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Brain-Computer Interfacing in Amyotrophic Lateral Sclerosis:
Implications of a Resting-State EEG Analysis
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Abstract— Despite decades of research on EEG-based
brain-computer interfaces (BCIs) in patients with amy-
otrophic lateral sclerosis (ALS), there is still little known
about how the disease affects the electromagnetic field of
the brain. This may be one reason for the present failure
of EEG-based BCI paradigms for completely locked-in
ALS patients. In order to help understand this failure,
we have recorded resting state data from six ALS patients
and thirty-two healthy controls to investigate for group
differences. While similar studies have been attempted
in the past, none have used high-density EEG or tried
to distinguish between physiological and non-physiological
sources of the EEG. We find an ALS-specific global
increase in gamma power (30–90 Hz) that is not specific to
the motor cortex, suggesting that the mechanism behind
ALS affects non-motor cortical regions even in the absence
of comorbid cognitive deficits.

1. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a surprisingly
well-known disease given its relative rarity, associated
with the names of American baseball players and British
astrophysicists, and the dumping of ice water on one’s
head. Yet, despite decades of research and exhaustive
characterization from a medical perspective [1], the
electrophysiological effects of the condition remain very
poorly characterized, possibly because for the majority
of the history of ALS it has been considered a purely
motor disorder. As such, the electroencephalographic
(EEG) signal has been relied upon these intervening
decades as the best non-invasive method of interacting
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with paralysed patients by brain output alone. ALS
patients have been a fertile ground for Brain-Computer
Interface (BCI) study–studies which, despite early suc-
cess [2]–[4], have recently proved unable to maintain the
rate of progress [5]. It is the aim of this study to help
shed light on subtler effects of ALS on the recorded
EEG, and thereby try to understand why recent BCI
efforts have met such little success.

The resting-state frequency band analysis of ALS is
limited to a single study done nearly twenty years ago,
which reported that the power in the α-band (8–12
Hz) over the central cortex was significantly reduced in
ALS patients as compared to healthy controls [6]. More
recently, motor planning tasks have shown that ALS
patients have a lower sensorimotor α-rhythm desynchro-
nization [7], limiting frequency band findings to the
central and sensorimotor cortex exclusively. Studies of
Event-Related Potentials highlighted atypical responses
in ALS patients to attentional tasks as well [8]. The
paucity of these findings is suspicious in the light of
alternate neuroimaging evidence gathered by MRI and
PET scanning over the years which suggest marked
functional changes in the motor cortex [9]–[11] as well
as suggesting involvement by systems outside of it [12].
Given the increase in powerful artifact reduction and
source separation techniques that have come to the fore
since those studies, such as independent component
analysis (ICA) [13], we expect to be able to gain more
insight by revisiting the attempt to use quantitative
EEG methods on ALS, and hopefully to find evidence
that helps explain the current failure of late-stage ALS
patients to communicate with EEG-based BCIs.

2. METHODS

A. Subjects and experimental data

Five minute resting-state recordings were taken from
eight non-demented ALS patients using an actiCAP 124
channel active electrode system with QuickAmp ampli-
fier (both provided by BrainProducts GmbH, Gilching,



Fig. 1. Topographic plots showing the projections of the five cortical independent components isolated from the pooled patient and control
data onto the electrodes

Germany) sampled at 500 Hz. One patient was excluded
because of scores above the cutoff for fronto-temporal
dementia on both the Edinburgh Cognitive Assessment
Screen [14] and the ALS Fronto-Temporal Dementia
(FTD) Questionnaire [15]. Electrodes were placed ac-
cording to the extended 10-20 system, with the elec-
trode P7P as the initial reference. All recordings were
converted to common average reference and high-pass
filtered at 0.1 Hz to remove drift artifacts. Data was then
visually inspected for strong artifactual noise, which led
to the invalidation of the recording from one more ALS
patient. The data of the remaining six patients (cf. Table
I) was then combined with 37 non-age-matched control
subjects without known neurological deficits. For the
recordings, subjects retaining command of their gaze
were instructed to fixate on a point displayed on a
monitor in front of them and relax. The study was
approved by the ethics committee of the Max Planck
Society and each subject gave informed consent in
agreement with guidelines set by the MPS.

TABLE I
ALS PATIENT DATA

Patient Age Sex ALSFRS-R
ET 51 F 12
GV 75 M 42

LEK 56 F 0
GH 58 M 39
LS 63 M 33
HR 81 M 23

B. Data processing

To attenuate non-cortical artifacts in the EEG, we
pooled the recorded data across all subjects and sep-
arated it into independent components (ICs) based on
the SOBI algorithm [16]. Five cortical processes were
isolated from the resulting ICs by manual filtering for

clear dipoles in the induced electrode topology, an in-
verse power law relationship in the frequency transform,
and clear α-band activity in the source time series,
as corresponds to previously determined criteria [?],
[17] (Figure 1). The power spectra of each cortical
source was computed for each subject at the following
frequency bands: 1–4 Hz (δ), 4–8 Hz (θ), 8–14 Hz (α),
20–30 Hz (β), 30–50 Hz (γlow), and 50–90 Hz (γhigh).
A discrete Fourier transform (DFT) in conjunction with
a Hann window was computed over the length of the
session for each source, and the amplitudes of the
resulting frequency series were averaged over the fre-
quency windows to produce resting-state log-bandpower
estimates for each source at each frequency band. The
estimates were then averaged to create a global cortical
estimate for each subject.

C. Statistical analysis

To check for significant interactions of the condition
and band range on the computed log-bandpower, a two-
way unbalanced ANOVA was computed. The condition
(ALS or healthy control) was not significantly related
to bandpower measurements, but the choice of band
(p < 0.001) and the interaction between band and
condition (p < 0.05) were. To investigate this significant
interaction, we then computed a permutation-based two-
tailed t-test to see which mean differences in bandpower
were significant.

3. RESULTS

We found that global bandpower was significantly
enhanced in the high γ-range (two-tailed permutation
test, p = 0.03 uncorrected) (Figure 3) when averaged
over all cortical ICs in ALS patients as compared to
healthy controls. However, IC time series as recreated by
SOBI are constrained to be of unit variance, which does
not reflect how they are represented on the electrode
level. To better understand the spatial differences in
bandpower, we reprojected the cortical components to
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Fig. 2. Topological plots of the difference in mean log-bandpower between control and ALS patients (red, higher power in controls) for each
frequency band.

the electrodes and looked at spatial differences in mean
bandpower between ALS patients and controls (Figure
2). There is a broad trend of higher bandpower in the
γ-range, but also a peak of lower α-power in the central
area for ALS patients.

4. DISCUSSION

Our data indicate that ALS is associated with band-
power changes that span the whole spectrum of the
brain’s electromagnetic field. Consistent with previous
work from 1998 [6], we find a decrease in bandpower
over central areas. In contrast to the results by Mai et al. ,
however, we find this decrease to be most pronounced
in the θ- rather than in the α-band. This may be a result
of a slowing of brain rhythms in ALS, for which we did
not correct in our analysis. In addition to the work of
Mai et al., we find a marked increase in bandpower in
the γ-range outside of central areas. As such, changes to
the brain’s electromagnetic field in the ALS appear more
widespread than it is commonly assumed. Changes in γ-
power have been linked to various neurological disorders
(for a more comprehensive review, see [18]). Interest-
ingly, γ-oscillations are substantially reduced in the only
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Fig. 3. Plot showing mean cortical bandpowers in control subjects
(blue) with 95% confidence interval versus the mean cortical bandpow-
ers in each ALS patient (red). Star correspond to bands with significant
differences in mean (p < 0.05 uncorrected) between ALS and healthy
controls, diamonds to differences approaching significance (p < 0.10).
The dotted red line corresponds to the frequency bands of the patient
with ALSFRS-R score 0.
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patient in our study with an ALSFRS-R of zero. If this
finding can be reproduced in a larger patient population,
it may suggest a nonlinear relationship between γ-power
and disease progression.

Given that success in BCIs for ALS patients becomes
worse as the disease progresses, and these BCIs are
mostly focused on lower frequency oscillations, it is
possible that the reduced bandpower of these rhythms
in the disease is also decreasing the range of their
variability. This may be an explanation why voluntary
modulation of these rhythms becomes more difficult to
detect. Gamma-power, on the other hand, increases in
resting-state frequency, putting it forth as a possible
candidate for BCIs more robust to progression of the
disease [19].

Despite the exciting nature of possible conclusions,
we note that our study has been carried out on a
small number of patients only. In addition, the control
population was not age-matched to the ALS population.
Previous research suggests that increased age is corre-
lated with decreases in resting-state δ-, θ- [20] and α-
power [20], [21]. Intriguingly, however, age has only
been linked with decreases in γ-power across both the
frontal- [21] and occipital [22] cortex. As such, our
observation of increased γ-power in ALS is unlikely to
be a result of age as a confounding variable.
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