
The fertilized forests Decision Forest library

Christoph Lassner
University of Augsburg

Universitätsstr. 6a
86159 Augsburg, Germany

Christoph.Lassner@informatik.uni-
augsburg.de

Rainer Lienhart
University of Augsburg

Universitätsstr. 6a
86159 Augsburg, Germany

Rainer.Lienhart@informatik.uni-
augsburg.de

SUBMITTED to ACM MULTIMEDIA 2015 OPEN SOURCE SOFTWARE COMPETITION

c© Christoph Lassner, Rainer Lienhart, 2015. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive version was published in Proceedings of the ACM Multimedia 2015,
http://dx.doi.org/10.1145/2733373.2807407.

ABSTRACT
Since the introduction of Random Forests in the 80’s they
have been a frequently used statistical tool for a variety
of machine learning tasks. Many different training algo-
rithms and model adaptions demonstrate the versatility of
the forests. This variety resulted in a fragmentation of re-
search and code, since each adaption requires its own algo-
rithms and representations.

In 2011, Criminisi and Shotton developed a unifying De-
cision Forest model for many tasks. By identifying the
reusable parts and specifying clear interfaces, we extend this
approach to an object oriented representation and imple-
mentation. This has the great advantage that research on
specific parts of the Decision Forest model can be done ‘lo-
cally’ by reusing well-tested and high-performance compo-
nents.

Our fertilized forests library is open source and easy to
extend. It provides components allowing for paralleliza-
tion up to node optimization level to exploit modern many
core architectures. Additionally, the library provides consis-
tent and easy-to-maintain interfaces to C++, Python and
Matlab and offers cross-platform and cross-interface persis-
tence.

Categories and Subject Descriptors
I.5.4 [Computing methodologies]: Pattern recognition;
D.2.2 [Software engineering]: Design tools and techniques—
Software libraries;
I.2.6 [Computing methodologies]: Artificial intelligence—
Learning

General Terms
Algorithms, Design, Experimentation

Keywords
Decision Forests, Object Oriented Implementation, Open
Source, Parallel Implementation, Machine Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Multimedia ’15 Brisbane, Australia
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
The basic idea of Decision Trees, hierarchical splitting of

data with the aim of an increasingly informative grouping,
is appealingly simple. This leads on the one hand to many
possible refinements and specializations. On the other hand,
many researchers have created their own, hand-tailored im-
plementation for their specific needs. This is especially true
for the “classic” algorithms of the early days of Decision
Forests1, because each of the algorithms was created for a
specific data type and purpose. But if not implemented with
thorough testing and proper thoughts about efficiency, even
a simple algorithm may be erroneous or inefficient.

However, in their work [6], Criminisi and Shotton devel-
oped a unifying Decision Forest Model suitable for many
tasks and data types, making many of these dedicated al-
gorithms obsolete. Furthermore, this new model provides a
solid foundation for an object oriented framework with high
reusability of components.

With the recent developments in Decision Forest theory
and in computing technology, the benefits of such an ob-
ject oriented framework compared to hand-tailored problem
oriented implementations are becoming increasingly impor-
tant. Computing platforms with significantly more than
40 CPUs render tree-level parallelism insufficient to exploit
their power, when memory intensive models such as Hough
Forests [10] with fewer trees than CPUs are trained. On
the theoretical side, recent algorithmic extensions such as
Alternating Decision Forests [17] or, as mentioned before,
Hough Forests, merely use and recombine existing algorith-
mic parts. We tackle this problem by providing an open
source library for Decision Forest training.

With clear interfaces and strong locality, the library classes
remain easy to understand and easy to alter and extend.
While not going as far as to use SSE optimizations, the
library is written in highly templated C++ and optimized
thoroughly without destroying code readability. At the same
time, OpenMP is used to create nested parallelization on
tree and node optimization level, which allows to make use
of many cores even when training fewer trees than cores.

The open source library is available under a permissive
license with extensive documentation and examples. It pro-
vides clean and consistent interfaces to C++, Python and
Matlab. With the idea to be easily extendable, it features an
interface generator that automatically keeps the interfaces
up-to-date with changes.

1Similar to [6], we use the phrase “Decision Forest” as a syn-
onym for “Random Forest”. The new term emphasizes the
reference to the new, but equivalent, theoretical framework.

http://dx.doi.org/10.1145/2733373.2807407

Name License Core lang. Available bindings OS ind. Parallelization Type aware Extend. Setups

fertilized forests BSD C++ Python, Matlab X Trees & Nodes X X 2295

scikit-learn [15] BSD Cython Python X Trees 32

OpenCV [3] BSD C++ Python X X 9

Sherwood [5] MSR-LA C++ C# Nodes X 5

ALGLIB [2] GPL 2+ C C#, VB.NET, Python X 1

WEKA [11] GPL 2 Java Python X 4

Table 1: Overview over Decision Forest libraries. The column “Type aware” refers to whether a library can
treat input data in its native data type. The column “Extend.” (extendable) refers to whether it is possible
without much overhead to extend the implemented algorithms of the library. “Setups” summarizes how many
different training setups can be realized with the library.

While the library is significantly more flexible than others
with these features, it stays competitive in terms of speed
and learning performance (an evaluation is given in Section
4). With a strong focus on computer vision applications, it
features last years winner of the ACM Multimedia Open-
Source Software Competition, CAFFE [13], as part of the
library that can be used for feature extraction. For making
this possible, we contributed a platform independent build
system to the project, making CAFFE available on Win-
dows, and integrated parts of it into our own library.

2. FEATURES
The library tackles many of the software engineering chal-

lenges in its domain by using an object oriented model
of Decision Forests. This has several advantages:

Local parameterization Instead of having few, overpa-
rameterized factory functions, parameters are local to
the objects they are related to. This means, that new
parameterized objects can easily be created, without
having to bloat parameter lists with default values.

Recombination It is natural to recombine objects to cre-
ate new, meaningful forest types. E.g., Hough Forests
can be created by reusing regression and classification
threshold optimizers and just adding two new objects.

Code encapsulation Semantically close code is automati-
cally grouped together. This makes understanding and
extending the code of a class easier, since only the
class’s interface must be understood to enhance it.

Inheritance Minor modifications to existing algorithms can
be created by inheriting from their defining classes.
Not the entire functionality must be rewritten, only
the most relevant parts.

The library currently contains classes for all classifica-
tion and regression concepts described in [6], but has been
extended with a state-of-the art implementation of Hough
Forests, two variants of boosting, several strategies for split
optimization and many entropy functions, including the re-
cently described induced entropies [14].

Deterministic, nested parallelism To be able to fully
exploit modern many core architectures, the library supports
deterministic, nested parallelism down to node optimization
level. While coarse-grained tree-level parallelism is insuffi-
cient on modern machines, an additional parallelization step
during node optimization offers a second level of fine-grained
parallelism. When carefully implemented, race conditions
can be avoided while maintaining good parallelization be-
havior. This guarantees the same, deterministic results in-
dependent of the number of used threads.

Templated classes The library has been created with
multimedia and computer vision applications in mind. In
the age of big data, the sampled signals are getting so large
that inflating the data only to adjust its data type becomes
permissively wasteful, e.g., increasing the amount of image
data by four only to convert its data type from unsigned

byte to float. To avoid this, all library classes are tem-
plated with the relevant types of the data they process. To
take the hassle away of re-typing the template parameters
frequently and to reflect this concept in the non-templated
languages MATLAB and Python, a factory object is used
that receives the template parameters once and then creates
all library objects correctly templated for the user’s conve-
nience.

OS independence Being compatible to the gcc, Intel
and Microsoft Visual C++ compilers, the library can be
used on all major platforms. The build system is realized
with SCons2 and can hence be used on all platforms where
a Python distribution is available.

Interfaces The library offers completely consistent in-
terfaces to C++, MATLAB and Python. Convenient updat-
ing and complete consistency is ensured by using an easy to
use interface generator written in Python that comes with
the library.

OS and interface independent persistence By us-
ing Boost serialization text archives for persistence across
all interfaces, the library objects can be serialized and de-
serialized across all possible platforms and interfaces. This
allows training trees on a large HPC Linux cluster and then
performing analyses, e.g., in Python on Windows.

2.1 Comparison with existing libraries
There are countless libraries for Decision Forest training

available (an overview over the most relevant ones is given
in Table 1). However, most of them are outdated concerning
the supported algorithms and none of them offers a compa-
rably versatile combination of open source code, OS avail-
ability, cross platform serialization and number and com-
pleteness of interfaces.

Interestingly, there is no other Decision Forest library with
support for MATLAB, but its built-in Decision Forest im-
plementation is outdated and slow (more than two orders
of magnitude slower than our implementation). Thus, our
library could be a good alternative for computer vision re-
searchers in this environment. It is, however, necessary to
note, that while a lot of care has been taken to copy as
few data as possible in the general library design, a copy of
parameters from and to MATLAB is necessary due to its
column major storage order concept.

2http://www.scons.org

http://www.scons.org

Figure 1: Hough Forest object structure. Arrows
represent ’is-using’ relations.

While most of the other software listed as representative
selection in Table 1 is competitive in the historically rel-
evant areas such as single-threaded runtime and platform
availability, few are data type aware, and no other supports
nested parallelism and is nearly as versatile and easy to ex-
tend. Our aim is to excel in this area by creating a library
that is well suited for the dynamic process of research.

3. LIBRARY DESIGN
The library’s design is general enough to enable efficient

recombination of components and to enable benefits by in-
heritance, but still groups related code together closely. Fig-
ure 1 shows an overview of the objects necessary to represent
a Hough Forest. This specific scenario has been selected, be-
cause it illustrates many of the benefits well.

By exchanging the LeafManager, which controls the in-
formation stored at leafs, as well as the Optimizer, which
optimizes the thresholds according to the data annotations,
it is possible already to change the objective function and
the resulting model. This can, e.g., be used to create a clas-
sification or regression forest. By adding two new classes,
a HoughLeafManager and an AlternatingOptimizer, and by
reusing existing classes, the completely different concept of
a Hough Forest can be defined.

Parallelization is implemented in the Training and De-
cider objects. All objects being located lower in the hier-
archy automatically benefit of this parallelization without
explicitly implementing it.

4. EVALUATION
To give the reader an impression of the performance of

the library, we did some experiments with the competing li-
brary ‘scikit-learn’. We selected that library as competitor,
since (a) we appreciate its impact on the machine learning
community and its high popularity, (b) used it in some ways
as inspiration for our project, and (c) the parameterization
of this library is similar enough to ours to allow a fair com-
parison.
Runtime It is not straightforward to set up an experi-
ment resulting in a reliable statement about library speeds:
specifics of the data can bias results in favor of each can-
didate, or a specific parameter setting can as well strongly
influence the results removing its generality.

0.10

0.25

0.50

1.00

2.00

1 2 3 4 5 6 7 8 9 10
Number of threads

F
ra

ct
io

n
of

 ti
m

e
co

m
pa

re
d

to
 s

kl
ea

rn
 (

1.
0)

Figure 2: Runtime comparison with scikit-learn.

Therefore, we came up with the idea to use 100 runs
with randomly (but equivalently) sampled parameter set-
tings on each of three large scale, computer vision datasets
(chars74k [9], MNIST [1] and USPS [12]). This results in
a large set of overall runs under diverse conditions, and we
hope that it provides a better impression of performance.

While parallelization over trees trivially has a good paral-
lelization behavior, this is not necessarily true for determin-
istic parallelization over the node optimization. To visualize
the behavior of our library in this specific case, we varied
the number of threads for node optimization.

The results are visualized in Figure 2. For each run, the
corresponding runtime of scikit-learn was used as normaliza-
tion (hence the straight line at height 1.0). All other lines
show the traces of our library. The brightness of the color
is higher for traces closer to the mean trace.

The first important results are the performance values for
one thread. There are a few runs for certain parameter set-
tings where the runtime of our library goes up to more than
twice of the runtime of scikit-learn. The mean, however, is
at about 1.0, with the start of a solid trace at little more
than a third of the runtime of scikit-learn (the y-axis is log-
arithmic). For an increasing number of threads, the library
shows good parallelization behavior peaking out in the best
cases at substantially smaller values than 0.1, even though
only 10 threads have been used.

We identified the ability to parallelize beyond tree level
to be of critical importance. Dantone et al. report a train-
ing time of 3 hours on a 700 CPU cluster for their Hough
Forest human pose estimation implementation [8]. Since
our university does not have a comparably sized cluster, we
exploited our local infrastructure using our library. It com-
prises of only 64 CPUs, of which two times twenty are part of
server systems. Even though Dantone’s original model only
uses 10 trees, we could fully exploit our computing power
and reduced the training time by more than an order of
magnitude to 2.5 hours on our infrastructure.
Classification performance In Figure 3, we provide a
comparison of F1-scores with scikit-learn on five large scale
computer vision classification datasets (parameters were again
randomly sampled 100 times). The x-axis shows the vari-
ous datasets, where the left of each pair of columns shows
the fertilized forests performance, and the right the scikit-
learn performance. The datasets, from left to right, are
chars74k [9], g50c [4], letter [1], MNIST [1] and USPS [12].

0.00

0.25

0.50

0.75

1.00

F74k S74k F50c S50c FTR STR FST SST FSPS SSPS
Library & Dataset

F
1−

sc
or

e

Library
fertilized forests
scikit−learn

Figure 3: F1-score comparison with scikit-learn.

Figure 4: Human pose estimation with Decision
Forests using the fertilized forests library (c.t. [14]).
The samples are part of the FashionPose dataset [7].

The y-axis shows the F1-score3, since some of the datasets
have a high number of classes and are not perfectly balanced.
The authors of scikit-learn have implemented various heuris-
tics in addition to the traditional Decision Forest algorithm.
We went through the source code and added them to our
library, as well as one new heuristic. This gives the fer-
tilized forests sometimes a slight edge over the scikit-learn
implementation (visible, e.g., for the g50c dataset).

5. APPLICATIONS
The library is well-tested and has been applied in many

scenarios. It is in use for research at the Multimedia Com-
puting and Computer Vision Lab and the Institute for Soft-
ware Engineering at the University of Augsburg, the Infor-
mation Processing Lab at the University of Washington and
the Max Planck Institute for Intelligent Systems in Tübin-
gen.

The first two research projects were a work on uncertainty
sampling for model abstraction [16] and on induced entropies
for Decision Forests [14]. Whereas the first one mainly used
the probabilistic regression features of the library, the second
used nearly all features of the library and shows how the sim-
plicity of replacing algorithmic building blocks of Decision
Forests can support research in this field. Figure 4 shows
some samples of the implemented human pose estimation
algorithm and improvements (marked with a yellow dot in
the bottom row) while using a different entropy measure.

3F1 = 2·precision·recall
precision+recall

.

6. SOURCE & ACKNOWLEDGEMENTS
The main source of information around the library, in-

cluding API documentation, examples, FAQ page and news
section, is the website http://www.fertilized-forests.

org. The source code is available at https://github.com/
ChrislS/fertilized-forests.

We thank the students Moritz Einfalt, Philipp Harzig and
Christian Diller for their contributions. Furthermore, we
thank Matthias Dantone and Jürgen Gall for the permission
to use their Hough Forest feature extraction code.

7. REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning

repository. http://archive.ics.uci.edu/ml.

[2] S. Bochkanov. Alglib. http://www.alglib.net.

[3] G. Bradski. Opencv. http://www.opencv.org.

[4] O. Chapelle, B. Schölkopf, and A. Zien, editors.
Semi-Supervised Learning. MIT Press, 2006.

[5] A. Criminisi and J. Shotton, editors. Decision Forests
for Computer Vision and Medical Image Analysis.
Springer-Verlag London, 2013.

[6] A. Criminisi, J. Shotton, and E. Konukoglu. Decision
forests for classification, regression, density estimation,
manifold learning and semi-supervised learning.
Technical Report MSR-TR-2011-114, MS Res., 2011.

[7] M. Dantone, J. Gall, C. Leistner, and L. V. Gool.
Human Pose Estimation using Body Parts Dependent
Joint Regressors. In Proc. of the IEEE CVPR, 2013.

[8] M. Dantone, J. Gall, C. Leistner, and L. V. Gool.
Body Parts Dependent Joint Regressors for Human
Pose Estimation in Still Images. IEEE TPAMI,
36(11):2131–2143, November 2014.

[9] T. E. de Campos, B. R. Babu, and M. Varma.
Character recognition in natural images. In Proc. of
the VISAPP, February 2009.

[10] J. Gall, A. Yao, N. Razavi, L. V. Gool, and
V. Lempitsky. Hough Forests for Object Detection,
Tracking and Action Recognition. IEEE TPAMI,
33(11):2188 – 2202, 2011.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Expl., 11, 2009.

[12] J. Hull. A database for handwritten text recognition
research. IEEE TPAMI, 16(5):550–554, May 1994.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. ACM MM Open Source Comp., 2014.

[14] C. Lassner and R. Lienhart. Norm-induced entropies
for decision forests. In Proc.of the IEEE WACV, 2015.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. JMLR, 12:2825–2830, 2011.

[16] A. Schiendorfer, C. Lassner, G. Anders, W. Reif, and
R. Lienhart. Active learning for abstract models of
collectives. In Proc. of the SAOS workshop, 2015.

[17] S. Schulter, P. Wohlhart, C. Leistner, A. Saffari, P. M.
Roth, and H. Bischof. Alternating Decision Forests. In
Proc. of the IEEE CVPR, 2013.

http://www.fertilized-forests.org
http://www.fertilized-forests.org
https://github.com/ChrislS/fertilized-forests
https://github.com/ChrislS/fertilized-forests
http://archive.ics.uci.edu/ml
http://www.alglib.net
http://www.opencv.org

