
Learning Optimal Striking Points for A Ping-Pong Playing Robot

Yanlong Huang1, Bernhard Schölkopf1, Jan Peters1,2

Abstract— In this paper, an approach for learning optimal
striking points is proposed. Based on a ball-flight model and
a rebound model, a set of reachable striking points within the
robot’s workspace can be obtained. However, while these strik-
ing points are geometrically reachable, their success probability
differs substantially due to the robot’s nonlinear dynamics, the
distance to the ball, the need to reach sufficient velocity as well
as the right angle at interception and non-uniform sensitivity to
errors. Thus, it is crucial for a ping-pong robotic system to select
striking points well. As a successful ball interception is the result
of various factors that cannot be modeled straightforwardly, we
suggest determining optimal striking points based on a reward
function that measures how well the ping-pong ball’s trajectory
and the racket’s movement coincidence. In this approach, we
propose to learn a stochastic policy over the reward given
the prospective striking point in order to facilitate exploration
of a wide range of prospective striking points. The resulting
learning method takes both the amount of experience data
and its confidence into account to reach optimal solutions
reliably. Evaluation with a real robotic system demonstrates
the applicability of the proposed method.

I. INTRODUCTION

Most typical ping-pong robotic systems [1], [2], [3], [4]
are composed of visual ball position estimation, ball tra-
jectory prediction, interception point determination, inverse
kinematics and robot trajectory generation. Ball position
estimation detects the ping-pong ball’s 3-D position in the
reference coordinate [5], [6], [7], and, subsequently, an
accurate estimation of the ball’s state (position and velocity)
is obtained through polynomial fitting [4] or employing the
Kalman filter [7]. Based on the current state, the remainder of
the ball trajectory can be predicted and prospective striking
points (i.e., position, velocity and time when the robot can
reach the ball) can be determined.

Two kinds of methods for ball trajectory prediction are
common: physical models [2], [4], [5], [8], [9], [10], [11]
consist of several hybrid phrases of free ball flight and
ball rebound during contact. Based on the current state,
the ball flight model predicts the ball’s landing position
on the table as well as the ball’s velocity just before the
rebound. Subsequently, the rebound model predicts the ball’s
velocity just after the rebound. Finally, based on the landing
position and the rebound velocity, the ball flight trajectory
can be completed. In contrast, data-driven approaches [7],
[12], [13] view ball trajectory prediction as a regression
problem where a mapping from current ball state (i.e., ball

1Yanlong Huang, Bernhard Schölkopf, and Jan Peters are with the Max-
Planck Institute for Intelligent Systems, Spemannstr. 38, 72076 Tübingen,
Germany. firstname.lastname@tuebingen.mpg.de

2Jan Peters is with Technische Universität Darm-
stadt, Hochschulstr. 10, 64289 Darmstadt, Germany
peters@informatik.tu-darmstadt.de

position and velocity) to the futures ones is obtained through
machine learning methods, even with off-the-shelf ones such
as neural networks [7], locally weighted regression (LWR)
[12], support vector regression (SVR), and Gaussian process
regression (GPR) [13]. Such approaches have the advantage
that they often can deal with substantially less pre-processed
data, require no idealized physics models (often violated
in real table tennis, e.g., due to non-ideal contacts during
spin) and can even be used in conjunction with additional
signals (e.g., Wang et al. [14] used opponent behavior in ball
prediction, but also strong clues such as sound can be used
straightforwardly). The accuracy of the ball prediction model
is determined by the amount of sampled training data, which
may often not suffice. Furthermore, if the amount of training
data becomes sufficiently large, the matrix inversions in LWR
or GPR may become computationally too expensive and
only approximate versions of these methods (such as locally
weighted projection regression for LWR [15] or sparse GPR
[16] or local GPR [17]) may be applicable. Similarly, neural
networks are often problematic as they frequently require
extensive manual tuning of open parameters (such as the
number of hidden units, learning and moment rates, etc)
which may not always be possible in an online setting.

Just reaching the striking point with the racket does not
suffice for a successful table tennis return. Instead, the
success of a table tennis stroke is usually determined by
the velocity and orientation of the racket. Returning an

Fig. 1: Our robot table tennis setup consisting of a Barret
WAM robot arm with seven degrees of freedom and of
four high-speed cameras that track the table tennis ball. The
employed robot arm is a custom-made and unique high-speed
version of this arm.

incoming ball to a desired position [11], [12], [18] can be
decomposed into two sub-problems: the desired outgoing
velocity of the ball after the impact on the racket needs to
be predicted and the racket’s velocity and orientation need
to be adjusted such that the desired outgoing velocity of the
ball can be achieved for the predicted incoming velocity.
Simplified physical models [11] and LWR [12] were used to
solve these two sub-problems, respectively. A combination
of a fuzzy cerebellar model articulation controller (FCMAC)
and LWR was suggested in [18] such that the overall learning
efficiency was improved.

Another important issue is the determination of the desired
joint states at the striking time based on the desired robot’s
Cartesian racket. The complexity of this problem depends on
the ping-pong robot’s mechanics. For both the four degrees
of freedom (DoF) robot [12], [19] and the 5-DoF robot [18],
[20], from the literature the mapping from racket to joint
states is determined by the geometry of the robot (except
for special cases) and joints can frequently be assigned pre-
defined functions. For the 5-DoF robot [18], [20], three
joints control the horizontal and vertical movements while
the other two joints control the racket orientation; thus,
the joint states can be directly obtained from the Cartesian
states. However, when a redundant 7-DoF robot arm [1],
[2], [3], [11], [13], [14], [21] has to strike a ball, infinitely
many solutions exist. In this case, the geometric interception
of the ball does not fully determine the solution and an-
alytic decompositions become highly problematic. Instead,
the desired joint states are found as an optimization where
additional objectives (such as manipulability, proximity to
a comfort posture, travel distance) are optimized, see e.g.,
[11]. From a machine learning perspective, the problem can
be treated quite similarly. E.g., Kober et al. [22] proposed
a reinforcement learning approach that predicted the desired
joint hitting states using a cost-regularized Kernel regression.

To generate an entire robot arm trajectory, movement
planning becomes an essential step due to the short reaction
time and the high speed at interception. Such trajectories
can either be planned in joint space [11], [12], [13], [20]
or end-effector space [2], [3], where Cartesian trajectories
require the additional solution of the inverse kinematics
problem. Planning in joint space often creates more agile
fast movements while planning in end-effector is often easier
to comprehend. For planning the movement trajectory in
the joint space, the fifth-order polynomial spline interpo-
lation [11], [12] and plans consisting of standardized arc
and line movements [20] have been proposed as classical
robotics approaches. As an approach to generalizing of
plans from demonstrations, the dynamic motor primitive
(DMP) [23], [24] trained by kinesthetic teach-in generates
the joint movement trajectory [13]. Movement planning in
the end-effector space was studied in [2], [3], where the
racket’s position and posture (represented by Euler angles)
were planned by interpolating with fifth-order polynomial
splines, and, subsequently, inverse kinematics determined the
corresponding joint space trajectory.

While there exists this myriad of approaches to all the

components of robot table tennis as described above and
most of the approaches have reached relatively high relia-
bility, a crucial component has yet to catch up with them:
how can a good striking point be chosen? In some previous
publications [2], [4], [8], [11], [20], the striking point is
commonly defined as the intersection point between the
predicted ball rebound trajectory and a virtual striking plane,
which is obviously a heuristic albeit that it can be motivated
from human subject studies [11]. The virtual plane has
usually been chosen either as parallel continuation of the
table’s top [4], [8], [20] or as a perpendicular plane between
table and robot base [2], [11]. A similar simplification of
the choice of the considered striking points can result from
geometry, e.g., a linear axes-based robot where the racket is
fixed at a specific height [12] can be seen as a virtual striking
plane parallel to the table plane. Besides the virtual striking
plane, alternative simplifications have been suggested such
as finding the nearest point [3], predetermining the strike
duration [7], constructing the fuzzy decision system based
on human insights (e.g., Huang et al. [25] analyzed the
simplified joint acceleration, Su et al. [26] limited the set
of considered striking points). In contrast to the heuristics
and simplifications used in the past, this article proposes
an approach for learning striking points without an explicit
acceleration analysis and no limitation onto a specific search
area.

Such an approach can result in crucial difference. For
example, human players frequently move the racket along
the ball flight trajectory but in the opposite direction when
returning the incoming ball – a stark contrast to just inter-
cepting a point. Such a scheme could reduce the effects of the
prediction errors as well as of accumulated execution errors
and thereby substantially increase the success rate. Motivated
by this observation, a reward function that measures the
coincidence between the ping-pong ball flight trajectory and
the racket’s movement trajectory is defined in this paper. A
stochastic policy over the reward given the striking point is
derived for evaluating prospective striking points sampled
from the predicted rebound trajectory. After the optimal
striking point is provided for the robot, the incoming ball
is returned, and, subsequently, the actual reward is recorded.
Based on the optimal striking point and the actual reward,
the policy over the reward given the striking point is subse-
quently updated.

The paper is organized as follows. In Section II, our
method is described in detail. Evaluations on a real robotic
system are given in Section III. Finally, we summarize our
contributions and discuss our findings in Section IV.

II. AN APPROACH FOR NON-PARAMETRIC
LEARNING OF OPTIMAL STRIKING POINTS

The quality of the striking point is the key to success in
most common approaches for robot table tennis [1], [2], [3],
[4]. In this section, we propose a policy for the determination
of striking points based on a database with prior striking
points and their reward (Section II-A). After trying a new

striking point, the learning system updates its striking point
database (Section II-B).

To accomplish this goal, our system relies on an existing
robot table tennis setup (described in Section III-A and
shown in Fig. 1) that can generate good striking movements
based on a given striking point.

A. Determining the Optimal Striking Point

For determining our optimal striking point, we assume that
we have access to a database D with N prior striking points
hi and associated accumulated rewards Ri. The system also
has access to the predicted ball trajectory and can determine
a set of n prospective striking points

H = {hj = (pj ,vj , tj)|j = 1, 2, . . . , n} (1)

by selecting the part of the ball trajectory that lies within
the robot’s workspace. Here, pj and vj represent the ball’s
position and velocity at the striking time tj .

The database D represents the relationship between the
striking point hi and the reward Ri. Usually, if the size N of
the database D is sufficiently large, we can predict a reward
for a given prospective striking point precisely. However, for
the high-dimensional problem, the prior data is often not
enough at the beginning of an experiment; thus, we follow
a stochastic policy approach to predict the reward, where
the variance facilitates the exploration of a wide range of
prospective striking points.

For ∀hj ∈ H , its reward Rj is subject to the stochastic
policy

π(Rj |hj) = N (Rj |µ(hj), σ
2(hj)), (2)

where both the mean µ(·) and the variance σ2(·) depend
on the striking point hj . By integrating all the data in the
prior database D with the weighted average technique, we
can obtain the mean

µ(hj) =

N∑
i=1

fh(hj ,h
i)Ri

N∑
i=1

fh(hj ,h
i)

, (3)

where (hi, Ri) represents the i-th data in the database D,
fh(·) is defined as

fh(hj ,h
i) = exp

{
−1

2
(hj − hi)T Σh(hj − hi)

}
(4)

with the weighted diagonal matrix Σh.
In fact, if the weighted coefficient fh(hj ,h

i) for ∀i ∈
{1, 2, . . . , N} in (3) is small, the confidence of the mean
µ(·) is low. Otherwise, the confidence is high. The variance
σ2(·) should depend on this confidence: if the confidence is
low, the exploration (variance) should be large; otherwise,
the exploration should be small. The confidence c(·) of the
mean in (3) is defined as

c(hj) = max
i
fh(hj ,h

i),∀i ∈ {1, 2, . . . , N}. (5)

Besides this confidence in (5), we also need to consider the
size N of the database. When N is small, the variance σ2(·)

should be large to ensure that a wide range of experience data
is generated. When N is large, the variance σ2(·) should be
small since enough experience data ensures a high confidence
in (5). Assuming that the size limit of the database D is UN ,
the storage ratio will be N/UN . The variance σ2(·) should
satisfy the following two conditions

1) σ2(hj) ∝ 1− c(hj),
2) σ2(hj) ∝ 1− N

UN
,

where N/UN ∈ (0, 1], c(hj) ∈ (0, 1]. A simple choice of
the variance σ2(·) is

σ2(hj) = γ

(
1− N

UN

)2

(1− c(hj))
2, (6)

where γ > 0 is a scalar.
For ∀hj ∈ H , we can firstly calculate the mean µ(hj)

and the variance σ2(hj) based on (3) and (6), and then we
can obtain a sample from the Gaussian distribution (2) as the
reward Rj . The striking point hk ∈ H satisfying

Rk(hk) ≥ Rm(hm),∀m ∈ {1, 2, . . . , n} (7)

is the optimal one in the set H .

B. Striking Point Database Update

As soon as the optimal striking point h∗ is predicted, the
robot will return the incoming ball. We assume that we can
receive the actual reward R∗ for this optimal striking point
h∗ (a reward function will be suggested in Section III-B.1).
As the number of trails increases, the size N of the prior
database D will continuously increase accordingly. To keep
the database’s size N reasonable and reduce the data storage
burden, we need to update the database D especially when its
size N reaches the upper limit UN . The update mechanism
is given below.

1) If N < UN , the new data (h∗, R∗) is added to the end
of the database and becomes (h(N+1), R(N+1)) .

2) If N = UN , we firstly need to search the database D
and find the nearest data (hi, Ri) to the new data (h∗, R∗)
using

fh(hi,h∗) ≥ fh(hj ,h∗),∀j ∈ {1, 2, . . . , N}. (8)

Then, if
N∑

k=1

fh(hk,hi)− fh(hi,hi) ≥
N∑

k=1

fh(hk,h∗)− fh(hi,h∗),

(9)
the new data (h∗, R∗) will replace the nearest data (hi, Ri);
otherwise, this data will not be stored.

C. Complete Algorithm

Assuming that we have predicted the prospective striking
points and saved them in the set H . The striking point
learning algorithm summarized in Algorithm 1 can determine
the optimal striking point h∗. Then, we need to determine
the desired Cartesian racket states and the desired joint
states of the robot at the striking time. Subsequently, we can
generate the robot’s movement trajectory in the joint space
or Cartesian space. When the robot is moving toward the

Algorithm 1 Learning optimal striking points for the robot
Input: prospective striking points H = {hj |j = 1, 2, . . . , n}
For j = 1 to n

Determine the mean µ(hj)

µ(hj) =

N∑
i=1

fh(hj ,h
i)Ri

N∑
i=1

fh(hj ,hi)

.

Determine the variance σ2(hj)

σ2(hj) = γ
(

1− N
UN

)2
(1− c(hj))

2.

Draw the reward Rj(hj) from a Gaussian distribution

Rj(hj) ∼ N (Rj |µ(hj), σ
2(hj)).

end for
Output: optimal striking point hk ∈ H satisfying Rk(hk) ≥
Rm(hm),∀hm ∈ H .

incoming ball, we can determine the racket’s position and
velocity based on the forward kinematics and subsequently
calculate the actual reward R∗(see Section III-B.1). After the
striking movement is finished, we can update the experience
database D following the method in Section II-B.

III. EXPERIMENTAL SETUP, EVALUATIONS & RESULTS

In this section, we first describe embedding of the striking
point learning algorithm with a robot table tennis player and
subsequently discuss its results.

A. Experimental Setup

The experimental setup consists of a robot arm performing
the movement, the cameras tracking the ball, a computer
processing the images from the cameras, a table tennis
trajectory generator that yields the arm movement for a given
striking point, and a table with the standard size.

1) Physical Setup: The real robotic system consists of the
vision system, the 7-DoF Barrett WAM robot, a trajectory
generator and a table. The vision system consists of four
Procsilica Gigabit GE640 cameras (200fps) and a computer
for image-processing. Barrett WAM arm is a high-speed
version of this arm, which can accomplish the fast striking
movement. Besides, a standard racket is attached to the end-
effector of the robot arm. The trajectory generator yields
the arm movement trajectory such that an entire striking
movement is finished. The table is a standard one with the
length 2.740m, width 1.525m and height 0.760m.

2) Low-Level Table Tennis Player: We have decomposed
the problem of playing robot table tennis into three steps.
First, we predict an optimal striking point based on the
incoming ball trajectory. Second, we generate a robot arm
trajectory which is being executed using an inverse dynam-
ics controller. Third, we calculate the actual reward and
update the prior database. The more detailed explanation
is given as follows. The ball’s current state is estimated
by the second-order polynomial fitting method [4]. The

iterative ball-flight model [4] and the linear rebound model
[11] predict the prospective striking points within a proper
domain. The learning algorithm described in Algorithm 1
selects the optimal striking point. The inverse kinematics
method [11] determines the desired joint states (the striking
states) at the striking time, and, subsequently, the fifth-order
polynomial spline interpolation generates the joint movement
trajectories, where all the joints move from the initial states
to the striking states and then go back to the initial states.
The desired robot arm trajectory is executed using an in-
verse dynamics controller. After the striking movement is
finished, the actual reward is determined by the method in
Section III-B.1. Finally, the learning algorithm updates the
prior database with the optimal striking point and the actual
reward (Section II-B).

B. Evaluations & Results
Based on the human insights, a reward function is defined.

The algorithm of learning optimal striking points was eval-
uated in the described robotic system shown in Fig. 1.

1) Reward Function for Evaluations : The overall perfor-
mance of the ping-pong playing robot not only depends on
every single technique, such as vision measurement, inverse
kinematics and so on, but also the coordination of these
techniques. Learning optimal striking points can be seen
as a kind of coordination of these existing methods with
the purpose of improving the overall performance of the
robot. When the robot prepares to return the incoming ball,
it will have a higher probability of success if the racket’s
movement trajectory has the large coincidence with the ball
flight trajectory around the striking time.

To measure the coincidence between the ball’s trajectory
and the racket’s trajectory, both the ball’s state (position
and velocity) and the racket’s state (position and velocity)
are considered in the reward function. The reward function
includes the position reward Rp

Rp =

∑
vry(t)<0

fp(pb(t),pr(t))w(t, th)∑
vry(t)<0

w(t, th)
(10)

and the velocity reward Rv

Rv =

∑
vry(t)<0

fv(vb(t),vr(t))w(t, th)∑
vry(t)<0

w(t, th)
(11)

with the predicted striking time th. The Y direction is parallel
to the long side of the table. fp(·) is defined as

fp(pb,pr) = exp

{
−1

2
(pb − pr)T Σp(pb − pr)

}
(12)

with the weighted diagonal matrix Σp; it represents
the distance measurement between the ball’s position
pb = [pbx, pby, pbz]T and the racket’s position pr =
[prx, pry, prz]T . fv(·) is defined as

fv(vb,vr) = − vT
b vr√

(vT
b vb)(vT

r vr)
; (13)

it reflects the angle between the ball’s flight velocity vb =
[vbx, vby, vbz]T and the racket’s movement velocity vr =
[vrx, vry, vrz]T . w(·) is defined as

w(t, th) = exp{−cw |t− th|} (14)

with a scalar cw > 0; it ensures that the immediate reward
around the striking time th has more large contribution to the
final accumulated reward. In both (10) and (11), Rp and Rv

are subject to the constrain vry < 0. This constrain means
that we only calculate the rewards when the racket is moving
towards the incoming ball.

Combining the position reward Rp and the velocity reward
Rv , the final reward R is

R = αRp + βRv, (15)

where α > 0 and β > 0 are scalars. Assuming that
the optimal striking point h∗ = (p∗,v∗, t∗) is predicted,
and, subsequently, the robot returns the incoming ball, the
actual reward R∗ can be determined by (15). Due to high-
dimensional (7-D) parameters in the striking point h∗, we
update the prior database D with the striking position p∗ and
the reward R∗ instead. In this case, the distance measurement
function (4) will be identical as the function (12).

2) Experimental Results: In the real robotic system, we
used the ball launcher to send balls towards the forehand of
the robot. The striking point learning algorithm was run 3
times, where each run had 120 trials. The size limit of the
database D was set as UN = 100 for each run. The prior
database D was empty at the beginning of each run, i.e.
N = 0, we simply set the estimated rewards for prospective
strike points as 1. Subsequently, the optimal striking position
and associated accumulated reward were saved, the database
D was updated accordingly and its size became N = 1.
From then on, the learning algorithm worked normally as
described in Algorithm 1.

Initially, the learning algorithm explored the prospective
striking points in a wide range. As more and more prior
data was collected, the exploration decreased. We calculate
the average values of every 6 rewards, thus each run has 20
average rewards. As shown in Fig. 2, the curve represents the
mean values over 3 runs, the error-bars represent the standard
deviations. It can be seen that the overall reward increases
as the experiment progresses. Hence, the learning algorithm
is able to select the striking points associated with higher
rewards.

IV. CONCLUSION

To improve the overall performance of the ping-pong
playing robot, an algorithm for learning optimal striking
points is proposed. For evaluating the prospective striking
points, a stochastic policy over the reward is formulated.
This policy depends on the prior database that consists of the
striking point and associated accumulated reward. Following
the human insights, we suggest a reward function that
measures the coincidence between the ball flight trajectory
and the racket’s movement trajectory.

0 20 40 60 80 100 120
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

trial number

re
w

a
rd

Fig. 2: The figure shows the performance of the striking
point learning algorithm over 3 runs. It can be seen that the
overall accumulated reward increases with the experiment
proceeding.

The coordination of related methods in the ping-pong
robotic system is important. Besides selecting the optimal
striking point, some other topics need further study, such
as determination of desired joint states at the striking time,
and robot trajectory generation. If related methods not only
perform well independently, but also coordinate well with
each other, the overall performance of the ping-pong playing
robot will have a significant improvement.

REFERENCES

[1] K. Mülling, J. Kober, O. Krömer and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” International
Journal of Robotics Research, vol. 32, no. 3, pp. 263-279, 2013.

[2] Z. Yu, Y. Liu, Q. Huang, X. Chen, W. Zhang and J. Li, etc, “Design
of a humanoid ping-pong player robot with redundant joints,” in Proc.
International Conference on Robotics and Biomimetics, Shenzhen,
China, 2013, pp. 911-916.

[3] H. Li, H, Wu, L. Lou, K. Khnlenz and O. Ravn, “Ping-pong robotics
with high-speed vision system,” in Proc. International Conference on
Control, Automation, Robotics & Vision, Guangzhou, China, 2012, pp.
106-111.

[4] Z. Zhang, D. Xu and M. Tan, “Visual measurement and prediction
of ball trajectory for table tennis robot,” IEEE Transactions on
Instrumentation and Measurement, vol. 59, no. 12, pp. 3195-3205,
2010.

[5] R. L. Andersson, “A robot ping-pong player: experiment in real-time
intelligent control,” Cambridge, MA, USA: MIT Press, 1988.

[6] L. Acosta, J. J. Rodrigo, J. A. Mndez, G. N. Marichal and M.
Sigut, “Ping-pong player prototype,” IEEE Robotics & Automation
Magazine, vol. 10, pp. 44-52, 2003.

[7] Y. Zhang, W. Wei, D. Yuan and C. Zhong, “A tracking and predicting
scheme for ping pong robot,” Journal of Zhejiang University-Science
C, vol. 12, no. 2, pp. 110-115, 2011.

[8] Y. Huang, D. Xu, M. Tan and H. Su, “Trajectory prediction of spinning
ball for ping-pong player robot,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, USA,
2011, pp. 3434-3439.

[9] L. Sun, J. Liu, Y. Wang, L. Zhou, Q. Yang and S. He, “Ball’s flight
trajectory prediction for table tennis game by humanoid robot,” in
Proc. International Conference on Robotics and Biomimetics, Guilin,
China, 2009, pp. 2379-2384.

[10] J. Nonomura, A. Nakashima and Y. Hayakawa, “Analysis of effects
of rebounds and aerodynamics for trajectory of table tennis ball,” in
Proc. SICE Annual Conference, Taipei, Taiwan, 2010, pp.1567-1572.

[11] K. Mülling, J. Kober and J. Peters, “A biomimetic approach to robot
table tennis,” Adaptive Behavior, pp. 359-376, 2011.

[12] M. Matsushima, T. Hashimoto, M. Takeuchi and F. Miyazaki, “A
learning approach to robotic table tennis,” IEEE Transactions on
Robotics, vol. 21, no. 4, pp. 767-771, 2005.

[13] K. Mülling, J. Kober and J. Peters, “Learning table tennis with
a mixture of motor primitives,” in Proc. IEEE-RAS International
Conference on Humanoid Robots, Nashville, TN, USA, 2010, pp. 411-
416.

[14] Z. Wang, K. Mülling, M. P. Deisenroth, H. B. Amor, D. Vogt,
B. Schölkopf and J. Peters, “Probabilistic movement modeling for
intention inference in human-robot interaction,” International Journal
of Robotics Research, vol. 32, no. 7, pp. 841-858, 2013.

[15] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparametric statistics for real-time robot learning,” Applied
Intelligence, pp. 49-60, 2002.

[16] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for
machine learning,” The MIT Press, 2006.

[17] D. N. Tuong, M. Seeger, and J. Peters, “Local Gaussian processes
regression for real-time model-based robot control,” in Proc. Interna-
tional Conference on Intelligent Robots and Systems, Nice, France,
2008, pp. 380-385.

[18] Y. Huang, D. Xu, M. Tan and H. Su, “Adding active learning to LWR
for ping-pong playing robot,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 4, pp. 1489-1494, 2013.

[19] F. Miyazaki, M. Takeuchi, M. Matsushima, T. Kusano and T.
Hashimoto, “Realization of the table tennis task based on virtual
targets,” in Proc. IEEE International Conference on Robotics &
Automation, Washington, DC, USA, 2002, pp. 3844-3849.

[20] P. Yang, D. Xu, H. Wang and Z. Zhang, “Control system design for
a 5-DOF table tennis robot,” in Proc. International Conference on
Control, Automation, Robotics and Vision, Singapore, 2010, pp. 1731-
1735.

[21] B. Zhang, R. Xiong and J. Wu, “Kinematics analysis of a novel 7-
DOF humanoid manipulator for table tennis,” in Proc. International
Conference on Electronics, Communications and Control, Ningbo,
China, 2011, pp.1524-1528.

[22] J. Kober, E. Oztop and J. Peters, “Reinforcement learning to adjust
robot movements to new situations,” Robotics: Science and Systems,
pp. 33-40, 2010.

[23] J. Kober, K. Mülling, O. Kromer, C. H. Lampert, B. Schölkopf and
J. Peters, “Movement templates for learning of hitting and batting,”
in Proc. IEEE International Conference on Robotics and Automation,
Anchorage, USA, 2010, pp. 853-858.

[24] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no.2, pp. 328-373, 2013.

[25] Y. Huang, D. Xu and M. Tan, “A parallel fuzzy learning approach to
determine the hitting point for ping-pong playing robot,” International
Journal of Innovative Computing Information and Control, vol. 9, no.
10, pp. 4181-4192, 2013.

[26] H. Su, D. Xu, G. Chen and Z. Fang, “Striking position selection based
on two-step multi-purpose fuzzy decision method for robotic table
tennis,” Control Theory & Applications, vol. 30, no.5, pp. 597-603,
2013.

[27] S. Schaal, “The SL simulation and real-time control software package,”
University of Southern California, 2006.

