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Outline

1 why the relation between statistics and causality is tricky

2 causal inference using conditional independences
(statistical and general)

3 causal inference using other properties of joint
distributions

4 causal inference in time series, quantifying causal
strength

5 why causal problems matter for prediction
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Part 4: Causal inference in time series

• time series as test for causal inference methods

• Granger causality and its limits

• conditional-independence based causal inference in time series

• quantifying causal strength
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Time series as test for causal inference methods
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Testing causal inference in time series

consider the following binary classification problem:

Given the values X1,X2,X3, . . . ,Xn of an empirical time series,
infer whether the true time direction is

X1,X2,X3, . . .

or
Xn, . . . ,X3,X2,X1 .

• statistical asymmetries between past and future should be the
same as the asymmetries between cause and effect

• provides a simple evaluation of causal inference methods since
the time direction is known

• no other direct application
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Here: apply idea of LiNGAM to time series

Recall: P(X ,Y ) may have a linear model from X to Y but not
vice versa (i.e. noise is dependent)

We will now see that stochastic processes can be linear in one
direction but not the other
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Linear models for time series

A (weakly stationary) stochastic process (Xt)t∈Z has an
autoregressive moving average process (ARMA) if

Xt =

p∑
i=1

φiXt−i +

q∑
j=1

θjεt−j + εt ,

with iid noise variables εt .

It is called causal if εt ⊥⊥ Xs for all s < t.
(regression residuals are independent of the past and not only
uncorrelated)
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Non-Gaussian ARMA-models have a direction

Theorem (Peters et al, 2009)

Let (Xt)t∈Z have a causal ARMA model with non-vanishing
AR-part. Then (X−t)t∈Z has a causal ARMA model if and only if
the process is Gaussian.

Note: the theorem is only true if the notion of ARMA model
implies independent noise terms. An ARMA model with
uncorrelared noise terms exists in both directions.
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Experiments with empirical time series showed

(from EEGs, finance...)
If a time series admits a causal ARMA model in one direction but
not the other then the former is likely to be the true time direction.

i.e.:

Regressing the future on the past yields residuals that are
independent of the past, while

regressing the past on the future yields residuals that are
dependent of the future.
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Recall: arrow of time in physics

• heat flows from the hot to the cold medium

• any kind of energy can be converted to heat, but not vice
versa

• a photo contains information about the past, not the future

• ...

one can link the LINGAM-based asymmetry to the above arrow of
time:
Janzing: On the entropy production of time series with unidirectional linearity, Journ. Statistical Physics, 2010
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Granger causality and its limits
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Granger causality

Let (Xt)t∈Z and (Yt)t∈Z be two time series possibly influencing
each other.

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

• For some time instance t, define

Ypresent := Yt and Ypast := (Yt−1,Yt−2, ...)

• how much does Xpast help in predicting Ypresent from Ypast?
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Linear Granger:

• write Yt as a linear combination of its own past:

Yt =
∞∑
j=1

αjYt−j + Ut

• write Yt as linear combination of its own past and the past of
X :

Yt =
∞∑
j=1

αjYt−j +
∞∑
j=1

βjXt−j + Et .

If Et has smaller variance than Ut then the past of X helps in
predicting Y from its past.
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Transfer Entropy

Information theoretic version of Granger’s idea

TE (X → Y ) := I (Ypresent : Xpast |Ypast) .
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When is Granger causality right?

• Assume there are no instantaneous effects, i.e., no edges
between Xt to Yt

• Assume (Xt)t∈Z and (Yt)t∈Z to be causally sufficient, i.e.,
there are no unobserved common causes

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

if Ypresent 6⊥⊥ Xpast |Ypast there must be arrows from X to Y
(otherwise d-separation)
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Note however...

Although TE (X → Y ) 6= 0 shows the existence of arrows from X
to Y under the above assumptions, we don’t agree that the size of
TE (X → Y ) correctly quantifies the strength of the influence of X
on Y .
Janzing et al: Quantifying causal influences, Annals of Statistics, 2013

Some more explanations later.
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Confounded Granger

Hidden common cause Z relates X and Y

Xt−3 Xt−2 Xt−1 Xt

Yt−3 Yt−2 Yt−1 Yt

Zt−3 Zt−2 Zt−1 Zt

due to different time delays we have

Ypresent 6⊥⊥ Xpast |Ypast

but
Xpresent ⊥⊥ Ypast |Xpast

Granger erroeously infers X → Y
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Instantaneous effects

Let X only influence the Y at the same time instance:

Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

...

(we call such an influence ’purely instantaneous’)

• due to d-separation we have

Ypresent ⊥⊥ Xpast |Ypast

• thus Granger infers ‘no influence from X to Y ’

• instantaneous effects often occur when the time steps are
large compared to the interaction time
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Conditional independence based causal inference in time series
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Terminology

Definition (full time graph)

the full time graph of a vector-valued time series (Xt)t∈Z is the
infinite graph on the nodes X i

t with an arrow from X i
t to X j

t+s for
s ≥ 0 whenever there is such an influence. The largest s is called
the order of (Xt)t∈Z, which we assume to be finite.

Xt2

Yt2

Xt1 Xt Xt+1

Yt1 Yt Yt+1

...

Note: since there can be arrows from X i
t to X j

t and vice versa at
the same time, it need not be a DAG.
Peters et al: Causal inference on time series using restricted structural equation models, 2013
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Note...

above we have already used such graphs without definition but the
term ‘full time graph’ is helpful to avoid confusion with the
following type of graph...
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Terminology

Definition (summary graph)

The summary graph has nodes X i and contains an arrow from
X i → X j whenever the full time graph has an arrow from some X i

t

to some X j
s

X1

X2 X3

the summary graph can be cyclic even if the full time graph is
acyclic
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Causal Markov condition for infinite DAGs

whenever the full time graph is a DAG (i.e., has no cycles) we
postulate:

• local Markov condition:
every node X i

t is conditionally independent of its
non-descendants, given its parents

• global Markov condition:
for any three finite sets of nodes d-separation implies
conditional independence
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Markov equivalence in time series

Theorem

If two full time graphs are Markov equivalent DAGs then they
coincide up to instantaneous effects

Proof: Markov equivalent DAGs have the same skeleton. The
direction of all non-instantaneous arrows follows from the time
order�

Hence: the presence or absence of any of the below arrows can be
determined

Xt2

Yt2

Xt1 Xt Xt+1

Yt1 Yt Yt+1

...
?
? ? ?
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Independence-based inference in time-series

Theorem

If the summary graph G is known to be acyclic and there is no pair
(X i ,X j) such that the influence is purely instantaneous then G can
be uniquely identified using Markov condition and faithfulness

Proof: the summary graph contains an arrow X i → X j if and only
if the skeleton of the full time graph contains a link X i

t − X j
s+t for

some s > 0.
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Example for identifying the summary graph

• given two time series (Xt)t∈Z and (Yt)t∈Z.

• assume that the summary graph is

X Y X Yor

• assume that the influence is not purely instantaneous

then the full-time graphs have different skeletons:

Xt2

Yt2

Xt1 Xt Xt+1

Yt1 Yt Yt+1

...

Xt2

Yt2

Xt1 Xt Xt+1

Yt1 Yt Yt+1

...
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Markov equivalent full time DAGs

Xt2

Yt2

Xt1 Xt Xt+1

Yt1 Yt Yt+1

...

Xt2

Yt2

Xt1 Xt Xt+1

Yt1 Yt Yt+1

...

since both contain arrows from X to Y and from Y to X the
difference doesn’t seem so important.
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Conclusions...

• since the future cannot influence the past the skeleton of the
full time graph almost tells us the DAG

• the usual problem of large Markov equivalence classes is of
minor imprtance for time series

...but we have assumed causal sufficiency so far, detection of
confounding is a challenging problem, requires new methods:
Peters et al: Causal Inference on Time Series using Restricted Structural Equation Models, NIPS 2013
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Quantifying causal strength
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Why Transfer Entropy does not quantify Causal Strength

Ay & Polani: Information flow in causal networks, 2008

deterministic influence between X and Y

Xt−3

Yt−3

Xt−2

Yt−2

Xt−1

Yt−1

Xt

Yt

• we have I (Ypresent ;Xpast |Ypast) = 0 , although the influence is
strong, because the past of Y already determines its future

• quantitatively still wrong for non-deterministic relation

we now introduce a new measure for causal strength
Janzing, Balduzzi, Grosse-Wentrup, Schölkopf: Quantifying causal influences , Ann. of Stat. 2013
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Quantifying the strength of an arrow

Given:

• causally sufficient set of variables X1, . . . ,Xn

• causal DAG G Suppose

• all causal conditionals P(xj |paj) even for values paj with
probability zero (more than just knowing P(X1, . . . ,Xn)

X
1

X
2

X
3

X
4

quantify the strength of Xi → Xj
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Motivation:

Maybe, the true causal DAG is always complete if we also account
for weak interactions. Which ones are so weak that we can neglect
them?
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Strength of a set of arrows

Idea:

• strength of an arrow measures its relevance for understanding
the behavior of the system under inverventions

• strength of a set of arrows measures their relevance for
understanding the behavior of the system under interventions

• if each arrow in S is irrelevant then S could still be relevant
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Note:

this picture is misleading because for a set S of arrows

• each element may have negligible strength

• but jointly they are not negligible

our causal strength will not be subadditive over the edges!
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Information theoretic approach

advantages of information theory

• variables may have different domains

• quantities are invariant under rescaling

• related to thermodynamics

• better for non-statistical generalizations

don’t consider approaches that involve expectations, variances, etc.
(ANOVA, ACE)
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Some related work

• Avin, Sphitser, Pearl: Identifiability of path-specific effects,
2005.

• Pearl: direct and indirect effects, 2001.

• Robins, Greenland: Identifiability and exchangeability of direct
and indirect effects, 1992.

• Holland: Causal inference, path analysis, and recursive
structural equation models, 1988.

do not achieve our goal because

• measure impact of switching X from x to x ′ for one particular
pair (x , x ′) on Y when other paths are blocked

• we want an overall score of the strength of X → Y without
referring to particular pairs of values x , x ′
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Information flow by Ay and Polani

Idea: measures influence of X on Y, given Z

I (X→ Y |do(Z)) :=

p(z)p(x|do(z))p(y|do(x, z)) log
p(y|do(xz))∑

x′ p(x′|do(z))p(y|do(x′, z))
.

Formally, this is a conditional mutual information I (X : Y |Z), but
not w.r.t. the observed distribution P(X,Y,Z). Instead it uses the
post-interventional distribution

P̃(X,Y,Z) := P(Y|do(X,Z))P(X|do(Z))P(Z)
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Axiomatic approach

Let S be a set of arrows.

• Let CS denote its strength.

• Postulate desired properties of CS .
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Postulate 0: causal Markov condition

if CS = 0 then P is also Markov w.r.t. GS (after removing all
arrows in S)

Z

X

Y

S
Z

X

Y

DAG  G DAG  G
S
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Postulate 1: Mutual information

for this simple DAG we postulate CX→Y = I (X ;Y )

X Y

(all the dependences are due to the influence of X on Y , hence the
strength of dependences can be a measure of the strength of the
influence)
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Postulate 2: Locality

ξX→Y is determined by P(Y |PAY ) and P(PAY )

Y

X

Z

Y

X

Z

Z is irrelevant in both cases
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Postulate 3: Quantitative causal Markov condition

CX→Y ≥ I (X : Y |PAX
Y )

X

Y

PA
Y

X  (parents of Y without X)

X

Y

Idea: removing X → Y would imply I (X : Y |PAX
Y ) = 0, therefore

we attribute I (X : Y |PAX
Y ) to this arrow
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Postulate 4: Heredity

If T ⊃ S then CT = 0 ⇒ CS = 0

(subsets of irrelevant sets of arrows are irrelevant)
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I (X : Y ) is an inappropriate measure for general DAGs

X

Z

Ya)

Z

X

Yb)

ignores that part of the dependences are due to
a) the confounder Z
b) the indirect influence via Z
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First guess: I (X : Y |Z )

X

Z

Ya)

Z

X

Yb)

• qualitatively, it behaves correctly:
screens off the path involving Z

• quantitatively wrong because...
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Why I (X : Y |Z ) is inappropriate

X

Z

Ya)

weakening Z → Y converts a) into b), where CX→Y = I (X ;Y )
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Our approach: measure impact of deleting arrows

To define the strength of S , cut every edge in S and feed the open
end with an independent copy

X

Z

YP(X)

P(Z)

• defines new distribution
pS(x , y , z) := p(x , z)

∑
x ′,z ′ p(y |x ′, z ′)p(x ′)p(z ′)

• define causal strength as CS := D(p‖pS)
(impact of edge deletion)
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Relative entropy

(also called Kullback-Leibler divergence)

D(p‖q) :=
∑
x

p(x) log
p(x)

q(x)
≥ 0 ,

with equality iff p = q

• asymmetric distance measure

• broad applications in statistics, inference, learning

47



Understanding relative entropy

codelength perspective

• optimal code assigns codelength − log p(x) to event x that
occurs with probability p(x)

• Shannon entropy measures expected codelength

E[− log p(X )] = H(X ) = −
∑
x

p(x) log p(x)

• someone who erroneously assumes thta x occurs with
probbaility q(x) uses a code with codelength − log q(x).

• the expected codelength is larger

E[− log q(X )] = −
∑
x

p(x) log q(x) > E[− log p(X )] .

• relative entropy measures the increase of expected codelength

D(p‖q) = E[− log q(X )]− E[− log p(X )] .
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Relation to maximum likelihood estimation

• goal: distinguish two densities q(X ) and p(X ) from
observations x1, . . . , xn

• common approach:
choose the one with the higher likelihood: compare

n∏
j=1

p(xj) with
n∏

j=1

q(xj)

equivalently, compare the logarithms

n∑
j=1

log p(xj) with
n∑

j=1

log q(xj) .

• asymptotics:
if x1, . . . , xn is sampled from p(X ), difference of loglikelihoods
increases with n according to nD(p‖q)
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Idea of edge deletion

X

Z

YP(X)

P(Z)

• edges are electrical wires

• attacker cuts some wires

• feeds the open ends with random input

• distribution of input chosen like observed marginal distribution

• only distribution that is locally accessible
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Why product distribution?

’source exclusion’ by Ay & Krakauer

• joint distribution P(X ,Z ) not accessible to local attacker

• Postulate 4 fails with joint distribution
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Quantifying the impact of a vaccine

vaccinated
or not

Age

infected
or not

pS corresponds to an experiment where

• vaccine is randomly redistributed regardless of Age
(keeping the fraction of treated subjects)

• the random variable vaccinated is reinterpreted as
‘intention to get vaccinated’
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XOR-Example

• Y is always 0

• Y is uniformly distributed after deleting X → Y

• Y remains independent of X

• I (X ;Y ) = 0 and I (X ;Y |Z ) = 0

• CX→Y = 1

• Ay and Krakauer’s definition yields zero strength
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Failure of subadditivity

redundancy code: bit E is copied to all Bj

• removing less than half of the arrows Bj → D has no impact

• each arrow has strength zero

• all arrow together have strength 1
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Applying our measure to time series

CS quantifies effect of all X on Yt+1

(applying this to the example of Ay & Polani yields a reasonable
result)
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Take home messages

• none of the existing measures appeared to be conceptually
right for measuring strength of sets of edges

• our measure satisfies our postulates

• relies on interventions on edges

• clear operational meaning (does not refer to counterfactuals)

• definitions that rely on interventions on nodes failed although
they seem more straightforward

• replacing Transfer Entropy (Granger causality) with our
measure seems reasonable
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Exercise

10 Granger causality:
Let (Zt)t∈Z be an unobserved time series such that Zt

influences Xt+1 and Yt+2 for every t, as in the earlier example
for ‘confounded Granger’. However, now we have also arrows
from Zt to Zt+1 for every t, as visualized here:

Xt−3 Xt−2 Xt−1 Xt

Yt−3 Yt−2 Yt−1 Yt

Zt−3 Zt−2 Zt−1 Zt

Show that, under the faithfulness assumption, we have

TE (X → Y ) > 0

TE (Y → X ) > 0 ,

57


