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Figure 1: From a monocular RGB-D sequence (background), we estimate a low-dimensional parametric model of body shape
(left), detailed 3D shape (middle), and a high-resolution texture map (right).

Abstract

We accurately estimate the 3D geometry and appearance
of the human body from a monocular RGB-D sequence of a
user moving freely in front of the sensor. Range data in each
frame is first brought into alignment with a multi-resolution
3D body model in a coarse-to-fine process. The method
then uses geometry and image texture over time to obtain
accurate shape, pose, and appearance information despite
unconstrained motion, partial views, varying resolution, oc-
clusion, and soft tissue deformation. Our novel body model
has variable shape detail, allowing it to capture faces with
a high-resolution deformable head model and body shape
with lower-resolution. Finally we combine range data from
an entire sequence to estimate a high-resolution displace-
ment map that captures fine shape details. We compare our
recovered models with high-resolution scans from a pro-
fessional system and with avatars created by a commercial
product. We extract accurate 3D avatars from challenging
motion sequences and even capture soft tissue dynamics.

1. Introduction

Accurate 3D body shape and appearance capture is use-
ful for applications ranging from special effects, to fashion,
to medicine. High-resolution scanners can capture human
body shape and texture in great detail but these are bulky

and expensive. In contrast, inexpensive RGB-D sensors are
proliferating but are of much lower resolution. Scanning a
full body from multiple partial views requires that the sub-
ject stands still or that the system precisely registers deform-
ing point clouds captured from a non-rigid and articulated
body. We propose a novel method that estimates body shape
with the realism of a high-resolution body scanner by al-
lowing a user to move freely in front of a single commodity
RGB-D sensor.

Several previous methods have been proposed for 3D
full-body scanning using range data [9, 10, 21, 23, 28, 30,
32, 34], but our method provides a significant increase in
detail, realism, and ease of use as illustrated in Fig. 1. We
work with RGB-D sequences from a single camera (Fig. 1,
background). We exploit both depth and color data to com-
bine information across an entire sequence to accurately es-
timate pose and shape from noisy sensor measurements. By
allowing people to move relative to the sensor, we obtain
data of varying spatial resolution. This lets us estimate a
high-resolution detail for regions such as the face. By track-
ing the person we are able to cope with large portions of the
body being outside the sensor’s field of view.

To achieve this, we develop a new parametric 3D body
model, called Delta, that is based on SCAPE [6] but con-
tains several important innovations. First, we define a para-
metric shape model at multiple resolutions that enables the
estimation of body shape and pose in a coarse-to-fine pro-
cess. Second, we define a variable-detail shape model that



models faces with higher detail; this is important for realis-
tic avatars. Figure 1 (left) shows the high resolution body
shape estimated from the sequence. Third, Delta combines
a relatively-low polygon count mesh with a high-resolution
displacement map to capture realistic shape details (Fig. 1
middle). Finally, Delta also includes a high-resolution tex-
ture map that is estimated from the sequence (Fig. 1 right).

Optimization is performed in three stages. Stage 1 es-
timates the body shape and pose in each frame by first
fitting a low-resolution body and using this to initialize a
higher-resolution model. Stage 2 uses the variable-detail
shape model at the highest resolution and simultaneously
estimates the texture map, a single body shape, and the pose
at every frame to minimize an objective function containing
both shape and appearance terms. We improve accuracy by
solving for the shape and color of a textured avatar that,
when projected into all the RGB images, minimizes an ap-
pearance error term. Stage 3 uses the estimated body shape
and pose at every frame to register the sequence of point
clouds to a common reference pose, creating a virtual high-
resolution scan. From this we estimate the displacement
map used in Fig. 1 (middle).

The method extracts more information from monocu-
lar RGB-D sequences than previous approaches with fewer
constraints on the user’s motion. The resulting model is
realistic, detailed and textured, making it appropriate for
many applications. We estimate models from a wide variety
of challenging sequences and obtain reliable body pose es-
timates in situations where the Kinect pose estimation fails,
e.g. when the person turns around or large parts of the body
are out of the frame. We visually and quantitatively com-
pare our models with scans acquired using a high-resolution
scanning system and with avatars created using a commer-
cial product. Moreover, we show how our approach cap-
tures the dynamics of full-body soft tissue motion.

2. Related Work
Shape reconstruction can be roughly divided into model-

free and model-based approaches. Here we focus on meth-
ods that capture 3D body shape. Model-free methods reg-
ister multiple depth frames, from different viewpoints, to
obtain a complete scan. Model-based approaches fit the
shape and pose parameters of a body model to multiple
partial views. Many systems use multiple high-quality
cameras and controlled lighting environments to capture
the complex, dynamic, and detailed geometry of non-rigid
human motion (e.g. [11, 13, 20, 31, 33]). The avail-
ability of consumer depth cameras, however, motivates
more “lightweight” capture systems with fewer constraints.
While some approaches employ multiple devices [12, 32,
35], we focus on methods that use a single RGB-D sensor.

Model-free systems like KinectFusion [18, 26] create
detailed 3D reconstructions of rigid scenes, including high-

quality appearance models [38], in real time from a moving
RGB-D sensor. Several body scanning methods draw inspi-
ration from KinectFusion [10, 21, 30, 36]. Such methods
are not ideal for human body scanning because the user ei-
ther must hold still while an operator moves the sensor, ro-
tate in front of the device while trying to maintain a roughly
rigid pose, or be rotated on a turntable. Partial data cap-
tured from different viewpoints is merged to produce a sin-
gle mesh, using non-rigid registration to correct for small
changes in shape between views.

Full-body scanning presents special challenges. If the
object is small, like a hand or face, then it is easy for the
sensor to see all of it (from one side) at once. For exam-
ple, Li et al. [19] reconstruct non-rigid surface deforma-
tions from high-resolution monocular depth scans, using a
smooth template as a geometric prior. Zollhöfer et al. [39]
capture an initial template of small objects or body parts,
acquired with a custom RGB-D camera, and then continu-
ously reconstruct non-rigid motions by fitting the template
to each frame in real time. Recently, [25] extends KinectFu-
sion to capture dynamic 3D shapes including partial views
of moving people. They only show slow and careful mo-
tions, do not use or capture appearance, and do not perform
a quantitative analysis of the recovered shapes.

Less effort has been devoted to reconstruct the motion of
full human bodies, including their soft tissue deformations.
Several methods recover 3D deformable objects (including
humans) from dynamic monocular sequences but test only
on synthetic bodies [8, 22], or with high-quality scan sys-
tems for small volumes [8]. Helten et al. [16] estimate a
personalized body shape model from two Kinect depth im-
ages and then use it to track the subject’s pose in real time
from a stream of depth images. The system fails when the
subject does not face the camera or when parts of the body
are outside the recording volume of the Kinect.

Model-based techniques [9, 34] fit pose and shape pa-
rameters to multiple frames in order to recover complete
models from partial data. Perbet et al. [28] learn a mapping
from depth images to initial body shape and pose parame-
ters. They then refine a parametric model by fitting it to a
single depth scan. Zhang et al. [37] register several Kinect
scans of a subject in multiple poses and use these registra-
tions to train a personalized body model, that is then fit to
dynamic data. While model-based methods can handle a
wider range of poses than model-free methods, their use of
a low-dimensional shape space smooths out high-frequency
geometry (e.g. subject-specific face details).

To capture full-body appearance from the Kinect, cur-
rent methods average RGB information from different
views [10] and blend texture between views [21, 30, 32, 37].
Existing methods capture only low-resolution texture. In
contrast, we estimate a high-resolution texture map that
combines images from multiple views, different poses, and
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Figure 2: Delta body model. (a) Average male and female shapes at resolutions 1 and 2 (6890 and 863 vertices respectively).
Color coding illustrates the segmentation into parts and the blend weights. (b) High-resolution texture map, U . (c) High-
resolution displacement map, D. (d) Estimated body shape represented with 10 low-res shape basis vectors, 20 full-body
high-res and 20 head basis vectors, personalized shape S, and S with the displacement map. (e) Textured model reposed.

varying distances from the sensor. We also use this texture
to improve pose and shape estimation.

3. Body Model

We extend the BlendSCAPE body model introduced
in [17], which is a version of the original SCAPE model [6].
We go beyond previous work to introduce a multi-resolution
body model, variable detail in the shape space of the body
parts, and a displacement map to capture fine shape de-
tail. These changes allow us to capture realistic body
shape while keeping optimization tractable by progressively
adding detail. These improvements, together with a texture
map as in [7], comprise our Delta body model (Fig. 2).

Multi-resolution mesh. We take an artist-designed tri-
angulated template mesh and decimate it using Qslim [14]
to construct a low-resolution version with a known map-
ping between low and high resolution. Let T ∗1 and T ∗2 be
the high- and low-resolution templates with 6890 and 863
vertices respectively. The meshes have artist-designed seg-
mentations and blend weights as illustrated in Fig. 2(a).

Like SCAPE, Delta factorizes the deformations that
transform a template mesh, T ∗{1,2}, into a new body shape
and pose. These pose- and shape-dependent deformations
are represented by 3 × 3 deformation matrices. Each body
part can undergo a rotation represented as a 3-element axis-
angle. The rotations for the whole body are stacked into
a 72-element pose vector θ, which is independent of mesh
resolution. Pose-dependent deformations are modeled as in
BlendSCAPE as a weighted linear function of the pose pa-
rameters. We train these linear functions from a database
of approximately 1800 high-quality scans of 60 people that
are all aligned (registered) to the template at the high res-
olution. The low-resolution pose-dependent deformations
are trained with decimated meshes generated from the high-
resolution model to ensure model compatibility.

SCAPE represents the body shape of different people
in a low-dimensional deformation space. We register T ∗1

to 3803 scans of subjects from the US and EU CAESAR
datasets [29] and normalize the pose. We vectorize all the
deformation matrices representing the shape of a subject.
We compute the mean deformation, µ1, across all subjects
and use principal component analysis (PCA) to compute a
low-dimensional linear subspace of deformations. Then a
body shape at resolution 1 is a function of a vector of linear
coefficients, β:

S1(β) =

N∑
i=1

βiB1,i + µ1, (1)

where B1,i is the ith principal component at resolution 1,
βi is a scalar coefficient, and N << 3803 is the dimension-
ality of the subspace. In Delta, we additionally learn a low-
resolution shape subspace with directionsB2,i and meanµ2

trained to follow the direction of the components B1,i, such
that the shape coefficients are shared across resolutions. We
learn separate shape spaces for men and women. Figure 2(a)
shows the male and female mean shapes at both resolutions.

Given a set of shape deformations, S(β), and a pose, θ,
the Delta model produces a mesh,M(S(β),θ), by applying
the deformations to the triangles of the template, rotating
the triangles of each part, applying pose-dependent defor-
mations, and solving for a consistent mesh (see [6, 17]).

Variable detail model. We want to capture body shape
as well as fine head detail since accurate reconstruction of
the face is important for a realistic avatar. However, cap-
turing fine face detail with a full-body model would require
many principal components,B1,i. Because estimating body
and face shape from low-resolution RGB-D data is chal-
lenging, we want to keep the dimensionality low.

To address this, Delta uses a second, head-specific and
overcomplete shape space. We simply build a second PCA
model for head identity deformations (i.e. across subjects,
not facial expressions). We do this by setting to zero, for
each shape vector, all the elements corresponding to non-
head triangles and then performing PCA. We then represent



the body and head with different levels of shape fidelity in
one linear equation:

S1(β) =

N∑
i=1

βiB1,i + µ1 +

K∑
j=1

βN+jH1,j (2)

where H1,j are the principal components of head shape
at resolution 1, βN+1 . . . βN+K are the head shape coef-
ficients. H1,j are vectors of the same size as B1,i but with
zeros in all areas but the head. Note that the same idea could
be applied just to face triangles or to other body parts.

In practice we only use the head shape model at resolu-
tion 1 with N = K = 20 components. Achieving compa-
rable face fidelity with full-body components would require
many more components (i.e. more than 40) and would make
optimization more difficult. Furthermore, to capture the
face detail using a full-body model, PCA would also cap-
ture body shape detail unnecessary for many applications.

Note that head/face shape is correlated with body shape
and this is represented in the full-body shape basis, B1,i.
This is useful because we capture people moving around
in front of the sensor and their face may be out of view or
they may have their back to the sensor. In these scenarios,
the full-body space helps the optimization keep track of the
head. Then, when the face is in view, the head space allows
us to capture more detail.

Resolution 2 only captures rough body shape and pose.
Consequently we do not use a detailed head shape model
and use only 10 principal components, B2,i, i = 1 . . . 10.
This allows a coarse-to-fine fitting approach.

A low-dimensional shape space smooths out personal-
ized shape details. To capture more detail, at the finest
level, we allow the shape to deform away from the low-
dimensional space to better fit scan data. We denote this
personalized shape by S, dropping the dependency on the
coefficients β. Figure 2(d) summarizes the levels of detail.

Fine detail. For efficient rendering and inference, a tem-
plate mesh should have a low polygon count. To capture
realistic detail we use a high-resolution 2D texture map, U ,
and a displacement map, D (Fig. 2(b,c)). U is 2048× 2048
texels while D is 512× 512. Note that we define these only
for the high-resolution model.

The final Delta model, M(S,θ, U,D), deforms the body
mesh, rotates the parts, applies pose-dependent deforma-
tions, and finally applies the displacement and texture maps.

4. Method
Input data. We use a Kinect One, which provides 512×424
depth images and 1920 × 1080 RGB images, at 30fps. We
compute depth and RGB camera calibration parameters us-
ing a customized version of [3]. For each frame t, the sensor
produces a depth image Zt and a RGB image It. Given the
camera calibration, we process Zt to obtain a point cloud,

P t, with one 3D point per depth pixel. For each sequence,
we acquire a background shot. We denote the background
point cloud and color image by Pbg and Ibg , respectively.

Stage 1 – Pose and shape estimation in low-dimensional
space. Stage 1 subdivides the initial sequence, of length n,
into short intervals of n′ = 3 consecutive frames and esti-
mates the body shape and pose in each interval in a coarse-
to-fine manner. Given an interval extending from frame t to
frame t′ = t+ n′ − 1, we solve for the pose parameters for
each frame {θi}t′i=t and the shape vector βt minimizing:

arg min
{θi}t′i=t,β

t

λS
∑
i

ES(M(Sj(β
t),θi);P i, Pbg)+ (3)

λvelEvel({θi}) + λθ
∑
i

Eθ(θ
i) + λβEβ(βt)

where we first set j = 2 and solve for the shape S2(βt),
which is approximated with 10 principal components.

The geometric term ES penalizes the distance in 3D be-
tween P i and the surface of M(Sj(β

t),θi). We compute
ES over model surface points visible from the camera, con-
sidering also the background:

ES(M(Sj(β
t),θi);P i, Pbg) =

∑
v∈P i

ρ

(
min
x∈V
||v − x||

)
(4)

where V is the set of visible points on the union of meshes
M(Sj(β

t),θi) and Pbg , and ρ is a robust penalty func-
tion [15], useful when dealing with noisy Kinect data (e.g.,
to ignore outliers at object boundaries). Evel encourages
smooth pose changes within the interval:

Evel({θi}) =
∑
t<i<t′

||2θi − θi−1 − θi+1||2. (5)

Eθ(θ
i) is a prior on pose. We compute the mean µθ and

covariance Σθ of the poses from 39 subjects across more
than 700 mocap sequences from the CMU dataset [4] and
penalize the squared Mahalanobis distance between θi and
this distribution. The shape prior Eβ penalizes the squared
Mahalanobis distance between βt and the distribution of
CAESAR shapes with mean µ1 and covariance Σβ .

After solving for βt and the poses for the low-resolution
model, we use them as initialization and minimize (3) at
resolution 1. See Fig. 3 (b) and (c).

We minimize (3) for each frame in the sequence, start-
ing from the first frame and proceeding sequentially with
overlapping intervals, initializing each interval with the val-
ues optimized for the previous one. This gives a body
shape βt and three estimates of the pose at nearly every
frame. To output a single body shape from stage 1, we av-
erage the shape coefficients of the high-resolution models



a b c d
Figure 3: Stage 1. Three input point clouds (a) and the
corresponding low- (b) and high-resolution (c) models ob-
tained after optimizing objective (3). Also shown is the final
output of stage 1 – a consistent high-resolution shape (d).

(Fig. 3). We similarly average the three estimated poses at
each frame; this works well since the estimates tend to be
very similar.

Stage 2 – Appearance-based refinement. Given the initial
guess from above we now solve for a more detailed body
shape that is no longer constrained to the PCA subspace.
From here on we only work at resolution 1. Let S be the
vector of body shape deformations we seek (no longer a
function of β). To compute S, we directly optimize ver-
tex positions of a freely deforming mesh, which we call an
“alignment”, T t. Alignments have the same topology as
T ∗1 . As in [17], they are regularized towards the model, but
their vertices can deviate from it to better fit the data. We
optimize T t’s vertices together with model parameters:

arg min
{T t}nt=1,Θ,S,U

∑
t

λSES(T t;P t, Pbg)+ (6)∑
t

(λUEU (T t, U ; It, Ibg) + λθEθ(θ
t))∑

t

λcplEcpl(T
t, S,θt) + λshEsh(S)

where Θ = {θt}nt=1, the geometric term ES is as in Eq. (4)
and we add a photometric term, EU , plus a set of regular-
ization terms.
EU penalizes the discrepancy between the real image It

and the rendered image Ĩt = Ĩ(T t, U ; Ibg), obtained by
projecting T t, textured with U , over the background image
Ibg [7]. To mitigate problems due to shadowing we contrast-
normalize It and Ĩt with a Ratio-of-Gaussians filter Γ:

EU (T t, U ; It, Ibg) = ||Γ(It)− Γ(Ĩ(T t, U ; Ibg))||2F (7)

where || · ||F is the Frobenius norm (cf. [7]).
Ecpl is a “coupling” term that encourages consistency

between T t and the posed mesh, M(S,θt), with shape S:

Ecpl(T
t, S,θt) =

∑
e∈V ′

||(AT t)e − (AM(S,θt))e||2F (8)

whereAT t andAM(S,θt) are the edge vectors of the trian-
gles of T t and M(S,θt), respectively, e indexes edges and
V ′ = vis(AT t) restricts the summation to visible edges.

a b c d
Figure 4: Stage 2. Output shape S (b) and texture map U
(d). For comparison, S is rendered with U before optimiza-
tion (a) and after optimization (c).

a b c d e

Figure 5: Stage 3. (a) Reposed point cloud P∪ (subsampled
to 20000 points for visualization); (b) overlay P∪ / model
M(S,θref ); (c) model after minimizing (10); (d) after ap-
plying the displacement D; (e) after applying D and U .

Esh(S) =
∑
k,k′ ||Sk − Sk′ ||2F encourages smoothness

of the shape deformations, where Sk and Sk′ are the defor-
mation matrices for adjacent triangles k and k′, and || · ||F
is defined as in Eq. (7). Eθ(θt) is defined as above.

We use the shape and pose vectors obtained in stage 1 as
initialization when minimizing (6). To initialize the appear-
ance, U , we leverage shape and poses estimated in stage
1. As in [7], we blend (average) color from all frames on
a per-texel basis, weighting each contribution according to
the angle between surface normal and viewing direction.

This works well except for the face, which has a lot of
high-frequency detail. Stage 1 may not produce precise
head poses because the model resolution is low, leading to
blurred face detail. To address this we use an average face
per gender computed from a training set in the face region
of U and minimize (6) over the head pose parameters only.

We then alternate between optimizing (6) with respect
to Θ and {T t}nt=1, S and U . For U we compute an aver-
age texture map given {T t}nt=1 and Θ as described above.
Note the alignments are allowed to deviate from S and thus
can capture more pose-specific shape detail and produce a
sharper texture map. Figure 4 shows the shape, S, and tex-
ture map, U , estimated in stage 2.

Stage 3 – High-resolution displacement mapping. Stage
3 uses the alignments from the previous stage to “repose”
all the point clouds in the sequence, {P t}nt=1, and to “fuse”
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Figure 6: Shape evaluation for Seq. 1. Comparison between ground-truth scans (a) in green, our estimated models (b)
in blue, and BodySnap models (d) in red for 4 subjects. Heat maps (c) and (e) beside each model show the scan-to-model
registration error for our method and BodySnap, respectively (blue means 0mm, red means ≥ 1cm).

them in a common reference frame, thus obtaining a single
high-resolution (but noisy) point cloud P∪ (Fig. 5). To do
this, we define a mapping between mesh local surface ge-
ometry and the 3D world. Consider a point cloud P t and
the corresponding alignment T t. We express each point v
of P t according to an orthonormal basis, defined at its clos-
est point x on T t. The basis vectors are the surface normal
at x and two orthogonal vectors tangential to the surface at
x, chosen according to [24]. We denote by ∆(v, T t) the
projection of v according to the basis defined by T t, and by
∆−1 its inverse – from local surface geometry to 3D world.

As a common reference frame, we use the mesh,
M(S,θref ), obtained using shape S from stage 2, posed
according to a reference pose θref (note that the choice of
θref is arbitrary). We compute P∪ (Fig. 5(a)) by reposing
all point clouds in the sequence according to θref :

P∪ = ∪t(∪v∈P t∆−1(∆(v, T t),M(S,θref ))). (9)

The resolution of P∪ is far beyond the resolution of our
body model or any of the individual point clouds. We now
use P∪ to estimate a highly detailed body shape in two
steps. First, we use it to refine shape S by minimizing:

arg min
T∪,S

λSES(T∪;P∪) + λcplEcpl(T
∪, S;θref ) (10)

where T∪ is an alignment for the point cloud P∪, and ES ,
Ecpl are defined as above. With respect to (6), now we ex-
ploit all frames simultaneously during shape optimization.

The level of detail we recover from P∪ is bounded by
our mesh resolution. In a final step, we transfer the high-
resolution details of P∪ to our model computing a displace-
ment map D. Let texel y in D be associated to the surface
point xy on the model. We compute the set of all points p
in P∪ such that xy = arg minx∈M(S,θref ) ||x − p||2, and
p is closer than 1cm to xy . After computing for each p
its projection ∆(p,M(S,θref )), we take the median along
the normal at xy and assign this to y. Displacement maps
substantially enhance high-frequency shape details (Fig. 5).

Optimization. We minimize objective (3) using Powell’s
dogleg method [27] with Gauss-Newton Hessian approxi-
mation. We compute function gradients using the Chumpy

auto-differentiation package [2]. In stage 2, minimizing (6)
with respect to {T t}nt=1 and {θt}nt=1 corresponds to solv-
ing n independent registration subproblems. We use dogleg
within the OpenDR framework [23], proceeding coarse to
fine in image space (we increase the RGB resolution from
a quarter to half and then to full resolution). We solve for
the shape S via linear least squares. An analogous approach
is used to minimize (10) iteratively with respect to T∪ and
S. Note that we minimize (10) using 107 points sampled
uniformly at random from P∪.

Pose and shape parameters in objective (3) are initialized
to the mean pose in CMU and the mean shape in CAESAR,
respectively. Since we use two different models for males
and females, we manually select the subject gender. Af-
terwards, the entire pipeline runs automatically. Optimiz-
ing (3) over three frames takes 4-5 minutes on a desktop
CPU; this is the only stage requiring sequential optimiza-
tion. Optimizing an alignment in (6) takes 3 minutes; op-
timizing (10) and computing D requires approximately 10
minutes. See also [5] for more details.

5. Experimental Evaluation

Data Acquisition. We captured 13 subjects (6 female
and 7 male) who gave informed written consent. Three sub-
jects did not give permission to show their face; these are
blurred. All subjects wore tight clothing; subjects with long
hair wore it tied back.

From each subject we captured at least four different se-
quences. In Seq. 1, subjects followed a scanning protocol
that involved rotating at different distances from the sensor,
walking towards it, and bending down for a face closeup.
Seq. 2 and 3 are dancing and an “arbitrary” motions (e.g.
simulating interactive videogame play), respectively. Note
that we do not use any prior information about the mo-
tion sequence during optimization. Sequence length ranged
from approximately 150 to 1100 frames. Many sequences
included fast motions; subjects significantly changed ori-
entation and distance with respect to the camera. To com-
pare with commercial software we captured an additional
“static” sequence (Seq. 4) of 8 frames, with the subject
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Figure 7: Shape consistency. Estimated shape (a) and
corresponding registration error (b) (blue means 0mm, red
means ≥ 1cm) for 6 sequences of the same subject. Images
(c) show the corresponding motion.

rotating by roughly 45 degrees between frames. For one
subject we captured an additional 9 challenging motion se-
quences. Most captures took place in a room with fairly
even lighting (Fig. 11). For one subject we captured 5 ad-
ditional sequences in a living room with uneven lighting
(Fig. 7 and 11). For all sequences we captured a background
RGB-D shot. See [5] for an overview of all sequences.

To enable the visual evaluation of our results, we applied
a high-frequency pattern, using black body makeup and a
woodcut stamp, on a dozen locations across the body (vis-
ible in Fig. 11). We used stamps on 11 subjects, and cap-
tured 2 subjects without the stamps to verify that the added
texture was not necessary for the accuracy of our method.

Shape Estimation. To evaluate the accuracy of our es-
timated body shapes, we captured all subjects in a static
A-pose (Fig. 6) with a full-body, 66-camera, active stereo
system (3dMD, Atlanta, GA). The system outputs high-
resolution scans (150000 vertices on average) that we take
as “ground truth”. We define the “registration error” of a
shape S in terms of the scan-to-model distance; i.e. we com-
pute the Euclidean distance between each scan vertex and
its closest point on the surface of model M(S,θopt), where
pose θopt is adjusted to minimize this distance. Note that we
evaluate S after optimizing objective (10) but before apply-
ing displacement maps D. We found visual improvement
but no significant numerical improvement after applyingD.

For 7 subjects, we compared our results against the mod-
els produced by BodySnap (Body Labs Inc., New York,
NY) [1]. We ran it in “expert” mode, because it gave the
best results. BodySnap reconstructs a complete 3D body
model (with 43102 vertices) from 10 frames – the Seq. 4
protocol with 2 additional face closeups where the subject is
90cm from the device. Again we repose the result to match
the ground-truth scan. BodySnap average error over the 7
subjects is 3.40mm, while our algorithm achieved an aver-
age of 2.40mm on the same 7 subjects performing Seq. 4.

These results are shown for 4 subjects in Fig. 6, which
shows ground-truth scans, shape estimation and registration
error both for our algorithm and BodySnap. Despite good
overall accuracy, the latter captures fewer subject-specific

Figure 8: Motion capture. Poses estimated by Kinect (red
skeleton, top) and by our approach (bottom).

shape details (e.g. see large red patches in the heat maps
across the torso and on the head).

The average registration error of our algorithm for Seq. 1
computed over all 13 subjects is 2.54mm. We found lit-
tle difference in accuracy between Seq. 1 results and those
from more free-form motions (Seq. 2 was 2.82mm, Seq. 3
was 3.23). This suggests that a practical system could be de-
signed around fun and engaging motions rather than a strict
protocol. Errors from more restricted sequences like Seq. 4
are also comparable, 2.45mm, while they miss facial detail
and cannot capture some occluded spots like the feet soles.

Figure 7 shows registration errors for one subject in 6
different sequences (2 captured in a living room). In all
cases the average registration error is below 4.21mm – i.e.
no more than 2mm worse than the error given by Seq. 4
(the left most in Fig. 7). Note that [21] and [37] report an
average alignment error of about 3mm and 2.45mm, respec-
tively, on a mannequin.

Motion Capture. Our approach is able to track motions
where the standard Kinect pose estimation fails (Fig. 8).
Tracking succeeds even in the presence of challenging
poses, with large portions of the body either outside of the
field of view or occluded.

Additionally, we capture the dynamics of soft tissue. Re-
call that we estimate alignments, {T t}nt=1, in (6). These are
constrained to be close to the model, M(S,θt), but can de-
viate to match depth and color data in each frame. Figure 9
shows 6 such alignments; soft tissue deformation is visible
on the chest and stomach. We believe that dynamic soft
tissue capture with Kinect is new. Note that this particular
sequence is special in the sense that we are using the model
extracted from Seq. 1 instead of estimating it from scratch,
as we do in the rest of the examples in this paper.

Appearance and Fine Geometric Detail. Figure 10
shows textured models recovered for all subjects using
Seq. 1, compared with ground-truth scans. The 3dMD scan-
ner captures texture with 22 synchronized color cameras



Figure 10: High-resolution models. Comparison between 3dMD scans (green, on the left) and our models after displacement
mapping (beige, on the right) in terms of shape (top row) and texture (bottom row).

Figure 9: Soft tissue deformations. Shown with and with-
out texture (better seen in the video [5]). Note the shape
deformations in areas like the chest and stomach.

and LED light panels that produce smooth illumination. De-
spite the variety in subject appearance (skin tone, facial hair,
etc.), our method recovers realistic texture maps.

Figure 11 compares real Kinect images with synthetic
images rendered from our textured models over the back-
ground RGB shot. Note that, for each image, we use ap-
pearance models estimated from the sequence itself. The
synthesized results are difficult to distinguish from the real
data even in challenging sequences. In many cases, fine de-
tails (like the stamp pattern, with texture elements of the or-
der of 2mm) are reconstructed. Note that sharp texture maps
are reconstructed even when stamps are not used (Fig. 10).

6. Conclusion
We have presented a novel approach to estimate high-

resolution 3D shape and appearance of the human body
from monocular RGB-D sequences acquired with a sin-
gle sensor. Our approach leverages a new parametric,
multi-resolution body model, Delta, that combines a low-
dimensional shape space for the full body with a second,
head-specific, shape space. The model enables the estima-
tion of body shape and pose in a coarse-to-fine manner.

In future work, we plan to extend Delta to also cap-

Figure 11: Appearance estimation. In each frame we show
a real Kinect image (left half) and the corresponding syn-
thetic image (right half) rendered from our model.

ture more detailed hands and feet. Additionally, we could
incorporate a non-rigid face model to capture varying fa-
cial expressions. It would also be interesting to reconstruct
transient per-frame high-frequency details (as in [19, 39]).
Currently, our texture estimate simply blends contributions
from different RGB frames. By formulating camera blur
and pixel discretization in the appearance objective func-
tion, we might be able to extend super-resolution methods
to non-rigid bodies. Finally, our method is fully genera-
tive. We could likely improve inference speed by using a
fast discriminative method (e.g. the Kinect’s own pose esti-
mate) for initialization.
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