the
saliency inside a box should have more importance for smaller bounding boxes. For
bounding boxes that span almost the whole image, saliency is of no big use anyway,
as their position can not be varied much in order to include more or less saliency.

If saliency should be used directly during the generation of bounding box pro-
posals, it would be interesting to somehow integrate it in the Selective Search
algorithm. This could be done either by using the saliency map like an additional
channel of the image and defining a similarity measure that takes saliency into
account or by using it as a spatial prior for the distribution of the initial bounding
boxes. By doing so, the problem that bounding boxes are not necessarily centred
on saliency peaks could be solved as the initial bounding boxes are merged with
their neighbours depending on the image features and thus in the best case, the full
segmentation of the salient object is approximated by one of the resulting bounding
boxes.

However, it probably makes more sense to not use the proposed regions directly
as bounding boxes. Most state of the art algorithms perform an additional regres-
sion step after the classification anyway, so that the form of the proposed region
does not matter much for the final bounding box prediction. In addition, if regions
should be classified that are not quadratic, additional warping is necessary to bring
the proposed region into a form that can be used as input for the feature extrac-
tion network. If instead patches of fixed aspect ratio would be used as proposals,
sampling would get much easier as only the scale and position of the sample have
to match the ground truth bounding box. Also, without the warping, the features
computed for the saliency map could be easier reused for classification. Of course,
all this will only work if a good method for predicting the bounding box of the
object in the given image patch can be found. But given the already decent per-
formance of CNNs for localisation of the single most dominant object in an image,
this does not appear to be an unsolvable problem.

To take this another step further, in the end, the goal is of course to combine all
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steps, i.e. feature extraction, the task dependent saliency model, region proposals
and classification, into one framework. For this, the saliency models for the different
tasks need to be unified into one network that receives the task as additional input,
as was proposed in Section 3.2.2. Also, when the feature extraction is part of the
model, the feature maps either have to be used on their original scale or the rescaling
step has to be included into the model. This becomes inevitable if feature maps
from more than one layer of the feature extraction network should be used, as they
have different scales.

Doing so would make it possible to train the whole model from the input im-
age to the output object annotations with bounding box predictions. This would
probably help especially in the saliency prediction step, as in the current imple-
mentation, the model has no knowledge about what the saliency data should be
used for and gets no feedback about how useful its predictions were for the region
proposal step and if the target of the search was found or not. Such a joint optimi-
sation is not easy, as the amount of parameters increases extremely in comparison
to the separate parts. It would require a large training dataset and a good initial-
ization of the parameters of each sub-part. This could be achieved by first training
them for their specific task independently and then finetuning the complete model
jointly.

And finally, instead of using the region proposals as presented in this work, a
real attention system could be implemented based on the computed saliency map.
Such a system would not only point out which regions are interesting given the
current search task, but also determine the order in which the regions should be
processed. It could probably even respond dynamically depending on the results
of the classification of the last processed region. However, attention is a very
complicated process that has not yet been completely understood. And although
computational models of attention exist, including them into a system for object
search, which should in the best case run in real time, poses a challenging task for
future work.
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Chapter 8

Appendix

This chapter contains some additional data and example images that were too big
to fit in the actual text.

On the Enclosed CD

The enclosed CD contains a PDF version of this document as well as the source
code that was written for this thesis and additional data from the evaluations.

• eyeTracking: The software for recording fixation data (requires OpenCV).

• fixationAnalysis: Scripts used to analyse the fixation data.

• preprocessing: Scripts for choosing the images for the dataset and adjusting
their brightness.

• caffe: Contains the Caffe framework with modified and additional code.

• learning: Convenience scripts for automatically running the model training
with different parameters.

• evaluation: Scripts for bounding box sampling and pruning and saliency
map comparison. Includes the Selective Search implementation provided by
the authors at http://koen.me/research/selectivesearch/.

• evaluation data: Additional data from the evaluations that were done.
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(a) Clock ground truth bounding box with the highest maximum saliency value.

(b) Laptop ground truth bounding box with one of the lowest average saliency values.

(c) Bed ground truth bounding box with the highest total saliency value.

Figure 8.1: Examples for the saliency maps produced by the model trained on
fixation maps that were purified and had markers on the target locations. The
ground truth bounding boxes are annotated in purple in the original image and the
corresponding saliency map. All examples were either amongst the three examples
with the highest or lowest saliency for the regarded value. It should be noted that
the saliency map for the laptop search task actually contains a high peak of saliency
on the target object and has a bad score anyway.
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Euclidean Loss AUC CC SIM

big medium small big medium small big medium small big medium small

conv1 1.234 · 10−6 1.234 · 10−6 1.234 · 10−6 0.532 0.536 0.535 0.047 0.048 0.043 0.172 0.172 0.172
relu1 1.231 · 10−6 1.230 · 10−6 1.229 · 10−6 0.587 0.603 0.616 0.106 0.120 0.129 0.188 0.192 0.195
pool1 1.230 · 10−6 1.228 · 10−6 1.227 · 10−6 0.597 0.614 0.626 0.123 0.138 0.145 0.194 0.198 0.200
norm1 1.229 · 10−6 1.227 · 10−6 1.226 · 10−6 0.606 0.619 0.630 0.124 0.134 0.139 0.192 0.195 0.195
conv2 1.226 · 10−6 1.224 · 10−6 1.223 · 10−6 0.625 0.638 0.648 0.145 0.156 0.162 0.196 0.198 0.198
relu2 1.226 · 10−6 1.224 · 10−6 1.223 · 10−6 0.622 0.635 0.650 0.145 0.160 0.169 0.194 0.192 0.193
pool2 1.223 · 10−6 1.221 · 10−6 1.225 · 10−6 0.633 0.648 0.646 0.162 0.175 0.153 0.202 0.201 0.194
norm2 1.223 · 10−6 1.221 · 10−6 1.225 · 10−6 0.635 0.651 0.647 0.162 0.175 0.152 0.201 0.201 0.194
conv3 1.219 · 10−6 1.215 · 10−6 1.219 · 10−6 0.638 0.649 0.650 0.184 0.197 0.174 0.201 0.201 0.198
relu3 1.215 · 10−6 1.210 · 10−6 1.215 · 10−6 0.647 0.660 0.658 0.196 0.215 0.191 0.204 0.207 0.204
conv4 1.209 · 10−6 1.202 · 10−6 1.212 · 10−6 0.638 0.654 0.661 0.219 0.238 0.200 0.201 0.205 0.203
relu4 1.208 · 10−6 1.200 · 10−6 1.212 · 10−6 0.647 0.659 0.661 0.222 0.243 0.203 0.208 0.214 0.209
conv5 1.209 · 10−6 1.203 · 10−6 1.215 · 10−6 0.647 0.659 0.660 0.220 0.233 0.196 0.206 0.207 0.203
relu5 1.213 · 10−6 1.205 · 10−6 1.215 · 10−6 0.643 0.668 0.661 0.226 0.255 0.202 0.210 0.224 0.214
pool5 1.210 · 10−6 1.216 · 10−6 1.227 · 10−6 0.664 0.663 0.619 0.240 0.201 0.122 0.222 0.215 0.192

Table 8.1: Scores and Euclidean Loss achieved with feature maps from the different layers of the Krizhevsky network and
different sizes of the input images.
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clocks laptops beds

random statistical random statistical random statistical

# coverage # coverage # coverage # coverage # coverage # coverage

original 50000 42.5 % 50000 61.3 % 50000 91.3 % 8000 96.2 % 900 96 % 1100 96.9 %
marker 50000 36.6 % 50000 60.7 % 50000 91.4 % 800 96 % 700 95.4 % 1000 95.7 %
purified 50000 40.7 % 50000 60.9 % 50000 92.6 % 10000 96.7 % 800 96.3 % 8000 95.6 %
both 50000 41.2 % 50000 61.1 % 50000 90.8 % 7000 95.4 % 900 96.4 % 1100 96.9 %

Table 8.2: The number of samples necessary for achieving 95 % coverage of ground truth bounding boxes in three consecutive
runs or the coverage achieved with 50000 samples if 95 % could not be achieved with fewer samples for the two sampling methods
that use the saliency map as a spatial prior.
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