
Probabilistic Object Tracking on the
GPU

Bachelor Thesis of

Claudia Pfreundt

Department of Informatics
High Performance Humanoid Technologies Lab (H2T)

Referees: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr. Stefan Schaal

Advisors: M.Sc. Manuel Wüthrich
Dipl.-Inform. David Schiebener
Dr. Jeannette Bohg

Duration: 1. December 2013 – 31. March 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung
guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe. Die Arbeit
wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt und
von dieser als Teil einer Prüfungsleistung angenommen.

Karlsruhe, March 31, 2014

(Claudia Pfreundt)

Contents

1 Introduction 1

2 Related Work 3
2.1 Particle filter on GPUs for real-time tracking (Montemayor et al., 2004) . . 3
2.2 A GPU-accelerated particle filter with pixel-level likelihood (Lenz et al., 2008) 4
2.3 Real-time visual tracker by stream processing (Lozano and Otsuka, 2009) . 5
2.4 6-DoF model-based tracking of arbitrarily shaped 3D objects (Azad et al.,

2011) . 6
2.5 RGB-D object tracking: A particle filter approach on GPU (Choi and Chris-

tensen, 2013) . 6
2.6 Summary . 7

3 Foundation 9
3.1 Probabilistic object tracking . 9
3.2 Parallelization . 12

4 Pure OpenGL approach 14
4.1 OpenGL . 14

4.1.1 Rendering . 14
4.1.2 Pipeline . 17

4.2 Rendering a pose with OpenGL . 21
4.3 Performance and bottlenecks . 24

5 Combined approach with OpenGL and CUDA 25
5.1 CUDA . 26

5.1.1 Kernels . 26
5.1.2 Memory structure . 28

5.2 Parallel likelihood computation . 30
5.3 Combined rendering with OpenGL . 33
5.4 Performance and bottlenecks . 34

6 Evaluation 35
6.1 Work environment . 35
6.2 Runtime analysis of the OpenGL approach 36
6.3 Runtime analysis of the combined OpenGL and CUDA approach 39
6.4 Scalability with the number of poses . 44
6.5 Scalability with the resolution . 48
6.6 Scalability with the number of triangles . 49
6.7 Scalability with the number of cores . 50

7 Conclusion 51

iii

Contents iv

Bibliography 52

iv

1. Introduction

Robots have been developed and improved for many years now, making them a self-evident
part of our everyday life today. With the gradually increasing demand on robots, they are
expected to work in unstructured environments, which makes a reliable interaction with
this environment essential. Generally, sensors and actuators are required for this interac-
tion, enabling the robot to gather information and adjust its behaviour to it. Common
sensors include cameras which can deliver a realistic impression of the surroundings, or
touch sensors which give feedback on the force applied to them. Actuators are physical
parts that can translate signals into motion, making for example robot arms and hands
able to move.

Many robotic tasks include grasping and manipulation of objects, for example when open-
ing a door or carrying a tray. However, the position and orientation of an object need to
be known in order to successfully interact with it, which is why object tracking algorithms
have been developed. When the initial pose of an object is known and it is thereafter
moved by the robot, forward kinematics can be used to determine the pose of the object.
However, the precision of the actuators is not yet high enough to ensure a deterministic
movement of the object. For example, it could be moved several centimeters further than
expected, or it could slip in the robot hand, changing its orientation. The movement could
also be intercepted by an obstacle or human intervention, which would preclude a reliable
pose estimation of the object in question.
This is why object pose estimation through visual feedback is an important requirement
for reliable robotic tasks. Optimally, it enables the robot to precisely track an object
of interest and interact with it in real-time. While several approaches to this problem
are being pursued, a general increase in precision and speed of the existing algorithms is
desirable, as most approaches cannot yet robustly perform in real-time.

This thesis concentrates on optimizing the performance of an existing object tracking
algorithm ([WPK+13]) which is solely based on depth measurements of the object. It can
handle arbitrarily shaped objects since it does not depend on detectable edges or features.
Additionally, it performs completely independently from the color or texture of an object,
as this data is not used to determine the pose. This also makes the algorithm robust
to illumination changes in the environment. Furthermore, it can handle clutter in the
background and partial occlusion of the object.
A camera that delivers a depth image of the environment, for example a Microsoft Kinect,
as well as a 3D model of the object are required to use the approach described.

1

2

Figure 1.0.1: Example tracking of an object

The algorithm is based on a particle filter ([IB98]) that can track an object with 200
particles at 30 Hz using one CPU core. However, a downsampled resolution of 80 x 60
of the camera image is required to yield this performance, which can result in a loss of
precision. Additionally, the speed at which the object can be moved is limited.
In order to improve the accuracy of the filter, either more particles have to be evaluated
or the resolution of the image has to be increased. A higher speed can be achieved by
evaluating more particles as well, or using a camera which can deliver depth measurements
at a higher frame rate. To realize any of these aspects, the computations of this algorithm
have to be accelerated.

To enable these improvements, this thesis explains and conducts a parallelization of the
given algorithm. Parallelization itself can be done for multi-core CPUs, GPUs or clusters
thereof. While CPU-parallelization is commonly used for general purpose applications or
such with high data transfer needs, GPU-parallelization is typically applied to graphics
related applications or such that use data parallelism. CPU-, GPU- or hybrid-clusters
are employed in High Performance Computing to solve computationally intense scientific
problems like medical imaging or seismic data analysis. They offer parallelism at a much
larger scale, but are much more expensive and require a more complex code development.
As a particle filter employs a lot of data-parallelism and, in our case, rendering of 3D
models, a GPU-parallelization is the most promising approach. Using two different frame-
works, OpenGL (see Section 4.1) and CUDA (see Section 5.1), a very efficient paralleliza-
tion could be achieved, enabling the evaluation of about 10,000 particles at a rate of 30
Hz with the aforementioned resolution (see Section 6.4). Likewise, the resolution can be
increased when using less particles, e.g. 200 for a resolution of 640 x 480.

The next chapter gives an overview of related work in the field, while the third chap-
ter explains the algorithm that is parallelized and the basic concepts of parallelization.
Subsequently, a naive and a more sophisticated approach to the GPU-parallelization of
the algorithm are explained, including a description of the respective frameworks used.
A short summary of the performance of the algorithms can be found at the end of the
respective chapters, while a detailed analysis of the runtimes is conducted in Chapter 6.
This chapter also compares both versions to the original algorithm with respect to their
overall performance and scalability. Finally, the gained advantages and possible future
work are discussed in the conclusion.

2

2. Related Work

Particle filters were first introduced by Isard and Blake ([IB98]) in 1997 as a robust 2D
contour tracking approach. A particle filter tries to estimate the state of a system at a
regular time interval. Instead of giving a point estimate, the particle filter estimates a
probability distribution over the state-space. A number of hypotheses, called particles,
are proposed each time step. Given an observation, e.g. a camera image, the likelihood
for each of the particles to have produced this observation is computed. The collectivity
of all particles and their likelihoods approximate the distribution over the state-space, of
which the mean or the most probable state can be used as point estimate. For subsequent
time steps, a number of particles is resampled from the distribution and propagated with
a function that best models the motion of the system.
By enabling the simultaneous evaluation of alternative hypotheses, particle filters present
an interesting alternative to the Kalman Filter ([Kal60]) and its variations ([WM00],
[TBF05]), which is why they have been widely applied to 2D and 3D object tracking
problems.
The following sections describe some examples of GPU-accelerated particle filters which
show similarities to the approach developed in this thesis.

2.1 Particle filter on GPUs for real-time tracking (Montemayor
et al., 2004)

Montemayor et al. ([MPASF04]) introduced a preliminary design of a particle filter im-
plementation on a GPU. Tested on a rolling ball sequence, 2D-tracking of the object was
performed in real-time by comparing the captured image to a shape template of the object.
In each time step, a square window of the image is captured for each particle, according
to its (x, y) coordinates, as shown in Figure 2.1.1. The collectivity of all these images is
stored in a square texture which is stored on the GPU. Subsequently, a second texture
is created which contains the shape template, duplicated into a square image for each
particle.
By using the fragment shader stage (see Section 4.1.2), these two textures are then mul-
tiplied, yielding the likelihood for each pixel. To sum up the likelihood for each pose,
a GPU-accelerated method called mipmapping is applied, which scales down a texture
by interpolating the values of adjacent pixels. The results are then used by the CPU to
continue computation. By using the GPU for the evaluation step, a real-time performance
of the algorithm could be achieved.

3

2.2. A GPU-accelerated particle filter with pixel-level likelihood (Lenz et al., 2008) 4

Figure 2.1.1: Hybrid GPU/CPU particle filter scheme (source: [MPASF04])

Despite using only a simple 2D-tracking mechanism, this work shows a basic approach to
using the GPU for accelerating a particle filter. It also introduces the very important step
of accumulating the information of all particles in one single texture, which saves a lot of
latency and data transfer time.

2.2 A GPU-accelerated particle filter with pixel-level likeli-
hood (Lenz et al., 2008)

A face- and hand-tracking algorithm published by Lenz et al.([LPK08]) uses solely OpenGL
to accelerate the particle filter on the GPU. The camera image is preprocessed by an
OpenGL fragment shader which uses a Gaussian Mixture Model to detect skin colored
pixels and marks them as white. The renderings of the object are also conducted in white
color. Afterwards, a binary XOR operation is performed on each pixel pair of the two
textures which yields a residual image. The amount of non-zero pixels for each pose is
then returned to the CPU to continue with normalization of the weights and resampling of
the particles. Figure 2.2.1 depicts the subdivision of tasks between the CPU and the GPU.

Figure 2.2.1: Subdivision of tasks between the CPU and the GPU (source: [LPK08])

4

2.3. Real-time visual tracker by stream processing (Lozano and Otsuka, 2009) 5

This approach achieves a speedup between 3 (hand) and 7 (face) of the GPU version
compared to the CPU implementation. The algorithm itself is dependent on single-colored
objects and can only handle self-occlusions. It is able to evaluate 100 particles within 75
ms, while the accuracy is not described in the corresponding paper.

2.3 Real-time visual tracker by stream processing (Lozano
and Otsuka, 2009)

Lozano and Otsuka ([LO09]) published an approach to object tracking, specifically faces,
using the CUDA framework for the evaluation step of the particle filter. A set of feature
points of a personalized 3D model of a human face is rendered (see Section 4.1.1) and their
gray level is compared to the corresponding pixels in the observed camera image. These
calculations are performed in parallel by a CUDA kernel (see Section 5.1.1) for each feature
point in each pose. The kernel transforms each of the points by means of a weak ortho-
graphic projection and subsequently computes the matching error to the corresponding
observed pixel. A second kernel is then executed for each pose, adding up their respective
errors and storing these values in global memory, from which they can be transferred to
the CPU for further processing.
While being able to evaluate 10,000 particles in approximately 12 ms, no information
about the accuracy of the tracking is provided.

Figure 2.3.1: Face tracking with approximately 230 feature points (source: [LO09])

As our approach renders a full 3D model as opposed to a reduced number of feature points
(see Figure 2.3.1), the rendering requires more time while providing a detailed and per-
spectively correct depth image. In our case, this rendering is performed with OpenGL
(Section 4.1), as this framework is optimized for transforming pixels and rasterizing prim-
itives. Our CUDA kernel operates in a similar fashion as the one described here, although
handling multiple pixels per core and using shared memory for the summation of the
weights. While handling self-occlusions of the face, occlusions through other objects are
not explicitly modeled in this approach.

5

2.4. 6-DoF model-based tracking of arbitrarily shaped 3D objects (Azad et al., 2011) 6

2.4 6-DoF model-based tracking of arbitrarily shaped 3D ob-
jects (Azad et al., 2011)

A monocular model-based approach to object tracking with a particle filter was proposed
by Azad et al. ([AMAD11], [Mün10]), using edge detection. Canny edge detection as well
as the sobel and prewitt operators can be used in this approach, depending on which one
is the best fit for the tracked object. Each camera frame is preprocessed in a CUDA kernel
with the aforementioned method and subsequently binarised to establish a monochrome
image which shows distinct edges in the scene. Additionally, the object is rendered with
OpenGL in the various different poses and the corresponding edge images are created. The
comparison of both edge images is handled by executing a binary AND operation on all
pixels with a CUDA kernel. Afterwards, the number of matching pixels is summed up per
pose and transferred to the CPU. Figure 2.4.1 shows an outline of the GPU parallelization.

Figure 2.4.1: The poses are rendered with OpenGL and weighted with CUDA (source:
[Mün10])

As OpenGL is used for rendering and CUDA kernels execute the weighting step, this
particle filter implementation has some similarities with our approach. Partial occlusions
are handled by the algorithm, however they are not explicitly modeled. Altogether, no
real-time performance could be achieved, as issues with the data transfer between CPU and
GPU were encountered. The approach presented in this thesis minimizes data transfers
and avoids framework overhead as far as possible.

2.5 RGB-D object tracking: A particle filter approach on
GPU (Choi and Christensen, 2013)

A recent work published by Choi and Christensen ([CC13]) uses GPU acceleration tech-
niques that are very similar to ours. They track objects with a particle filter using not
only depth, but also color and surface normal information. The renderings of the object in
several poses are accumulated in one large texture (shown in Figure 2.5.1), which reduces
mapping time into the CUDA framework. However, not all poses are being rendered by
the OpenGL framework due to memory restrictions on the GPU. Instead, for subsequent

6

2.6. Summary 7

poses, the closest rendering is found and transformed with the respective pose. Afterwards,
the information is compared to the observed image in a CUDA kernel.
While the GPU implementation shows great analogy with ours, this approach does not
handle occlusions explicitly. With a runtime of approximately 40 ms for 100 particles, it
is able to track complex objects in real-time by using photometric and geometric data.

Figure 2.5.1: Example object tracking with the algorithm of Choi and Christensen. Mul-
tiple poses are rendered into one large texture (source: [CC13])

2.6 Summary
Various approaches to particle filtering on the GPU have been presented in the above
sections. While all of them attempt object tracking with OpenGL and / or CUDA, none
of them models occlusion explicitly. The runtimes per particle differ greatly, as the com-
plexity of the calculations depends on the purpose of the tracking and is different for each
approach. Additionally, it is very likely that different hardware has been used for testing
each of the presented algorithms, thus the listed runtimes are not directly comparable. The
following Tables 2.1 and 2.2 give an overview of the similarities and differences between
all approaches described.

7

2.6. Summary 8

Table 2.1: Comparison of various particle filter implementations on the GPU

Approach OpenGL CUDA
Single
tex-
ture

Weights
summation

Montemayor
et al.

[MPASF04]

weighting
(multiplication) - yes OpenGL

mipmapping

Lenz et al.
[LPK08]

image binarisation,
rendering, weighting

(XOR)
- no OpenGL

fragment shader

Lozano et
al. [LO09] -

point
transformation,

weighting
no CUDA kernel

Münch
[Mün10] rendering

edge detection
and binarisation,
weighting (AND)

no CUDA kernel

Choi et al.
[CC13] rendering weighting yes CUDA kernel

this
approach rendering weighting yes CUDA kernel

Table 2.2: Comparison of various particle filter implementations on the GPU (cont.)

Approach Time p.P.
(640 x 480)

Handles
occlusion Weighting Year Object

Montemayor
et al.

[MPASF04]
(real-time) no color (binary) 2004 2D shape

Lenz et al.
[LPK08] 750 µs only

self-occlusion color (HSV) 2008 face (2D),
hand (3D)

Lozano et
al. [LO09] 1.2 µs only

self-occlusion intensity 2009 face (3D)

Münch
[Mün10] 3.04 ms yes, implicitly edges (binary) 2010 arb. obj.

(3D)

Choi et al.
[CC13] 415 µs only

self-occlusion

color (RGB),
depth,
normals

2013 arb. obj.
(3D)

this
approach 115 µs yes, explicitly depth 2014 arb. obj.

(3D)

8

3. Foundation

This chapter gives an overview of the object tracking algorithm that is parallelized in this
thesis, followed by an explanation of the basic principles of parallelization.

3.1 Probabilistic object tracking
The object tracking algorithm used in this thesis was developed by Wüthrich et al.
([WPK+13]) at the Max Planck Institute for Intelligent Systems (Autonomous Motion
Department) in Tübingen. It requires a Microsoft Kinect or a similar sensor and a 3D
model of the object for a successful object tracking. As the purpose of this thesis is the
efficient parallelization of this algorithm, only the details necessary to fulfill this task are
explained in this section. A more detailed explanation and the mathematical background
to this algorithm can be found in the according paper ([WPK+13]).

The algorithm employs a particle filter (see Chapter 2), which means that at any given
point in time, the state of the object is approximated by a discrete distribution over the
state space. In our case, the state is six-dimensional, incorporating the position and the
orientation of the object relative to the camera. Each particle contains such a state and a
weight that represents the probability that the object is currently in this state.

In order to correct the predicted poses with respect to the real position of the object, the
observation of the sensor is needed. The Kinect delivers a depth image of the observed
scene at a rate of 30 Hz, meaning the algorithm gets 30 observations per second that can
be evaluated. Each 1/30th of a second is referred to as a frame in this thesis.

In general, this algorithm first issues a number of predictions for the pose of the object.
Using the observations obtained through the camera, it then determines how likely each
of those predictions is and assigns corresponding weights to them. Subsequently, those
predictions with a low weight are discarded while the ones with a high weight are reused
and duplicated for predicting the pose in the next frame.

To generate the initial particles, the algorithm assumes the object to stand on a flat surface,
for example a table. It then samples around clusters of points on this table. Sampling
here means randomly picking potential object poses according to a given distribution. In
our case, this distribution is represented by a set of gaussians, each centered around the
mean of one cluster, with a variance that can be manually adjusted.

The algorithm itself consists of three steps that are executed in an infinite loop.

9

3.1. Probabilistic object tracking 10

1. Propagation
Given a particle, it is propagated by adding random noise to each dimension of the
predicted pose, respectively sampled from a gaussian distribution. It represents our
expectation of how the object is going to move in between two time frames.
If the object is being moved by a robot, additional control inputs can be used for a
more accurate propagation of the particles. As working with a robot was not feasible
in the course of this thesis, no control inputs are taken into account. However,
accomodating them should not have a noticeable impact on the runtime.

1 for each pose
2 for each dimension
3 x = x + random number sampled from gauss ian d i s t r i b u t i o n
4 end for
5 end for

Listing 3.1: Propagation step

2. Evaluation
For each particle, the object is rendered in the corresponding pose into an image of
the same size at the same angle as the camera image. Afterwards, each rendered
depth image is compared with the real depth image from the sensor. This comparison
is performed pixel-wise. The less difference between the values of the rendered image
and the observation, the more accurate is the estimated pose. Thus, the likelihood
of the particle, also referred to as weight in this case, is set accordingly. As we do
not model the surroundings of the object, only the pixels that are occupied by the
rendered object are compared.
Additionally, the algorithm can handle partial occlusions of the object, for example
through another object or a human hand. This is why every pixel is assigned a
certain probability of being occluded. This probability is taken into account when
comparing the depth values.
Furthermore, the occlusion probability is updated each frame, depending on the
computed likelihood. For instance, if the two depth values are very close together, the
probability that this pixel is still occluded is very low. As the occlusion probability
is propagated with time, but only a subset of pixels is updated every frame, an
additional value per pixel needs to be saved, which contains its last update time.
After evaluating each pixel separately, the logarithms of their respective likelihood
are summed up to yield the overall likelihood, or weight, of the pose.

6 for each p a r t i c l e
7 render the pose and obta in depth va lue s per p i x e l
8 for each p i x e l occupied by the o b j e c t
9 compute l i k e l i h o o d from rendered depth , observed depth , o c c l u s i o n

p r o b a b i l i t y and update time
10 add log (l i k e l i h o o d) to o v e r a l l l o g _ l i k e l i h o o d o f t h i s pose
11 end for
12 end for
13 output the weighted mean o f a l l poses as e s t imate

Listing 3.2: Evaluation step

3. Resampling
In this step, new particles are sampled from the distribution of the evaluated parti-
cles. This process typically discards poses with a very low weight, while poses with
a high weight are picked several times. However, we do not evaluate the same pose
twice, as these particles are propagated again in Step 1. The pose data, as well as
the occlusion probabilities and the update times of the pixels need to be copied into

10

3.1. Probabilistic object tracking 11

new data structures, as they will be altered for each particle individually in the next
frame.

14 for each p a r t i c l e
15 sample a new p a r t i c l e accord ing to the weight d i s t r i b u t i o n obta ined

from the prev ious s tep
16 copy a l l the r e l e v a n t data o f that sampled p a r t i c l e (pose , o c c l u s i o n

p r o b a b i l i t i e s , update t imes)
17 end for

Listing 3.3: Resampling step

As can be seen from the above pseudo-code listings, each of the steps in this algorithm is
executed for each particle individually. Within each step, the calculations per particle are
independent, which allows for optimal parallelization. For example, the computations for
each particle can be handled by separate threads.
However, there has to be a synchronization in between the evaluation and the resampling
step, as the likelihoods for each particle need to be known in order to contribute to the
distribution from which the new samples are drawn.
To determine the runtime of each step of the sequential implementation, the gettimeof-
day() function is used. It is available in Linux and returns the time that has passed since
midnight UTC on January 1, 1970. This timer is commonly used to determine the actual
time that passes while executing a function. Alternatively, CPU timers can be used, which
compute the time based on the cycles needed for executing the instructions and the clock
speed of the CPU. Often, additional processes run in the background, like the operating
system or the development environment for the code, which lets these timers yield results
that are unsuitable for our purposes.

12,1%

78,3%

5,4%

4,2%

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

runtime in %

re
n

d
e

ri
n

g
2

0
0

 p
o

se
s

get observation image

propagate

evaluate

resample

Figure 3.1.1: Runtime analysis of the original algorithm

As can be seen from Figure 3.1.1, the greatest computational effort lies within the eval-
uation step. It takes up 78% of the overall runtime of a frame. Because of the heavy
use of object rendering in this step, a parallelization on the GPU appears very promising,
as it is exactly what a GPU is designed to do. This thesis focuses on parallelizing this
evaluation step, although the propagation and resampling steps have been parallelized for
completion, too, which is taken into account in the overall speedup evaluation at the end
of this thesis.

11

3.2. Parallelization 12

3.2 Parallelization
Time is of the essence in many computer applications today. Be it a computer game that
has to render sophisticated graphics in real-time or a robot that is designed to play table
tennis with a human - the speed of a software often defines its usability. For quite some
time, speeding up applications could be achieved by increasing the clock speed of the
Central Processing Unit (CPU) in a system. This way, more instructions per second can
be processed, reducing the runtime of every algorithm that can be executed on a CPU. As
this clock speed has reached its maximum due to heat and power restrictions, other means
of accelerating computations have to be found. Dividing an application into multiple jobs
that can run in parallel is one of the most promising approaches.
For this to work, the application has to provide computations that are independent of each
other in the sense that, for example, one computation does not need the result of another
as input (see Figure 3.2.1).

job 1 job 2 job 3 job 5job 4

runtime

job 1

job 2

job 3

job 4

job 5

runtime

dependence

sequential execution

parallel execution - limited by dependencies

Figure 3.2.1: Parallel execution of multiple jobs

In addition, the application should be computationally intensive and should not mainly
consist of data transfer. For instance, an application that merely copies big amounts
of data from one location to another is limited by the bandwidth of the interconnection
between the data locations (see Figure 3.2.2).

If an application is parallelizable, some of its computations can be run in multiple threads
on a single CPU, a multi-core CPU or specialized hardware like Graphics Processing
Units (GPUs). While a single CPU can only provide virtually parallel execution of the
threads, multi-core CPUs allow for physically concurrent execution, as they comprise sev-
eral Arithmetic Logic Units (ALUs) and Control Units (CUs) that can fetch and execute
instructions. Modern end-consumer multi-processors usually contain between 4 and 16
ALUs (from now on referred to as cores), while the newest high performance processor
Intel Xeon Phi incorporates 61 cores ([Cor12]).

12

3.2. Parallelization 13

main memory

18 GB/s

main memory

18 GB/s

core

corecore

core

core

Figure 3.2.2: Many cores do not accelerate data transfer

When parallelizing an application, it has to be determined whether it is more suited for
execution on a CPU or a GPU. The main advantage of the CPU is its Multiple Instruction
Multiple Data (MIMD) capability, which allows parallel execution of entirely different
instructions. Additionally, direct access to main memory and efficient caching of data
gives the CPU an advantage in processing a lot of data. The biggest limitation of CPUs
is their currently low number of cores, as the possible speedup is always limited by it.

Figure 3.2.3: Hardware comparison between CPU (left) and GPU (right) (source:[Tat13])

Modern GPUs, however, typically incorporate between 256 and 2880 cores ([Cor14]). Al-
though these cores cannot be compared to CPU cores when it comes to computational
power, the theoretical speedup is much higher for applications that use a lot of Single In-
struction Multiple Data (SIMD) instructions. More details about GPU cores are explained
in the CUDA section (Section 5.1).
The biggest disadvantage of a GPU is that it cannot access main memory directly. The
CPU first has to issue a transfer to GPU memory, which will then be executed by Direct
Memory Access (DMA). This transfer is also quite slow, which is why applications with a
lot of data traffic are not likely to scale on a GPU. Since invoking functions that run on
the GPU also causes some communication overhead, the problem to be parallelized has to
be big enough so that the speedup will even out this overhead.

In conclusion, GPUs should be used for big, SIMD-based problems with a minimum of
data transfer to or from main memory. CPUs are better suited for algorithms that need
to execute different instructions in parallel or that rely heavily on data transfer. Object
tracking with a particle filter is highly parallelizable, since each particle can be evaluated
individually. Since not a lot of data is needed and the computations for the particles are
alike, parallelization on the GPU sounds the most promising.

13

4. Pure OpenGL approach

To achieve a notable speedup in performance it is essential to parallelize the evaluation
step, as it contributes 78% of the overall runtime of the object tracking algorithm. For
every frame, this step renders the propagated poses and calculates their corresponding
likelihoods.
Since GPUs were specifically designed for rendering purposes, an obvious approach is
to shift these calculations from the CPU to the GPU. There are several frameworks that
facilitate use of GPUs; amongst it is the Open Graphics Library (OpenGL) which provides
a set of functions to render a scene. This chapter explains the basic functioning of OpenGL,
followed by a description of how we use it for our purposes and the performance gain
achieved. Readers that are familiar with OpenGL can skip to Section 4.2.

4.1 OpenGL
The OpenGL framework is a cross-platform application programming interface (API) that
is widely used for rendering 3D computer graphics on the GPU. Rendering is the trans-
formation of 2D or 3D geometry into 2D images. OpenGL has first been published by
the Silicon Graphics Inc. (SGI) in 1992 and has been further developed ever since. Be-
cause of its extensive documentation and ease of use, OpenGL has become very popular
and is used mainly in scientific visualization, computer-aided design (CAD) and computer
games. This section gives an overview of the rendering process in general and the OpenGL
constructs that accelerate this rendering on the GPU.

4.1.1 Rendering

Rendering is the process of creating a two-dimensional image from a virtual scene. Which
parts of this scene will be visible depends on the positioning of a virtual camera, from
which the scene is observed. The process of rendering typically contains the following two
steps:

1. Transform all objects in the scene so that their coordinates represent their position
relative to the camera from which the scene is viewed

2. Given the desired resolution of the final image, determine for each pixel which object
occupies it and assign the appropriate color and depth to it

14

4.1. OpenGL 15

Every object is defined by its object model, which consists of a set of vertices in a cartesian
coordinate system (called model space) with the origin being the center of the object.

Figure 4.1.1: Model space (source: [Ope14])

The scene itself, on the other hand, is defined in world coordinates (world space), with
the origin being the center of the scene. According to the position and orientation that
an object is supposed to have within the scene, the definition of its vertices needs to be
changed. They have to be defined relative to the scene’s origin instead of the object’s
origin. If not changed, every object would be positioned in the center of the scene, in its
standard orientation. This transformation can be expressed by a single matrix in homo-
geneous coordinates ([Ope14, Tutorial 3]), the model matrix.

Figure 4.1.2: World space (source: [Ope14])

To view this world through the camera, another transformation with the so-called view
matrix is necessary, that defines all vertices relative to the camera’s position and orienta-
tion. An important characteristic of the camera coordinate system (camera space) is that
its z-axis points toward the observer, while the x- and y-coordinates are aligned with the
image plane.

15

4.1. OpenGL 16

Figure 4.1.3: Camera space (source: [Ope14])

To gain perspective vision on the scene, a perspective projection is done, which lets objects
that are further away from the camera appear smaller than objects right in front of it.

Figure 4.1.4: Orthographic projection (left) versus perspective projection (right) (source:
[DeV11])

Instead, an orthographic projection can be used, which is common in computer-aided
design (CAD), as parallel lines should appear parallel, for example when constructing a
building element. It is also used by Lozano et al. ([LO09]) together with a scaling factor,
to lower the computational cost of the algorithm. However, as we try to model a sensor
that has perspective vision, we use a perspective projection.

16

4.1. OpenGL 17

model coordinates

world coordinates

camera coordinates

homogeneous coordinates

model matrix

view matrix

projection matrix

Figure 4.1.5: Summary: All transformations of the vertices (source: [Ope14])

After a successful transformation of the vertices, it has to be determined which pixels are
occupied by the triangles composed of them. At this stage, a pixel is called a fragment
and it can carry color as well as depth information. Assigning these values requires a dis-
cretization of the image whose step size depends on the resolution. In the process called
rasterization, which is used by OpenGL, every triangle of the object is rasterized by itself
and for each occupied fragment, the color- and depth-values of the closest vertices are
interpolated. After the rasterization, typically more than one object occupies the same
pixel in the image which is why only the foremost fragment is drawn or a combination of
fragments (e.g. when using transparent objects).

In photorealistic rendering, a technique called raytracing has become very popular, which
does not rasterize the objects, but instead shoots a ray through each pixel and determines
which object is intersected by it in the scene. This is useful to represent realistic lighting,
as these rays can be transmittted through or reflected at the object, to take into account
indirect lighting as well. However, raytracing is a computationally very expensive pro-
cess. As our algorithm solely uses the depth values of the pixels, we use the rasterization
technique for rendering.

4.1.2 Pipeline

To render a scene, OpenGL runs it through a sequence of stages denoted as the rendering
pipeline. In early versions of OpenGL, this was a very simple pipeline that only contained
the most fundamental stages necessary for rendering. Some of these stages were hardwired
on the graphics chip, which made their execution very fast. With time and with increasing
demand from the developers, the pipeline was frequently refined to provide more flexibility
and additional features. In this section, a modern version of the OpenGL pipeline is
described; stages, which are however negligible for this thesis, are omitted.
The essential steps of the pipeline are:

1. Vertex data is sent to a GPU buffer by the host program running on the CPU

2. The vertices are projected into image space

3. They are assembled into triangles

17

4.1. OpenGL 18

4. They are rasterized into pixel-sized fragments

5. These fragments are assigned color values and drawn to the framebuffer

Figure 4.1.6: OpenGL rendering pipeline (source: [Gro12])

Initially, vertex attributes of all vertices (of every object) in a scene are copied to buffers
on the GPU, called vertex buffers. Typically, these attributes include the position in
model space and the color of the vertex. Generally, an attribute can possess any value.
The various vertex buffers are collectively called a vertex array, which is indexed by the
element array. The indices select the order in which the vertices get fed into the pipeline.

18

4.1. OpenGL 19

This order later determines which vertices are assembled into a primitve, for example, in
a basic case, every three subsequent vertices build one triangle, as illustrated in Figure
4.1.7.

{1.3,l-0.2,l-2.2}

{3.1,l-1.2,l0.1}

{1.1,l-0.2,l1.4}

{1.0,l-3.1,l-0.9}

{2.5,l-0.3,l-1.7}

{-2.4,l0.6,l2.8}

{-2.7,l0.0,l-1.6}

0

1

2

6

5

4

3

VBOl0
{red}

{orange}

{red}

{green}

{white}

{white}

{yellow}

0

1

2

6

5

4

3

VBOl1

VAO

elementlarray

5 2 3 5 40

trianglel0 trianglel1

...

... ...

Figure 4.1.7: OpenGL object representation: The Vertex Array Object (VAO) accumulates
pointers to all Vertex Buffer Objects (VBOs), which contain vertex attributes
like positions or colors. The element array indexes the VAO and thus the
VBOs.

The vertex attributes are used as input to the vertex shader, an uploadable program writ-
ten by the developer in a high-level language called OpenGL Shading Language (GLSL).
This shader is executed for every vertex separately and it usually transforms the attributes
and feeds the results to the next pipeline stage. At a minimum, the vertex shader per-
forms the transformations mentioned in the previous Section 4.1.1 to project the vertices
into image space. The needed matrices can be sent to the shader by the host program as
uniform variables, which means every instance of the shader gets the same value.

VS

VS

pos 5 (, color 5)

pos 2 (, color 2)

uniform matrix

new pos 5 (, new color 5)

new pos 2 (, new color 2)...

Figure 4.1.8: The vertex shader (VS) program is executed for every vertex individually.

19

4.1. OpenGL 20

The vertex shader can also perform other calculations on the vertex attributes, for example
the color value can be changed according to lighting conditions in the scene.
Theoretically, the programmer can perform any desired calculation in this shader. This
flexibility is commonly used to perform general purpose computing with OpenGL, although
it can be tricky to adjust a general computation to the graphics environment.
The next stage assembles the vertices to primitives depending on their order and the
assembly mode specified by the developer. In our case, this mode is set to connect every
three vertices to a triangle, but in general, several ways of connecting the vertices can be
chosen and primitives can also be points or lines. If a triangle lies outside of the viewing
frustum (which means the visible area), it is discarded in this stage to save redundant
computations. If only part of the triangle lies outside, it gets clipped to the frustum and
possibly sub-divided into multiple triangles.

Figure 4.1.9: Triangles outside the viewing frustum get clipped to the frustum planes
(source: [cli])

The following rasterizer breaks the triangles into pixel-sized fragments, where each frag-
ment contains the interpolated values of the respective vertex attributes. For example,
the color of a fragment is composed of the three colors of the vertices of that triangle (see
Figure 4.1.10.

Figure 4.1.10: OpenGL rasterization (source: [Gro12])

The same is true for the position including the depth of a pixel. Even though the depth
will not be visible in the resulting 2D image, it is necessary to handle occlusions in the
scene. If two fragments are allocated to the same pixel, the one with the smaller depth
value will be visible in the image. This procedure is called z-testing and it uses a separate

20

4.2. Rendering a pose with OpenGL 21

depth buffer to keep track of the smallest depth values of the fragments already processed.
If the z-value of a fragment is larger than the one stored in the buffer, it can be discarded.

The last relevant stage in the pipeline used here is the fragment shader. This is another
programmable element that receives the fragments with their interpolated values as input.
Again, this shader can perform any desired calculation, but it is typically used to output a
final color per fragment which gets drawn into the framebuffer. The framebuffer contains
not only a single 2D-image for screen output, but instead provides the possibility to write
to multiple textures. A texture is an OpenGL object that contains an image. Often, the
terms texture and buffer are used interchangeably, but a buffer can typically contain any
sort of data while a texture is meant to store only image data. In our program, we use a
depth texture to store the transformed depth values for z-testing and a color texture to
store the real depth in meters. Before every render pass, it is important to reset all values
in these textures to a default value, so that data from previous render passes is erased.
This process is referred to as clearing the texture.
After all fragment shader instances have finished execution, the result in the framebuffer
can be used to present a picture to the user or for further processing.

4.2 Rendering a pose with OpenGL
In this approach, the OpenGL pipeline is used to render the object in a specific pose.
Afterwards, the depth values are extraced from the framebuffer and further processed on
the CPU to compute the likelihood. In each frame, both of these processes are executed
for each propagated pose.

The data needed by the pipeline for a successful rendering is merely the object mesh and
the transformation matrices that define at which position and in which pose the object
should be rendered into the 2D image. The object mesh is sent to the GPU as a list of
vertices, whose attributes are stored in OpenGL vertex buffers. For our purposes, the only
attribute needed is the vertex position. Additionally, the OpenGL element array needs
to be filled with the indices that determine which vertices are assembled into triangles.
Since the program only needs to track this one object, it can be transferred once in the
initialization phase and it can be reused for every rendering.

This leaves the matrices as the only data that has to be transferred to the GPU for every
pose. All matrices can be sent to the shader programs as uniform variables with a simple
OpenGL call. These variables keep their value throughout the whole rendering process,
so they are the same for every vertex of the object. The projection- and the view-matrix
are constant in our application. The former can be calculated from the intrinsic camera
parameters of the Kinect sensor or the respective camera used. The view matrix equals
the identity matrix in our case, because the Kinect sensor assumes itself to be positioned
in the origin of the world coordinate system. The model matrix has to be calculated for
every pose from the position and the rotation given.

The program for the vertex shader, which processes every vertex by itself, is listed below.
The abbreviations used are explained in Table 4.1.

21

4.2. Rendering a pose with OpenGL 22

Table 4.1: Abbreviations used in various code listings

C CPU

G GPU

s sequential

p parallel

-> transfer to

18 #v e r s i o n 330
19
20 // t e l l OpenGL which b u f f e r cor responds to which input
21 layout (l o c a t i o n = 0) in vec3 vertexPos i t ion_modelspace ;
22 uniform mat4 MV;
23 uniform mat4 P;
24 out f loat depth ;
25
26 (G, p) void main () {
27 // makes the vec to r homogeneous
28 (G, p) vec4 v = vec4 (vertexPosit ion_modelspace , 1) ;
29 (G, p) vec4 tmp_position = MV ∗ v ;
30 (G, p) depth = tmp_position . z ;
31 (G, p) gl_Position = P ∗ tmp_position ;
32 (G, p) }

Listing 4.1: Vertex shader program

Essentially, the incoming vertex position has to be transformed by the matrices and passed
to the next pipeline stage. However, the perspective projection, which is necessary for a
correct rasterization, poses a problem in regard to the depth values. It maps all of them to a
range of [0, 1] which means they do not correspond to the real distance in meters anymore,
as the Kinect sensor has a range of [~ 0.7 m, ~ 7 m]. Naturally, we could retransform the
depth values to this range after the rendering process is completed, but there is a simpler
and faster solution. Before performing the perspective projection, the depth values can
be saved in a separate output value of the vertex shader which will be interpolated by
the rasterization stage and can subsequently be read by the fragment shader. This adds a
little overhead to the rasterization stage, but it is negligible in comparison to the otherwise
unavoidable retransformation cost.
The fragment shader, which is executed for every fragment of each triangle, is the last
programmable pipeline stage. Its only purpose in our application is to write the incoming
depth value per fragment into the framebuffer. Additionally, z-testing has to be enabled
to discard fragments that are occluded by others.
The default framebuffer used for OpenGL rendering contains a color- and a depth-texture,
where the former is sent to the screen to present the final image while the latter is used for
z-testing. Given that we do not wish to present any visible data of this rendering to the
user, we need to create a custom framebuffer. OpenGL provides some functions to attach
textures with arbitrary formats to this framebuffer. As the integrated z-testing mechanism
can only work with the projected depth values of range [0, 1], we need a depth-texture
to store these values. Additionally, we create a color-texture that stores the real depth
values in meters. Caution has to be taken when chosing the format of this texture, which
consists of the data type and the channel (red, blue, green, alpha) type. For most for-
mats, OpenGL automatically clamps the values in the texture to the range of [0, 1]. This

22

4.2. Rendering a pose with OpenGL 23

means, values that exceed this range are set to the respective border value. For us, this
would prohibit the use of depth values that are greater than 1, thus making the tracking
of objects that are futher away than 1 meter from the camera impossible. Therefore, the
format GL_R32F is chosen for the color-texture, which uses the red channel with a 32-bit
floating point value per pixel.
Once every fragment has been processed, the rendering process (see Figure 4.2.1) is com-
pleted.

VS

vertex[positions

Rasterizer

matrices

FS

gl_Position[(x,y,z,w)
+[real[depth[[m]

gl_FragDepth[(z)
+[real[depth[[m]

gl_FragDepth[(z) real[depth[[m]

depth[texture color[texture

pass[z-test?

nodiscard
fragment yes

Figure 4.2.1: OpenGL pipeline usage in this approach

A CPU cannot access GPU memory directly, which is why the resulting depth values have
to be copied from the framebuffer to main memory. This is done using a Pixel Buffer Object
(PBO), a construct provided by OpenGL to allow for asynchronous data transfer between
main memory and GPU memory. Once initiated, the transfer is executed via Direct
Memory Access (DMA) while the GPU can continue execution of successive commands.
While this approach does not benefit from an asynchronous transfer, using a PBO still
proved to be faster than copying the data manually.
Once the data is transferred, it has to be filtered to identify the pixels that are occupied
by the object, since only these pixels are used for computing the likelihood. For this, a
comparison to the default depth value of 1.0 is the only option. The default value can
gerenally only be set in the range of [0, 1]. In the rare case that a pixel’s depth should be
exactly 1.0 meter, this test would fail and the pixel would be discarded. Since the depths
are saved as float values, it is highly unlikely that this problem will ever occur and even
in that case, discarding one pixel does only have a small effect on the overall likelihood.

23

4.3. Performance and bottlenecks 24

Once the relevant pixels have been extracted, the CPU can continue with the likelihood
computation. Afterwards, the algorithm proceeds with the next pose in the same manner.
To conclude this section, the following pseudo-code listing summarizes the above depicted
algorithm. Here, the abbreviations depicted in Table 4.1 are used to describe the mode of
execution for each instruction.

33 (G, s) s e t up custom f ramebu f f e r
34 (G, s) s e t up the shaders
35 (C, s) for each pose
36 (C, s) c a l c u l a t e model_matrix from s t a t e
37 (C−>G) send matr i ce s to shaders
38 (G, p) c l e a r the f ramebu f f e r
39 (G, p) render on GPU
40 (G−>C) r e c e i v e depth data from GPU
41 (C, s) for each p i x e l
42 (C, s) i f pixel_depth != 1 .0 then
43 (C, s) add pixel_index , pixel_depth to l i s t
44 (C, s) end i f
45 (C, s) end for
46 (C, s) c a l l l i k e l i h o o d _ c a l c u l a t i o n (l i s t)
47 (C, s) end for

Listing 4.2: Evaluating the poses by using OpenGL for the rendering process

4.3 Performance and bottlenecks
All in all, the rendering step of this implementation has a runtime of 9.70 ms for 200
poses, which yields a speedup of 2.12 compared to the 20.58 ms needed in the original
algorithm. Taking into account the weighting, propagating and resampling which is still
executed on the CPU, the speedup of the overall runtime is only 1.61. This allows us to
evaluate about 320 poses, though the speedup is considerably smaller than expected from
a GPU parallelization. Especially with 448 cores as opposed to just one core, a higher
speedup should be possible, even though the GPU cores are not directly comparable to
CPU cores.
On the other hand, GPUs were designed to handle bigger problem sizes than provided in
this algorithm. Typically, millions of triangles have to be rendered with a GPU, not only
420 as for the tracked object used here. A higher speedup of the OpenGL approach can
be observed when using highly complex objects, as is discussed in Section 6.2.

To shed light on the bottlenecks in this approach, a detailed runtime examination of the
algorithm was conducted. It is presented in Section 6.2, while the most important findings
are mentioned here.
Whereas the actual rendering only constitutes 12% of the runtime, the main bottleneck is
the data transfer of the depth values to the CPU. It takes 64% of the runtime, while the
remaining 24% are used to filter the relevant depth values on the CPU.

All in all, this approach shows that rendering the poses with OpenGL shows promise,
though a solution to the data transfer problem needs to be devised. Therefore, the next
chapter describes an approach that shifts the likelihood computation to the GPU as well,
thus enabling the data to stay on the GPU.

24

5. Combined approach with OpenGL and
CUDA

The first approach showed that the data transfer of the rendered depth values poses a big
problem. The only chance to avoid this transfer is to put the likelihood calculation on
the GPU, too. However, this computation needs the occlusion values for each pixel for
each pose, as described in Section 3.1, which is twice as much data as before. Obviously,
transferring this data for every computation would have a huge impact on performance
which is why it has to be stored on the GPU permanently.
Implementing this step with OpenGL is possible, however it requires some effort, because
data structures have to be disguised as textures and calculations have to be performed
in shaders, which are only called for a certain subset of fragments. Furthermore, it is
driver-dependent where data is stored with OpenGL, which can lead to non-deterministic
performance. All in all, OpenGL proved to be very efficient for rendering, but the trans-
parency of its calls leaves a lot to be desired. This is why CUDA, a framework specifically
designed for general purpose computing on the GPU, presents an interesting alternative.
It gives the user maximal flexibility and control over data structures and where and when
to execute computations. Thereby, CUDA is a much better fit to compute the likelihood
of each pose.
Combining the two frameworks is simple, as the CUDA framework allows the user to access
textures created by OpenGL for read- and write-operations. This means we can render a
pose with OpenGL and subsequently read the depth values from the framebuffer texture
with CUDA for the likelihood computation. As every mapping of a texture to CUDA
introduces some latency, frequent switching between the two frameworks is not desirable.
Thus, the rendering of all poses in one frame should be completed before switching to
CUDA for the likelihood computation. However, the CUDA Compute Capability used
(see Section 6.1) only allows a constant number of OpenGL textures to be accessed. This
number needs to be known at compile time which poses a problem if we want to pass
the number of poses and thus the number of textures as a parameter to the executable
program.
A possible solution to the problem is allocating a large constant amount of textures that
will most likely never be met by the number of poses specified. Apart from a possible
waste of GPU memory, the scalability of this solution is limited. A far cleaner and com-
mon alternative is to place all rendered poses in one large texture, which requires a bit of
restructuring in the rendering process.
This chapter briefly describes the CUDA framework and its most important components,

25

5.1. CUDA 26

followed by the CUDA implementation of the likelihood calculation and the required mod-
ifications to the OpenGL rendering process. Finally, the performance of this approach is
compared to the previous solution. Readers that are familiar with the CUDA framework
can skip to Section 5.2.

5.1 CUDA
Unlike OpenGL, the Compute Unified Device Architecture (CUDA) was not designed
specifically for graphical applications. Its purpose is to serve as an easy-to-use API for
general purpose computing on the GPU. CUDA was developed by NVIDIA in 2007, be-
cause of the increasing demand for a flexible, powerful GPU-API amongst the High Perfor-
mance Computing community. Other APIs like the Open Computing Language (OpenCL,
released in 2008) are equally suited for our purposes, but CUDA has been chosen for im-
plementation in this thesis because of its ease of use and its broad acceptance amongst
the community. One drawback of using CUDA is its limitation to NVIDIA GPUs, so the
implementation used here will not run on non-NVIDIA graphics cards like ATI models. It
should be possible to adapt the code to the OpenCL API if needed.

5.1.1 Kernels
The CUDA API allows the user to execute functions, called kernels, in parallel on the
GPU. These are ordinary C-like functions which are marked through a simple keyword
to be recognized by the compiler. The code running on the CPU, which is referred to
as host code, can call these kernels with a specific kernel configuration which defines how
many threads should be issued on the GPU. These threads are grouped as blocks within
which each thread has a unique threadID. The blocks in turn are grouped into a grid,
where each block has a unique blockID. Both IDs as well as the grid and block dimension
are accessible in the kernel function, which enables the programmer to give each thread a
different task.

Figure 5.1.1: CUDA kernel configuration (source: [Cor13])

26

5.1. CUDA 27

To understand how to use these kernel execution parameters, it is helpful to look at
the CUDA architecture. The architecture described in this thesis is called the Fermi
architecture, which differs from other architectures like the newest Kepler architecture
mainly with respect to the number of cores, the size of caches, the data transfer speed and
the clock frequency.

Figure 5.1.2: CUDA Fermi architecture (source: [Cor09])

A CUDA-capable GPU is subdivided into several Streaming Multiprocessors (SMs), each
of which contains several Scalar Processors (SPs), often referred to as cores. For example,
the GPU used for this thesis contains 14 SMs with 32 cores each. It is important to know
that these 448 cores are not independent of each other. Rather, there are 14 independent
processors that can perform 32 similar computations at a time, respectively.
When executing a kernel, each thread block is assigned to an SM, whereas the threads
themselves are each scheduled to execute on one of its cores. The blocks are executed
independently of each other, so the result of the program should not depend on a certain
order in which the blocks have to be called. Any dependency between blocks requires syn-
chronization, which means some blocks will have to remain idle while waiting for others
to finish their task.

27

5.1. CUDA 28

Figure 5.1.3: CUDA block scheduling (source: [Cor13])

The threads themselves are grouped into warps, a set of 32 threads, which execute kernel
code in a Single Instruction Multiple Data (SIMD) fashion. This means that the instruction
given in the kernel is executed on each core within a block simultaneously, usually with
different data. A typical SIMD calculation is vector addition, where for each dimension
one core can add the respective values.
If the cores in one warp do not execute the same instructions, for example because they
are separated in two groups by an if-statement, some of the cores have to wait for the
others to finish execution of their if-branch. Thus, if-instructions and the like should be
avoided as much as possible to avoid idling cycles.
Apart from the processor layout, it is crucial to understand the memory structure on the
GPU, as data transfer needs to be handled with care due to its significant latency and
transfer times.

5.1.2 Memory structure

When writing a CUDA kernel that handles a lot of data, careful consideration of the used
data structures and available memory types is advised. Every core has access to several
different types of memory, each of which is designed for a distinct usage. A general rule
applies: The faster the storage, the smaller its capacity.
Each SM has several registers at its disposal that are distributed among all threads in
the block assigned to this SM. Therefore, the more threads are launched in a block, the
less registers are available per thread. They are used for variables declared in the kernel
code and access to them is instant. For dynamic arrays, other large data structures and
variables that do not fit into the acquired number of registers, local memory is used.
Locality in this case is not spacial, but strictly logical. While it can solely be accessed by
the core assigned to it, local memory is actually off-chip memory which has a very high
latency and low throughput, so its usage should be avoided as much as possible. Hence,
issuing fewer threads can sometimes deliver higher performance, because less variables per
thread need to be sourced out to local memory. NVIDIA provides a so-called occupancy
calculator that can suggest an optimal number of threads per block given the hardware
details and registers used per thread ([cor]).

28

5.1. CUDA 29

Figure 5.1.4: CUDA memory hierarchy (source: [Cor13])

Another very fast on-chip storage is shared memory, which has only a few cycles of access
latency and a high throughput. There are usually a couple of KB of shared memory per
SM which can be accessed by all threads in a block. It can be used for data exchange
between the cores or for caching global memory data that is used frequently among the
threads. Shared memory is subdivided into memory banks, where each bank can only
access one dataset at a time, which means accesses of different cores to the same bank
have to be serialized, causing a so-called bank conflict. If each thread accesses successive
values in shared memory, they can be accessed all at once.
Apart from shared memory, every SM additionally contains caches for constant mem-
ory and texture memory. Both of these memories are read-only and are located off-chip
which makes access to them very slow. Thus, storing frequently accessed constant data
in constant or texture memory can gain performance compared to using global memory.
Texture memory is useful especially for data structures that are accessed with spacial lo-
cality, whereas constant memory is used for general data.

The slowest GPU memory is global memory. It is stored off-chip and its latency can add
up to a couple of hundred cycles while delivering a throughput of approximately 90 GB/s,
depending on the architecture. The CPU can only read and write to off-chip memory, so
this is the only possibility for data exchange with the GPU. Consequently, global memory
is mostly used to receive data from the CPU that the different cores should work on. After
kernel execution has finished, the results can be transferred back to the CPU from global
memory. Data transfer to and from global memory should be minimized for both CPU-
and GPU-accesses. The CPU can transfer data from main memory to global memory
using the PCIe bus, which can have a transfer rate between 1 GB/s and 32 GB/s.

29

5.2. Parallel likelihood computation 30

Because there is always some latency for invoking a data transfer, reads and writes should
be combined as much as possible. The same is true for global memory accesses through the
GPU-cores, although here it is especially important to issue coalesced reads and writes,
meaning the values accessed by the cores should be contiguous. In case of random access,
every fetch instruction would have to be issued separately. This way, the GPU would han-
dle these fetch instructions sequentially which would yield an increased latency overhead
and waste bus transfer space, since always at least 32 bytes are being transferred ([Har13]),
regardless of the size of the requested data.
The above two sections give a rough overview of the most important things to look out
for when programming in CUDA. However, this summary was reduced to information rel-
evant for the optimization of the object tracking algorithm described in this thesis. A far
more detailed description of the CUDA memory structure and hints for optimization can
be found here: [Cor13].

5.2 Parallel likelihood computation
The likelihood of the pose given the observation equals the product of the likelihoods of
each pixel. This can also be expressed as the sum of the logarithms of the pixel likelihoods,
which is what we use for numerical reasons.
The likelihood of a pixel with a rendered depth of 1.0, which is the default value, is set to
zero. This means, that pixels which are not occupied by the rendered object are neglected.
Thus, the likelihood computation only has to be executed for a fraction of the pixels of each
rendered pose. All of these calculations are independent of each other which is why they
are optimal for parallelization. To achieve maximum performance with a CUDA kernel, it
is important to distribute the workload evenly among the GPU cores. As mentioned above
(Section 5.1.1), kernels are run in blocks of threads where each group of threads should
preferably perform the same computations applied to different data. While the likelihood
calculation is similar for each pose, the pixels occupied by the object differ between them.
Thus, when computing one pose per thread, the threads would branch differently on sev-
eral pixels which would make them wait on each other. Therefore, better performance can
be achieved by evaluating one pose per block, within which one or rather several pixels
are evaluated per thread.
Just one pixel per thread would perform badly, as every thread needs a certain amount
of registers for local variables and the number of registers per multiprocessor has to be
distributed among all threads within it. All values that do not fit into the registers have
to be stored in slow local memory. Hence, the kernel should be able to evaluate a couple
of pixels successively. The abbreviations listed in Table 4.1 are used to describe the mode
of execution for each instruction in the listing below.

48 (G, p) pixe l_nr = threadId
49 (G, p) while pixe l_nr i s sma l l e r than #p i x e l s
50 (G, p) load rendered depth
51 (G, p) i f rendered depth i s d i f f e r e n t from the d e f a u l t then
52 (G, p) c a l l compute_l ike l ihood ()
53 (G, p) end i f
54 (G, p) pixe l_nr += #threads
55 (G, p) end while

Listing 5.1: Weighting kernel in abstracted form

Depending on the amount of threads, each thread will evaluate d #pixels
#threadse. For example,

with a resolution of 80 x 60 and 128 threads, this would make 38 pixels per thread. It
is crucial that the workload within a warp is distributed evenly among its 32 threads. A

30

5.2. Parallel likelihood computation 31

worst case scenario would be giving each thread 38 subsequent pixels (see Figure 5.2.1).
This would leave some threads completely idle, while others have to perform most of the
computations, because the relevant pixels are all next to each other. Additionally, the
threads could not coalesce their global memory accesses, as for this, thread 0 would have
to access pixel 0, thread 1 pixel 1, etc..

... ...
Figure 5.2.1: Kernel workload balancing: Assigning consecutive pixels to a thread (left)

causes only few threads to do the main work while others are idle. Instead,
subsequent pixels should be assigned to subsequent threads (right).

A good approach is to distribute subsequent pixels among subsequent threads. However,
there might still be some room for improvement in this workload balancing, for example
by distributing adjacent pixels in both x- and y-direction among subsequent threads.

Attention also has to be paid to internal data transfer on the GPU. The following data is
used in computing the likelihood for a pose:

• rendered depth

• observed depth

• occlusion probability

• occlusion update time

• likelihood

The OpenGL texture containing the rendered depth values is automatically allocated in
texture memory by CUDA. This memory is read-only and can be cached by each multi-
processor. However, the implementation cannot benefit from this cache, since every depth
value is only read once.
The observed depth has to be copied from main memory to global or constant memory
every frame. Since this data is independent of the number of poses, the transfer does
not carry much weight. Constant memory is read-only and can be cached as well, but
the values are only requested once per pose. Depending on the hardware, there might be
an L2 cache that contains all observed depth values once the first block has finished exe-
cution. Subsequent blocks can then read these values and save the global memory accesses.

Both occlusion arrays are initialized with a default value in the beginning and reside
permanently in global memory, while being updated by the threads every frame. The oc-
clusion probability for a pixel depends on its previous occlusion probability and the time
that has passed since the last update. Therefore, the algorithm uses two arrays, one to
store the probabilities and one to store the last update time of that pixel. This approach

31

5.2. Parallel likelihood computation 32

Table 5.1: The relevant data structures and their properties

Data Memory used #Values

rendered depth OpenGL -> texture memory #pixels * #poses

observed depth CPU -> global memory #pixels

occlusion probability global memory #pixels * #poses

occlusion update time global memory #pixels * #poses

likelihood shared -> global memory -> CPU #poses

avoids unnecessary computations, as for each frame only the probability of the occupied
pixels needs to be recalculated. Updating these values requires the cores to have write
access to them, which is why they have to be stored in global memory.

The likelihoods of all pixels of a pose should be aggregated before they are transferred
to global memory, thus reducing data transfer to off-chip memory and, eventually, to the
CPU. As this value needs to be accessible for all threads in a block, it is best stored in
shared memory. After having finished execution, each thread can request exclusive access
to it and add its accumulated likelihoods to it. Eventually, one thread has to copy the
value to global memory, from where it can be transferred to main memory for CPU access.
Table 5.1 gives an overview of all relevant data structures and their properties.

As the threads work on subsequent pixels, the global memory accesses per warp are co-
alesced, which means they can be dealt with in one transfer without serializing these
accesses. Additionally, CUDA has the possibility to hide the transfer time by schedul-
ing different warps for execution while waiting for the data. This requires that there are
enough warps available per block, which is why a number of 128 - 256 threads per block
usually yields a good performance. Naturally, the amount of threads should always be a
multiple of the warp size.

The data structures used to track occlusion reside on the GPU permanently and are
updated for each pose in each time step. In the resampling phase, some of the particles
are discarded, making their occlusion information abundant. Others are selected multiple
times, thereby requiring copies of the respective occlusion values. This copying of data was
implemented with CUDA as well and requires another two arrays that store the copies.

A problem arises from the limited global memory space on the GPU. The OpenGL texture
and the two arrays for occlusion grow with an increasing number of poses as well as with
a higher resolution, which is why the memory presents a bottleneck in this approach. To
alleviate this problem, a second version of the kernel was implemented, which does not
use the occlusion update times per pixel. Instead, a global update time is saved and the
occlusion probability for all pixels is updated each frame. This massively increases data
transfer to and from global memory, which is why this solution introduces a performance
penalty, especially when using high resolutions. In exchange, more poses can be evaluated
per frame; a more detailed comparison of the two solutions can be found in Section 6.3.

To conclude, the following pseudo-code gives an overview of the likelihood computation.
The abbreviations listed in Table 4.1 are used to describe the mode of execution for each
instruction.

32

5.3. Combined rendering with OpenGL 33

56 (C−>G) send obse rva t i on s to GPU
57 (G, s) map OpenGL f ramebu f f e r t ex ture
58 (C, s) c a l l l i k e l i h o o d k e r n e l with <#poses , #threads >:
59 (G, p) for each thread
60 (G, p) pixel_number = thread_id
61 (G, p) while pixel_number i s sma l l e r than #p i x e l s do
62 (G, p) load rendered_depth
63 (G, p) i f rendered_depth i s d i f f e r e n t from the d e f a u l t then
64 (G, p) load o c c l u s i o n _ p r o b a b i l i t y
65 (G, p) load occlusion_update_time
66 (G, p) load observed_depth
67 (G, p) l i k e l i h o o d += c a l l compute_log_l ike l ihood (observed_depth ,

rendered_depth , o c c lu s i on_probab i l i t y ,
occlusion_update_time)

68 (G, p) end i f
69 (G, p) update o c c l u s i o n p r o b a b i l i t y
70 (G, p) pixel_number += #threads
71 (G, p) end while
72 (G, s) add l i k e l i h o o d to l i k e l i h o o d o f other threads
73 (G, p) end for
74 (G, s) copy l i k e l i h o o d to g l o b a l memory
75 (G, s) end k e r n e l
76 (G−>C) copy l i k e l i h o o d to CPU
77 (G, s) unmap OpenGL f ramebu f f e r t ex ture

Listing 5.2: Parallel likelihood computation with a CUDA kernel

5.3 Combined rendering with OpenGL
To make CUDA interoperation easier, all poses have to be rendered into one large texture,
instead of many small ones. Allocating this texture should be done in the initialization
phase, as allocation is a very costly operation. Later on, this memory space can be reused
every frame. This texture is subdivided into rectangular areas of the size of the resolution
(e.g. 80 x 60 pixels), of which each rectangle will contain a rendered pose after the drawing
process.
This process, which includes the vertex- and the fragment-shader execution, is conducted
the same way as described in Section 4.2. To avoid drawing to the whole texture, the
so-called viewport has to be set previously to issuing the draw call. The viewport specifies
a rectangular area within the framebuffer texture that should be drawn to.
By adding an offset to the viewport for each pose, all poses can be rendered adjacently
into the texture. The maximum dimensions of a texture depend on the hardware used, in
our case they are 65536 x 65536 which would allow 894,348 poses to be rendered at the
resolution of 80 x 60, which should be more than enough. It is more likely to reach the
memory limit of the GPU before reaching the maximum allowed dimension of the texture.
It does not matter in what pattern the poses are arranged, as long as this information
is communicated to the CUDA kernel. In our case, the poses are arranged quadratically.
The easiest way to assign the CUDA blocks to the corresponding poses is to execute the
kernel in a two-dimensional grid that follows the same pattern.

Since the texture has to be read by the CUDA threads, it has to be mapped into the CUDA
context, meaning OpenGL has to provide a pointer to the texture to CUDA. Additionally,
the texture has to be detached from the OpenGL framebuffer to guarantee that OpenGL
will not modify it while it is read by CUDA.
All in all, this combined rendering approach is not only easier for interoperation, but also
faster than rendering each pose into a separate texture, as is explained in the next section.

33

5.4. Performance and bottlenecks 34

5.4 Performance and bottlenecks
The combined CUDA + OpenGL approach achieves an average runtime of 1.02 ms for
200 poses for the evaluation step, which is a strong improvement over the pure OpenGL
approach with 12.84 ms. A speedup of 23.3 can be observed with respect to the original
algorithm when evaluating 200 poses. Taking into account the propagation and resampling
steps and obtaining the observation from the camera, the speedup decreases to 11.3 for
the overall runtime. This is due to the fact that obtaining the observations takes almost
as long as the rest of the algorithm. With an increasing number of poses, this constant
runtime becomes irrelevant and the speedup rises to as much as 41.4 for 12800 poses.
A detailed analysis of the internal runtimes of the rendering and the weighting, as well as
scalability tests of this combined approach can be found in Section 6.3. To summarize,
the major improvement results from following two key principles:

1. Avoiding data transfer as much as possible

2. Aggregating the rendering of all poses for a bigger workload

The data transfer to the CPU, which constituted the main bottleneck in the pure OpenGL
approach, was circumvented by parallelizing the weighting step with CUDA, such that the
data can stay in GPU memory. Additionally, the slow, sequential filtering of the depth
values is performed by the CUDA kernel in parallel. The aggregation of all poses in one
texture also improves the runtime significantly, as it avoids synchronization with the CPU
in between rendering each pose.

Extensive testing of the weighting kernels described in Section 5.2 was conducted and is
presented in Section 6.3. Different kernel configurations can yield significantly different
runtimes, which is why such tests are important to find the optimal number of threads for
executing a kernel. In this case, 128 threads yield the best result, as they are sufficient to
hide memory access latencies and not too many to run out of registers per thread.

All in all, this combined approach allows to evaluate up to 11,293 poses in real-time and
scales very well with the number of poses and the resolution, as is discussed in the next
chapter.

34

6. Evaluation

The two parallelized implementations of the object tracking algorithm were tested exten-
sively with regard to their internal runtimes as well as their overall runtime and scalability.
The results and a detailed analysis thereof are presented in this chapter.
All tests were conducted on the system described in Section 6.1. The two sections after it
analyse the internal runtimes of the pure OpenGL approach and of the combined OpenGL
+ CUDA approach, respectively. Subsequently, both approaches are compared to the
original approach in regard to the scalability with the number of poses and the resolution.
Finally, the scalability with the number of triangles and the number of cores is tested for
the combined approach in Sections 6.6 and 6.7.

6.1 Work environment
In this section, the software requirements needed to execute the algorithms are specified.
Additionally, the hardware configuration and standard parameters used for testing are
enumerated.

Software requirements:

• Ubuntu 12.04

• Robot Operating System (ROS) Groovy

• CUDA Toolkit and NVIDIA driver of Compute Capability 2.0 or higher

• OpenGL version 3.2

• Drivers for the Kinect sensor (e.g. OpenNI)

Performance results are very dependent on the hardware that is used to run the program.
The results presented in this thesis are based on the following off-the-shelf hardware:

• CPU: Intel Core i5-3550, LGA1155

• GPU: 1280MB Gainward GeForce GTX 560 Ti 448 Cores Limited Edition, PCIe 2.0
x16

• Motherboard: MSI B75MA-P45

• RAM: 8GB-Kit Corsair Vengeance DDR3 1600 MHz CL9

35

6.2. Runtime analysis of the OpenGL approach 36

• Xbox 360 Kinect sensor

Increased performance should be expected with newer graphics cards.
To compare the original tracking algorithm to its parallel versions, the following parameters
are used in the presented tests unless otherwise mentioned:

• Number of poses: 200

• Resolution: 80 x 60

• Object: A handset (see Figure 6.1.1) with 210 vertices and 420 triangles

Figure 6.1.1: The handset object used for testing

Although the tests have been performed on this relatively simple object, more complex
objects can be tracked without a noticeable difference in runtime.
The number of poses and the resolution was selected in this way, because this is close
to the maximum that the original algorithm can handle. The resolution is very low, but
sufficient for a robust object tracking with these algorithms.
In general, all runtime measurements have been obtained by running at least 500 iterations
of the respective function.

6.2 Runtime analysis of the OpenGL approach
The OpenGL approach achieves an average runtime of 48.47 µs per pose for the rendering
step which compared to the 102.92 µs needed by the original algorithm yields a speedup of
2.12. To shed light on the bottlenecks of this approach, this section analyses the internal
runtimes of the implemented rendering with OpenGL.

Timing an OpenGL application is not straight-forward. While the execution time for
the entire pose evaluation can be measured with a CPU timer that is started before and
stopped after calling the function, the timing of individual OpenGL calls requires a differ-
ent construct. Most of these calls are asynchronous, for example glUniformMatrix3fv()

36

6.2. Runtime analysis of the OpenGL approach 37

that sends a matrix to the shaders. They submit a command into the OpenGL command
queue and immediately return to the CPU. Without waiting for the GPU to finish execu-
tion of this command, the CPU can continue executing the host code in parallel. Thus,
the CPU timer cannot yield useful information about the runtime on the GPU. OpenGL
provides so-called query objects ([Use13]), that are able to start a GPU timer once the
OpenGL command starts executing in the queue and stop the timer once the command
has finished. These query objects were used for timing OpenGL calls in the scope of this
thesis.
Obtaining the relevant depth values for a pose consists of five steps:

1. Sending the matrices to the shaders

2. Resetting the framebuffer to the default

3. Rendering the object

4. Transferring the depth values back to the CPU

5. Filtering the depth values

Besides these steps, a couple of buffers on the GPU have to be allocated, the object mesh
has to be transferred, various OpenGL parameters have to be set and the framebuffer has
to be configured. However, all of these steps can be moved to the initialization phase since
they only have to be executed once. The following diagram gives an overview of the time
measurements obtained for the five steps mentioned above, using a GPU or CPU timer,
respectively.

11,44

31,25

1,79

0,70

0,65

2,64

0 5 10 15 20 25 30 35

runtime in µs

re
n

d
e

ri
n

g
o

n
e

 p
o

se

latency

clear framebuffer

send matrices

draw

data transfer

filter values

Figure 6.2.1: Runtimes of all steps required for rendering a pose

It becomes apparent by looking at Figure 6.2.1, that the draw process itself is executed
very quickly on the GPU. With a total of 3.14 µs, the drawing by itself would deliver
a speedup of 32.12. The data transfer is the main bottleneck followed by the sequential
filtering on the CPU. The slow data transfer is due to the PCIe bus that connects main
memory and GPU memory. It can transmit only 1 to 32 GB/s, depending on the PCIe
version, the graphics card and the main memory used.

37

6.2. Runtime analysis of the OpenGL approach 38

The transfer speed also varies with the amount of data to be transmitted, since the over-
head of invoking the transfer preponderates when sending only a few kilobytes. In our
case, the depth data of each pixel is stored in a 32-bit float value in the framebuffer texture
and has to be copied to a previously allocated buffer in main memory, to which a pointer
is then provided by the GPU. With a resolution of 80 x 60 pixels, 19.2 KB of data have
to be transferred per pose. According to the measurements, the transfer speed in our
experiments lies around 0.72 GB/s. Unfortunately, this data transfer is unavoidable as
long as the likelihood computation is implemented on the CPU, as it needs access to the
pixels’ depth information.
Additionally, there seems to be an overhead of around 2.64 µs for each pose. This overhead
is very difficult to measure and is thus only an approximate value. It has been obtained
in this way: First, the program is executed such that it measures the internal runtimes
(clearing framebuffer, sending matrices, etc.). As taking these measurements adds some
overhead to the overall rendering runtime, the program is run again without measuring
internal runtimes. From this second run, the total time used for the rendering can be ob-
tained. The difference between it and the accumulated internal runtimes is assumed to be
latency introduced by communicating with the GPU. I have measured it for the graphics
card used here with the CUDA Toolkit to be around 3 µs. I assume that submitting the
first command into the empty OpenGL queue is responsible for this overhead, as subse-
quent latencies should be hidden by the previous latency or the execution of commands
that are already in the pipeline.

One should not forget that OpenGL and rendering in general is typically used for very
complex scenes which generally consist of several millions of triangles. This guarantees a
very good utilization of the GPU, while using only a few hundred triangles, as in our case,
can lead to idling cycles on several cores. The problem size is thus very small relative to
typical GPU applications which makes it particularly difficult to achieve a high speedup.
To give an example, the following diagram shows the runtime of the algorithm when using
bigger problem sizes.

0,003906

0,015625

0,0625

0,25

1

4

420 842 1998 3477 8292 9624

re
n

d
e

ri
n

g
ti

m
e

 [
s]

#triangles

original

OpenGL

Figure 6.2.2: Comparison of the rendering time needed for the original and the OpenGL
algorithm

Figure 6.2.2 shows a considerable superiority of the GPU version when using objects with
many triangles. Thus, it is suited to track more complex objects than the CPU version.

38

6.3. Runtime analysis of the combined OpenGL and CUDA approach 39

However, a significant increase in precision is not to be expected from a more detailed
object model, since the differences in depth are negligible. The ability to evaluate more
poses is more important, especially when aiming for a higher tracking speed.

6.3 Runtime analysis of the combined OpenGL and CUDA
approach

The combined CUDA + OpenGL approach achieves an average runtime of 5.10 µs per
pose for the entire evaluation step, which is a strong improvement over the pure OpenGL
approach with 64.19 µs (48.47 µs for the rendering and 15.71 µs for the weighting on the
CPU). With regard to the 118.63 µs needed by the original approach, a speedup of 23.3 is
achieved. Figure 6.3.1 shows a comparison of the runtimes of the three approaches.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

original pure OpenGL OpenGL + CUDA

ru
n

ti
m

e
 p

e
r

p
o

se
 [

µ
s]

weighting

rendering

Figure 6.3.1: Runtimes for the evaluation step for 200 poses: The pure OpenGL approach
achieves a speedup of 1.8, while the OpenGL + CUDA approach delivers a
speedup of 23.3.

As is shown in Section 6.4, the relative speedup increases with the number of poses,
allowing to evaluate more than 10,000 poses in real-time. For comparison to the pure
OpenGL approach, the internal runtimes of the rendering of both implementations are
shown in Figure 6.3.2.

While the data transfer and the sequential filtering of the depth values is avoided by
parallelizing the weighting step with CUDA, additional advantages arise from rendering
all poses into only one texture. For example, the time needed for clearing the framebuffer
textures is reduced significantly as only one large texture needs to be cleared instead of
many small ones. In general, the aggregation of all poses into one texture saves a lot of
latency that was introduced in the pure OpenGL approach by synchronizing with the CPU
in between the rendering of each pose.

39

6.3. Runtime analysis of the combined OpenGL and CUDA approach 40

11,44

31,25

1,79

0,65

0,70

2,64

0 5 10 15 20 25 30 35

runtime in µs

re
n

d
e

ri
n

g
o

n
e

 p
o

se

latency

clear framebuffer

send matrices

draw

data transfer

filter values

1,79

0,65

0,07

0,00 0,50 1,00 1,50 2,00

runtime in µs

re
n

d
e

ri
n

g
o

n
e

 p
o

se

clear framebuffer

set viewport & send matrices

draw

Figure 6.3.2: Internal runtimes for the rendering step for one pose: While the data transfer
presents a bottleneck for the pure OpenGL approach (top), the OpenGL +
CUDA approach (bottom) avoids this transfer which yields a total runtime
for the rendering of 2.51 µs opposed to 48.47 µs per pose.

As can be seen in Figure 6.3.2, the overhead of sending the matrices and resetting the
viewport for every pose still has a significant impact on the runtime. The scalability of
the rendering is discussed in the following sections.

Mapping the OpenGL texture into the CUDA context takes an average 120 µs, which
denotes 1

8 of the total runtime of the evaluation step for 200 poses. While the mapping
cost increases with the number of textures (Figure 6.3.3), it does not seem to increase with
the size of the texture, which is another strong argument for using only one large texture.

As the weighting step is performed with CUDA, the observation image needs to be sent
to the GPU once per frame and the weights of all particles need to be retrieved after
the computation. The transfer times are negligible since merely a few KB have to be
transferred.

The CUDA kernel itself is very difficult to time. As with OpenGL, a custom timing
function (cudaEvents, see [Cor13]) is provided for measuring the runtime of a single kernel.
However, internal timings of a kernel cannot be retrieved with this method, which makes
it difficult to find potential bottlenecks. Thus, although the total runtime of the weighting
kernel is only 357.83 µs for 200 poses, it is possible that it can be optimized further.

40

6.3. Runtime analysis of the combined OpenGL and CUDA approach 41

25

125

625

3125

40 200 1000 5000

ru
n

ti
m

e
 [

µ
s]

#poses

map/unmap one texture
per pose

map/unmap one large
texture for all poses

Figure 6.3.3: Scalability of the mapping call with the number of poses: The mapping
cost increases significantly with the number of textures, while it seems to be
independent of the texture size. Thus, only one large texture for all poses
should be used.

Yet, different versions of the kernel have been tested extensively. Different approaches are
compared in the following.

One important factor is the distribution of the workload among the cores, as mentioned in
Section 5.2. To illustrate this, Figure 6.3.4 shows the runtime of a kernel which distributes
the pixels to the threads in continuous blocks. Opposed to this, continuous pixels can be
assigned to continuous threads, which does not only result in coalesced memory access,
but also in a more balanced workload.

...

...

Figure 6.3.4: Kernel workload balancing: Assigning consecutive pixels to a thread results
in uncoalesced memory accesses and causes only few threads to do the main
work while others are idle.

Besides the workload per thread, the total number of threads per block plays an important
role. The more threads are issued, the more flexibility is provided to the CUDA scheduler,
which can hide memory access latencies. While the data for one warp of threads is fetched,

41

6.3. Runtime analysis of the combined OpenGL and CUDA approach 42

e.g. from global memory, another warp can continue computing on the cores. The tradeoff
here is with the number of available registers per thread, as these resources are shared
among all threads in a block. If a thread has fewer registers than required for its local
variables, it has to allocate these in slow local memory (see Section 5.1.2).

300

400

500

600

700

800

900

1000

1100

1200

1300

1
6

3
2

6
4

9
6

1
2

8

1
6

0

1
9

2

2
2

4

2
5

6

2
8

8

3
2

0

3
5

2

3
8

4

4
1

6

4
4

8

4
8

0

5
1

2

1
0

2
4

ru
n

ti
m

e
 [

µ
s]

#threads

weighting
kernel

insufficient
latency
hidiing

insufficient
#registers
per thread

Figure 6.3.5: Runtimes for different kernel configurations: Using less than 64 threads does
not provide enough flexibility to the thread scheduler to hide memory access
latencies. When using too many threads, the number of registers per thread
is not sufficient to incorporate all local variables. Increased data transfer to
slow local memory is the result.

While the use of local memory can be avoided, the use of global memory cannot. To
incorporate explicit occlusion modeling, the global arrays that contain the occlusion prob-
abilities and the time of their last update, have to be accessed for each relevant pixel. As
these data structures have to stay on the GPU permanently, to avoid data transfer to main
memory, they have to be stored in global memory, where they can be read and modified
by each thread. As mentioned at the end of Section 5.2, two kernels were implemented.
One updates every pixel every frame, thereby saving memory space, but introducing heavy
data transfer. The other one updates only relevant pixels, which decreases data transfer
significantly, but requires twice as much memory space. Figure 6.3.6 gives an overview of
both approaches and one that completely neglects occlusions.

Based on the global memory space available on the GPU, the best suited approach should
be chosen for executing the weighting step. As in our case, only 1 GB of memory is
available, a higher number of particles can be evaluated when using the computationally
more intensive kernel. Details about the scalability of both solutions can be found in the
following sections.

All in all, the combined CUDA and OpenGL approach evaluates 200 poses in ~ 1 ms, while
the runtime is divided among the rendering, mapping and weighting as shown in Figure
6.3.7.

42

6.3. Runtime analysis of the combined OpenGL and CUDA approach 43

0

50

100

150

200

250

300

350

400

ke
rn

e
l r

u
n

ti
m

e
 [

µ
s]

update every pixel

update only relevant pixels

without occlusion

0

20

40

60

80

100

120

140

update every
pixel

update only
relevant pixels

without
occlusion

m
e

m
o

ry
 u

sa
ge

 [
K

B
]

occlusion textures

OpenGL depth buffer

OpenGL texture

Figure 6.3.6: Tradeoff between runtime and memory usage: Using the same update time
for every pixel saves 38.4 KB of memory per pose (with resolution 80 x 60),
but necessitates the updating of every pixel each frame. Storing an indiviual
update time per pixel increases memory usage, but saves 124 µs for weighting
200 poses. Using no occlusion at all saves a significant amount of memory.

43

6.4. Scalability with the number of poses 44

501,71

127,62

357,83

32,07

0,00 100,00 200,00 300,00 400,00 500,00 600,00

runtime in µs

e
va

lu
at

in
g

2
0

0
 p

o
se

s
rendering

mapping

weighting

data transfer

Figure 6.3.7: Runtime distribution of the evaluation step for 200 poses: The majority of
the runtime is used for rendering and weighting the poses. The mapping cost
between the two frameworks is noticeable, though constant, which makes it
negligible when evaluating more poses.

6.4 Scalability with the number of poses
While 200 poses can be evaluated in 2.6 ms with the combined approach, it can handle
10,163 poses in less than 33 ms (see Figure 6.4.1). Compared to a maximum of 230 poses
for the original algorithm, this yields a speedup of 44.19. This increase in speedup is due
to the initial sublinear scaling of the combined implementation, which indicates that the
GPU does not operate at full capactiy until working with more than ~ 1600 poses.

1,00

2,00

4,00

8,00

16,00

32,00

64,00

128,00

256,00

512,00

1024,00

2048,00

200 400 800 1600 3200 6400 12800

ru
n

ti
m

e
 [

m
s]

#poses

original

OpenGL

OpenGL + CUDA

maximum runtime
allowed

Figure 6.4.1: Scalability with the number of poses: An initial sublinear scaling can be
observed for the combined approach. When evaluating 30 fps, the original
algorithm allows around 200 poses to be used, while the OpenGL approach
can handle ~ 400. The OpenGL + CUDA approach outmatches the two by
far, presenting the opportunity to use more than 10,000 poses.

Parallelization of the evaluation step is typically the main problem to attend to when aim-

44

6.4. Scalability with the number of poses 45

ing for a higher performance in a particle filter. However, the propagation and resampling
step prove to be just as much of a problem when evaluating many particles. As can be
seen in Figure 6.4.2, the resampling alone limits the possible amount of poses to ~ 2080,
which is why the implemented parallelization of the resampling step is essential for further
scalability. The sequential propagation step also reaches a runtime of about ~ 8.5 ms when
using 12800 poses, which denotes 26% of the available 33 ms for a real-time performance.

0,13

0,25

0,50

1,00

2,00

4,00

8,00

16,00

32,00

64,00

128,00

256,00

512,00

1024,00

2048,00

200 400 800 1600 3200 6400 12800

ru
n

ti
m

e
 [

m
s]

#poses

get camera image

propagation

evaluation

resampling

maximum runtime
allowed

100

0,06

0,13

0,25

0,50

1,00

2,00

4,00

8,00

16,00

32,00

64,00

200 400 800 1600 3200 6400 12800

ru
n

ti
m

e
 [

m
s]

#poses

get camera image

propagation

evaluation

resampling

maximum runtime
allowed

Figure 6.4.2: Scalability of the different steps in the particle filter: The resampling step
becomes a bottleneck with an increasing number of poses. It takes 33 ms
when using around 2080 particles in the original approach (top). The CUDA
+ OpenGL approach (bottom) parallelizes all major steps to avoid this bot-
tleneck and decrease the overall runtime. Getting the camera image from the
Kinect sensor takes a constant 1.29 ms and cannot be parallelized.

45

6.4. Scalability with the number of poses 46

Figure 6.4.3 depicts the speedup that was achieved by the combined approach for every
step. While the evaluation, consisting of the rendering and weighting of the poses, is the
most computationally intensive step, a significant speedup could also be reached for the
resampling step due to a higher internal memory bus speed on the GPU.

1

22

40

73

0

10

20

30

40

50

60

70

80

12800 poses

sp
e
e
d
u
p get camera image

propagation

evaluation

resampling

Figure 6.4.3: Speedup per step: With a speedup of 40, the parallelization of the evaluation
step is the most important, as it requires 78 % of the overall runtime.

When investigating the internal runtimes of the rendering step, a significant overhead can
be observed, caused by resetting the viewport and sending the matrix for every pose.
Figure 6.4.4 shows that only half of the time for rendering is actually used by the draw
call. Up to this point, a solution to circumvent this problem has not been implemented.
A possible approach would be an implementation with CUDA, which allows transforming
different vertices with different matrices within a single kernel invocation.

26
34

46 51 52 52 51

71
63

49 44 44 44 44

0

10

20

30

40

50

60

70

80

90

100

200 400 800 1600 3200 6400 12800

%
 r

u
n

ti
m

e

#poses

draw

set viewport &
send matrices

clear
framebuffer

Figure 6.4.4: Internal runtimes of the rendering: The OpenGL + CUDA approach seems
to spend as much time on drawing the object as on configuring the matrix
and the viewport previously to the draw call.

For the weighting step, two different kernels were implemented. As can be seen in Figure
6.4.5, they both scale linearly with the number of poses. A speedup of ~ 1.8 can be

46

6.4. Scalability with the number of poses 47

observed for the kernel that reduces internal data transfer at the cost of consuming more
memory space. Thus, this kernel should be used unless the memory space provided by
the respective GPU poses a limiting factor. As the GPU used in the scope of this thesis
provides only 1 GB of memory, a higher number of poses could be achieved by using the
computationally more expensive kernel.

0,125

0,25

0,5

1

2

4

8

16

32

200 400 800 1600 3200 6400 12800

ru
n

ti
m

e
 [

m
s]

#poses

memory saving
weighting kernel

data transfer
saving weighting
kernel

Figure 6.4.5: Scalability of the two different weighting kernels with the number of poses

Overall, the rendering and the weighting step distribute the runtime almost equally among
themselves when scaling with the number of poses.

0

10

20

30

40

50

60

70

80

90

100

200 400 800 1600 3200 6400 12800

%
 r

u
n

ti
m

e

#poses

get camera image

propagation

rendering

mapping

weighting

resampling

Figure 6.4.6: Runtime distribution among all major steps, splitting the evaluation into ren-
dering, mapping and weighting: While getting the camera image contributes
about 50 % of the overall runtime for 200 poses, its significance diminishes
when using more poses. The majority of the runtime is distributed almost
evenly among the rendering and the weighting of the particles.

47

6.5. Scalability with the resolution 48

6.5 Scalability with the resolution
With a sufficient number of poses, the original approach can only handle a resolution
of 80 x 60. In various tracking experiments, this resolution has proven to be sufficient
to robustly track the object. However, no detailed information about the precision of the
estimated pose can be given, as no ground truth data is available. If desired, the resolution
can be increased when using the combined approach, as it is able to evaluate ~ 270 poses
on even the highest resolution of 640 x 480. How many poses can be evaluated with each
algorithm for different resolutions is shown in Figure 6.5.2.

1,00

4,00

16,00

64,00

256,00

1024,00

80 x 60 160 x 120 320 x 240 640 x 480

ru
n

ti
m

e
 [

m
s]

resolution

original

OpenGL

OpenGL + CUDA

maximum runtime
allowed

Figure 6.5.1: Scalability with the resolution when using 200 particles: The original and the
pure OpenGL approach are limited to a resolution of 80 x 60 and 160 x 120,
respectively. The combined approach provides the possibility to evaluate 200
poses on even the highest resolution of 640 x 480.

230 114 39 11
382 173 37 9

10163

2589

946

276

11293

2879

1052

307

0

2000

4000

6000

8000

10000

12000

80 x 60 160 x 120 320 x 240 640 x 480

#p
o

se
s

in
 <

 3
3

 m
s

resolution

original

OpenGL

OpenGL + CUDA

OpenGL + CUDA
(if mem > 2 GB)

Figure 6.5.2: Possible number of poses with each approach

48

6.6. Scalability with the number of triangles 49

An interesting aspect of scaling with the resolution is the runtime distribution inside of
the evaluation step. While the weighting kernel scales linearly with the resolution, the
rendering time does not increase significantly. Figure 6.5.3 illustrates the distribution of
the overall runtime among the separate steps. Since OpenGL is optimized to render with
high resolutions, as they are frequently used in computer games and the like, this explains
the sublinear scalability in this regard. The overall scalability with the resolution is linear.

0

10

20

30

40

50

60

70

80

90

100

80 x 60 160 x 120 320 x 240 640 x 480

%
 r

u
n

ti
m

e

resolution

get camera image

propagation

rendering

mapping

weighting

resampling

Figure 6.5.3: Runtime distribution when scaling with the resolution: The time needed for
rendering does not increase significantly with the resolution, compared to the
weighting step.

6.6 Scalability with the number of triangles

0,001

0,004

0,016

0,063

0,250

1,000

420 1414 1552 2390 6928 8864 19748

ru
n

ti
m

e
 [

s]

#triangles

original

OpenGL + CUDA

maximum runtime
allowed

Figure 6.6.1: Scalability with the number of triangles: Using complex object models in-
creases the runtime of the original algorithm noticeably.

49

6.7. Scalability with the number of cores 50

The combined approach allows not only for more poses to be evaluated on a higher resolu-
tion, but can also handle very complex object models. As Figure 6.2.2 illustrates, several
thousand triangles can be handled by the OpenGL rendering engine without significantly
increasing the overall runtime. This enables tracking of objects with a highly complex
shape.

6.7 Scalability with the number of cores
The combined approach was tested on two GPUs, a NVIDIA Quadro 4000 with 256 cores
and a NVIDIA GTX 560 Ti 448 with 448 cores. The results are presented in Figure 6.7.1.
The implementation appears to scale well with the number of cores. Naturally, more tests
with newer GPUs would have to be conducted in order to predict the scalability with the
number of cores. However, a linear scaling with the number of cores is very likely, as they
can evaluate additional poses in parallel. Thus, the NVIDIA Titan Black with 2,880 cores
can be expected to evaluate more than 40,000 poses in less than 33 ms.

0

2000

4000

6000

8000

10000

12000

256 448

#p
o

se
s

in
 <

 3
3

 m
s

#cores

OpenGL + CUDA

Figure 6.7.1: Scalability with the number of cores: The combined approach was tested on
two different GPUs, one with 256 and one with 448 cores.

50

7. Conclusion

The goal of this thesis was to enable the evaluation of more particles by parallelizing the
object tracking algorithm developed by Wüthrich et al. ([WPK+13]). As the majority
of computing time was needed for rendering the different poses, a GPU-parallelization
promised the best results. Two implementations were developed, of which one is signifi-
cantly limited by data transfer times, while the other yields a speedup of up to 41.4 by
implementing not only the rendering, but also the weighting, propagation and resampling
steps on the GPU.
A combination of OpenGL and CUDA was used for this parallelization, as each of them
offers a different functionality. While OpenGL is optimized for rendering, CUDA is easy
to use for general purpose calculations like the weighting computation. Allowing the use
of up to 12,000 particles on an off-the-shelf GPU, the opportunity for a more precise and
faster object tracking is provided.
As new graphics cards arrive on the market every year, this implementation will be able
to evaluate even more particles in the future. Assuming that the algorithm scales linearly
with the number of cores in a GPU, an estimated number of ~ 40,000 particles can be
expected from using a GTX Titan Black ([Cor14]), which is a high-end gaming graphics
card already available today.
Apart from the amount of particles, the algorithm can handle more complex object models
without introducing a noticeable performance penalty. This allows for tracking of objects
with complex shapes.

In the future, this algorithm could possibly be further improved by implementing the
rendering in CUDA and finding a better workload balancing for the existing weighting
kernel. Tracking multiple objects is also possible with the approach, which could be
worked on in the future by developing a new sampling strategy. Additionally, the variance
for the gaussian propagation distribution can be adjusted to take better advantage of the
amount of particles that are available.
Furthermore, the algorithm should be tested with a high-speed camera that can deliver
depth images at a rate of 60 Hz or higher. Opposed to related algorithms, this GPU-
implementation is capable of taking advantage of such a high frame rate, as around 4000
particles can be evaluated in under 15 ms. This should lead to a significant improvement
in tracking the object, as feedback is provided more often, which reduces the uncertainty
of the pose estimation.

51

Bibliography

[AMAD11] Pedram Azad, David Münch, Tamim Asfour, and Rüdiger Dillmann. 6-dof
model-based tracking of arbitrarily shaped 3d objects. In ICRA, pages 5204–
5209, 2011.

[CC13] Changhyun Choi and Henrik I. Christensen. Rgb-d object tracking: A particle
filter approach on gpu. In IROS, pages 1084–1091, 2013.

[cli] How a graphics card works.

[cor] NVIDIA corporation. Cuda occupancy calculator.

[Cor09] NVIDIA Corporation. Whitepaper: Nvidias next generation cuda compute
architecture: Fermi, 2009.

[Cor12] Intel Corporation. Intel Xeon Phi Coprocessor. 2200 Mission College Blvd.,
Santa Clara, CA 95054-1549, USA, 2012.

[Cor13] NVIDIA Corporation. CUDA Programming Guide. 2701 San Tomas Express-
way Santa Clara, CA 95050, USA, 2013.

[Cor14] NVIDIA Corporation. Geforce gtx titan black, 2014.

[DeV11] Will DeVore. Perspective and orthographic projection, 2011.

[Gro12] Joe Groff. An intro to modern opengl, 2012.

[Har13] Mark Harris. How to access global memory efficiently in cuda c/c++ kernels,
2013.

[IB98] Michael Isard and Andrew Blake. Condensation - conditional density propa-
gation for visual tracking. International Journal of Computer Vision, 29:5–28,
1998.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[LO09] Oscar Mateo Lozano and Kazuhiro Otsuka. Real-time visual tracker by stream
processing. Signal Processing Systems, 57(2):285–295, 2009.

[LPK08] Claus Lenz, Giorgio Panin, and Alois Knoll. A gpu-accelerated particle filter
with pixel-level likelihood. In VMV, pages 235–241, 2008.

[MPASF04] Antonio S. Montemayor, Juan José Pantrigo, Ángel Sánchez, and Felipe Fer-
nández. Particle filter on gpus for real-time tracking. In ACM SIGGRAPH
2004 Posters, SIGGRAPH ’04, pages 94–, New York, NY, USA, 2004. ACM.

[Mün10] David Münch. 6-dof particle filter-based tracking of arbitrarily shaped objects,
2010.

52

Bibliography 53

[Ope14] Tutorials for modern opengl (3.3+), 2014.

[Tat13] Alan Tatourian. Nvidia gpu architecture and cuda programming environment,
2013.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

[Use13] User:Alfonse. Opengl wiki, 2013.

[WM00] Eric A. Wan and Rudolph Van Der Merwe. The unscented kalman filter for
nonlinear estimation. pages 153–158, 2000.

[WPK+13] Manuel Wüthrich, Peter Pastor, Mrinal Kalakrishnan, Jeannette Bohg, and
Stefan Schaal. Probabilistic object tracking using a range camera. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.

53

	Contents
	1 Introduction
	2 Related Work
	2.1 Particle filter on GPUs for real-time tracking (Montemayor et al., 2004)
	2.2 A GPU-accelerated particle filter with pixel-level likelihood (Lenz et al., 2008)
	2.3 Real-time visual tracker by stream processing (Lozano and Otsuka, 2009)
	2.4 6-DoF model-based tracking of arbitrarily shaped 3D objects (Azad et al., 2011)
	2.5 RGB-D object tracking: A particle filter approach on GPU (Choi and Christensen, 2013)
	2.6 Summary

	3 Foundation
	3.1 Probabilistic object tracking
	3.2 Parallelization

	4 Pure OpenGL approach
	4.1 OpenGL
	4.1.1 Rendering
	4.1.2 Pipeline

	4.2 Rendering a pose with OpenGL
	4.3 Performance and bottlenecks

	5 Combined approach with OpenGL and CUDA
	5.1 CUDA
	5.1.1 Kernels
	5.1.2 Memory structure

	5.2 Parallel likelihood computation
	5.3 Combined rendering with OpenGL
	5.4 Performance and bottlenecks

	6 Evaluation
	6.1 Work environment
	6.2 Runtime analysis of the OpenGL approach
	6.3 Runtime analysis of the combined OpenGL and CUDA approach
	6.4 Scalability with the number of poses
	6.5 Scalability with the resolution
	6.6 Scalability with the number of triangles
	6.7 Scalability with the number of cores

	7 Conclusion
	Bibliography

