
39

On Estimation of Functional Causal Models: General Results and
Application to Post-Nonlinear Causal Model

KUN ZHANG, Max-Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
ZHIKUN WANG, Max-Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
JIJI ZHANG, Department of Philosophy, Lingnan University, Hong Kong
BERNHARD SCHÖKOPF, Max-Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

Compared to constraint-based causal discovery, causal discovery based on functional causal models is able
to identify the whole causal model under appropriate assumptions [Shimizu et al. 2006; Hoyer et al. 2009;
Zhang and Hyvärinen 2009b]. Functional causal models represent the effect as a function of the direct
causes together with an independent noise term. Examples include the linear non-Gaussian acyclic model
(LiNGAM), nonlinear additive noise model, and post-nonlinear (PNL) model. Currently there are two ways
to estimate the parameters in the models; one is by dependence minimization, and the other is maximum
likelihood. In this paper, we show that for any acyclic functional causal model, minimizing the mutual infor-
mation between the hypothetical cause and the noise term is equivalent to maximizing the data likelihood
with a flexible model for the distribution of the noise term. We then focus on estimation of the PNL causal
model, and propose to estimate it with the warped Gaussian process with the noise modeled by the mixture
of Gaussians. As a Bayesian nonparametric approach, it outperforms the previous one based on mutual in-
formation minimization with nonlinear functions represented by multilayer perceptrons; we also show that
unlike the ordinary regression, estimation results of the PNL causal model are sensitive to the assump-
tion on the noise distribution. Experimental results on both synthetic and real data support our theoretical
claims.

Categories and Subject Descriptors: I.2.0 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

General Terms: Systems and Information Theory, Learning, Probability and Statistics

Additional Key Words and Phrases: Causal discovery, functional causal model, post-nonlinear causal model,
statistical independence, maximum likelihood

1. INTRODUCTION
There has been a long history of debate on causality in philosophy, statistics, machine
learning, data mining, and related fields. In particular, people have been concerned
with the causal discovery problem, i.e., how to discover causal information from purely
observational data. Traditionally, it has been noted that under the causal Markov con-
dition and the faithfulness assumption, based on conditional independence relation-
ships of the variables, one could recover an equivalence class of the underlying causal
structure [Spirtes et al. 2001; Pearl 2000]. This approach involves conditional indepen-
dence tests [Zhang et al. 2011], which would be a difficult task if the form of depen-
dence is unknown. Furthermore, the solution of this approach for causal discovery is
usually non-unique, and in particular, it does not help in the two-variable case, where
no conditional independence relationship is available.

Recently several causal discovery approaches based on functional causal models
have been proposed. A functional causal model represents the effect Y as a function of
the direct causes X and some unmeasurable noise:

Y = f(X,N ;θ1), (1)

where N is the noise that is assumed to be independent from X, the function f ∈ F
explains how Y is generated from X, F is an appropriately constrained functional
class, and θ1 is the parameter set involved in f . We assume that the transformation
from (X,N) to (X,Y ) is invertible, such that N can be uniquely recovered from the
observed variables X and Y .
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For convenience of presentation, let us assume that both X and Y are one-
dimensional variables. Without precise knowledge on the data-generating process, the
functional causal model should be flexible enough such that it could be adapted to ap-
proximate the true data-generating process; more importantly, the causal direction im-
plied by the functional causal model has to be identifiable, i.e., the model assumption,
especially the independence between the noise and cause, holds for only one direction,
such that it implies the causal asymmetry between X and Y . Under the above condi-
tions, one can then use functional causal models to determine the causal direction be-
tween two variables, given that they have a direct causal relationship in between and
do not have any confounder: for both directions, we fit the functional causal model, and
then test for independence between the estimated noise and the hypothetical cause,
and the direction which gives independent noise is considered plausible.

Several functional causal models have been shown to be able to produce unique
causal directions, and have received practical applications. In the linear, non-
Gaussian, and acyclic model (LiNGAM [Shimizu et al. 2006]), f is linear, and at most
one of the noiseN and causeX is Gaussian. The nonlinear additive noise model [Hoyer
et al. 2009; Zhang and Hyvärinen 2009a] assumes that f is nonlinear with additive
noise N . In the post-nonlinear (PNL) causal model [Zhang and Hyvärinen 2009b], the
effect Y is further generated by a post-nonlinear transformation on the nonlinear effect
of the cause X plus noise N :

Y = f2(f1(X) +N), (2)
where both f1 and f2 are nonlinear functions and f2 is assumed to be invertible. As
in post-nonlinear independent component analysis [Taleb and Jutten 1999; Zhang and
Chan 2005], the post-nonlinear transformation f2 represents the sensor or measure-
ment distortion, which is frequently encountered in practice. In particular, the PNL
causal model has a very general form (the former two are its special cases), but it has
been shown to be identifiable in the general case (except five specific situations given
in [Zhang and Hyvärinen 2009b]).

In this paper we are concerned with distinguishing cause from effect of two con-
tinuous variables based on functional causal models. Developing practical methods
for causal discovery of more than two variables is an important step towards solving
large-scale real-world causal analysis problems, but since we are interested in cer-
tain fundamental theoretical issues raised in estimating functional causal models, we
limit ourselves to the two-variable case for the sake of clarity.1 One should also pay at-
tention to such theoretical issues when developing causal discovery methods for more
than two variables. Causal discovery of discrete variables or of mixed discrete and con-
tinuous variables might require different classes of functional causal models, and are
not discussed here.

We aim to clarify several crucial issues in estimating the functional causal mod-
els, and discuss the practical implications of such theoretical studies. For causal dis-
covery based on the nonlinear additive noise model, some regression methods have
been proposed to directly minimize the dependence between noise and the hypothet-
ical cause [Mooij et al. 2009; Yamada and Sugiyama 2010]. Such methods only apply
to the additive noise model, and model selection is usually not well-founded. As the
first contribution, here we show that for any functional causal model, in which noise

1One way to estimate the causal model on more than two variables based on functional causal models is
to use exhaustive search: for all possible causal orderings, fit functional causal models for all hypothetical
effects separately, and then do model checking by testing for independence between the estimated noise and
the corresponding hypothetical causes. However, note that the complexity of this procedure increases super-
exponentially along with the number of variables, and hence smart approaches are needed. This is beyond
the scope of this paper.
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is not necessarily additive, minimizing the mutual information between noise and the
predictor is equivalent to maximizing the data likelihood, given that the noise model
is flexible.

For estimating some statistical models, such as linear regression, the Gaussianity
assumption on the data gives statistically consistent estimators; moreover, the Gaus-
sianity assumption usually makes the estimation procedure computationally efficient.
However, there are other statistical models for which one has to consider the true data
distribution to derive statistically consistent estimators. For instance, when estimat-
ing the independent component analysis (ICA [Hyvärinen et al. 2001]) model, one has
to make use of the non-Gaussianity of the data; otherwise the model is not identifiable.
We are interested in whether simply using a Gaussian distribution for the noise gives
a consistent estimator of the functional causal model. If this is not the case, using the
Gaussian distribution might give misleading results. Thus, as the second contribution,
we show that for estimation of the functional causal model where noise is not additive,
the solution depends on the assumption on the noise distribution.

These results motivate the use of Bayesian inference to estimate the functional
causal model with a flexible noise model. As noted above, the PNL causal model has a
very general form, and yet it allows the causal direction to be identifiable in the gen-
eral case. Finally, to give some practical implications of the above theoretical results,
we focus on this causal model; we propose to estimate it by warped Gaussian pro-
cesses with the noise distribution represented by the mixture of Gaussians (MoG), and
compare it against warped Gaussian processes with the Gaussian noise and mutual in-
formation minimization approach with nonlinear functions represented by multi-layer
perceptrons (MLPs) [Zhang and Hyvärinen 2009b]. The empirical results illustrate
the necessity of adopting a flexible noise model, instead of a Gaussian one, and further
demonstrate that the maximum likelihood framework, compared to the mutual infor-
mation minimization one, might provide a more natural way to learn hyperparameters
in the model.2

2. ASYMMETRY OF CAUSE AND EFFECT IN FUNCTIONAL CAUSAL MODELS
In this section we explain why f in the functional causal model (1) has to be properly
constrained, and then give some examples of the functional forms f , including the PNL
causal model.

2.1. General Claims
Given any two random variables X and Y with continuous support, one can always
construct another variable, denoted by Ñ , which is statically independent from X, as
suggested by the following lemma.

LEMMA 1. For any two variables X and Y with continuous support, let FY |X be
the conditional cumulative distribution function of Y given X and q be an arbitrary
continuous and strictly monotonic function with a non-zero derivative. The quantity
Ñ = q ◦ FY |X , where ◦ denotes function composition, is then always independent from
X. Furthermore, the transformation from (X,Y )T to (X, Ñ)T is always invertible, in the
sense that Y can be uniquely reconstructed from (X, Ñ)T .

PROOF. Consider FY |X as a random variable. Since at any possible value of X, FY |X
is always uniformly distributed, we know that FY |X is statistically independent from
X; Ñ = q ◦ FY |X is then also independent from X. (One may refer to [Hyvärinen and

2A preliminary and shorter version of this paper was presented at The First IEEE/ICDM Workshop on
Causal Discovery [Zhang et al. 2013b].
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Pajunen 1999] for the detailed procedure to construct Ñ .) Moreover, the invertibility
can be seen from the fact that the determinant of the transformation from (X,Y )T

to (X, Ñ)T , which is q′ · p(Y |X),3 is positive everywhere on the support, under the
conditions specified in Lemma 1.

Let Ñ be the noise term N in the functional causal model (1), and one can see that
without constraints on f , there always exists the function f such that the indepen-
dence condition on N and X holds. Similarly, we can always represent X as a function
of Y and an independent noise term. That is, any two variables would be symmetric
according to the functional causal model, if f is not constrained. Therefore, in order for
the functional causal models to be useful to determine the causal direction, we have to
introduce certain constraints on the function f such that the independence condition
on noise and the hypothetical cause holds for only one direction.

2.2. Examples
For simplicity let us assume that the true causal direction is X → Y . The functional
class F is expected to be able to approximate the data generating process, but very
importantly, it should be well constrained such that noise cannot be independent from
the assumed cause for the backward direction. A simple choice for F is a linear model,
i.e., Y = µ+αX+N , where µ is a constant. It has been shown that under the condition
that in the data generating process at most one of N and X is Gaussian, Y and NY in
the backward direction are always dependent [Shimizu et al. 2006]; this motivated the
so-called linear, non-Gaussian, and acyclic model (LiNGAM).

In practice nonlinearity is rather ubiquitous in the data generating process, and
should be taken into account in the functional class. A very general setting for F is
given by the PNL causal model [Zhang and Hyvärinen 2009b]; see (2). It has been
shown that for the PNL causal model, except in several special cases (including the
linear-Gaussian case discussed above), in the backward direction NY is always depen-
dent on Y , so that one can find the plausible causal direction with an independent
noise term. If f2 in the PNL causal model is the identity mapping, this model reduces
to the additive noise model [Hoyer et al. 2009].

3. RELATIONSHIP BETWEEN DEPENDENCE MINIMIZATION AND MAXIMUM LIKELIHOOD
Let us now suppose that both X and Y are continuous and that X is the direct cause
of Y ; we have assumed that both X and Y are one-dimensional and that there is no
common cause for X and Y . The main result will also apply when X contains multiple
variables, as we shall see later.

We consider the functional causal model (1). Denote by p(X,Y ) the true density
of (X,Y ), and by pF (X,Y ) the joint density implied by (1). The model (1) assumes
p(X,N) = p(X)p(N); because the Jacobian matrix of the transformation from (X,N)T

to (X,Y )T is

JX→Y =

(
∂X
∂X

∂X
∂N

∂Y
∂X

∂Y
∂N

)
=

(
1 0
∂f
∂X

∂f
∂N

)
, (3)

the absolute value of its determinant is |JX→Y | = | ∂f∂N |, and hence we have

PF (X,Y ) = p(X,N)/|JX→Y | = p(X)p(N)
∣∣∣ ∂f
∂N

∣∣∣−1

, (4)

which implies PF (Y |X) = PF (X,Y )/p(X) = p(N)
∣∣∣ ∂f∂N ∣∣∣−1

.

3For notational convenience, we write pY |X(y|x) as p(Y |X).
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Now let us introduce the concept of mutual information [Cover and Thomas 1991].
As a canonical measure of statistical dependence, mutual information between X and
N is defined as:

I(X,N) =

∫
p(X,N) log

p(X,N)

p(X)p(N)
dxdn

= −E log p(X)− E log p(N) + E log p(X,N), (5)

where E(·) denotes expectation. I(X,N) is always non-negative and is zero if and only
if X and N are independent.

When X contains multiple variables, ∂X∂X in (3) becomes the identity matrix; in this
case, p(X) is the joint distribution of all components of X, and (4) as well as (5) still
holds.

3.1. Maximum likelihood and dependence minimization for functional causal models

Suppose we fit the model (1) on the given sampleD , {xi,yi}Ti=1; as the transformation
from (X,N) to (X,Y ) is invertible, given any parameter set θ1 involved in the function
f , the noise N can be recovered, and we denote by N̂ the estimate. We further denote
by θ2 the parameter set in p(N). We are now ready to show that the attained likelihood
of (1) is directly related to the dependence between the estimated noise N and X.

For any parameter set θ , (θ1,θ2), the log-likelihood attained by the model (1) is

lX→Y (θ) =

T∑
i=1

logPF (xi,yi)

=

T∑
i=1

log p(X = xi) +

T∑
i=1

log p(N = n̂i;θ2)−
T∑
i=1

log
∣∣∣ ∂f
∂N

∣∣
X=x̂i,N=n̂i

∣∣∣. (6)

On the other hand, the mutual information (sample version) between X and N̂ for the
given parameter set θ is

I(X, N̂ ;θ)

=− 1

T

T∑
i=1

log p(X = xi)−
1

T

T∑
i=1

log p(N̂ = n̂i;θ2) +
1

T

T∑
i=1

log
∣∣∣ ∂f
∂N

∣∣
X=x̂i,N=n̂i

∣∣∣+
1

T

T∑
i=1

log p(X = xi, Y = yi), (7)

where the last term does not depend on θ and can then be considered as constant.
We then have the following result on the relationship between lX→Y (θ) and I(X, N̂ ;θ)
defined above.

THEOREM 2. For the model (1) with any value of the parameter set θ, lX→Y (θ),
defined in (6), and I(X, N̂ ;θ), defined in (7), are related in the following way:

1

T
lX→Y (θ) =

1

T

T∑
i=1

log p(X = xi, Y = yi)− I(X, N̂ ;θ). (8)

Therefore, the parameter set θ∗ that maximizes the likelihood of the model (1) also min-
imizes the mutual information I(X, N̂).
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PROOF. (6) directly follows (4), and now we prove (7). Note that the absolute value
of the determinant of the transformation from (X,Y ) to (X, N̂) is |JY→X | = |JX→Y |−1.
Recalling |JX→Y | =

∣∣∣ ∂f∂N ∣∣∣, consequently, we have p(X, N̂) = p(X,Y )/|JY→X | =

p(X,Y )
∣∣∣ ∂f∂N ∣∣∣.

According to (5), one can see

I(X, N̂ ;θ) = −E log p(X)− E log p(N̂) + E
{

log p(X,Y ) + log
∣∣∣ ∂f
∂N

∣∣∣},
whose sample version is (7). (8) can be directly seen from (6) and (7).

Theorem 2 is a consequence of (4) and (5), which also hold when X contains multiple
variables. Therefore, the above result also applies when X is a random vector.

We then consider the likelihood of the direction Y → X can attain, denoted by lY→X .
That is, we fit the sample with the model

X = g(Y,NY ;ψ) (9)

where g ∈ F , NY is assumed to be independent from Y , and ψ is the parameter set.
We shall show that if the functional class F is appropriately chosen such that X is
independent from N (i.e., (1) holds), but the reverse model (9) does not hold, i.e., these
does not exist g ∈ F such that NY is independent from Y in (9), one can then determine
the causal direction with the likelihood principle. In fact, the maximum likelihood at-
tained by the former model is higher than that of the latter, as seen from the following
theorem.

THEOREM 3. Let θ∗ denote the maximum likelihood estimator of the parameters in
(1) on the given sample D. Similarly, let ψ∗ be the maximum likelihood estimator of the
parameters in the model (9) on D. Assume that the model (1) is true, in the sense that
N is independent from X. Further assume that the model (9) does not hold, in the sense
that when estimating (9) with maximum likelihood, as T → ∞, the resulting noise N̂Y
is dependent on Y , i.e., I(Y, N̂Y ;ψ∗) > 0 as T →∞.

Then as T → ∞, the maximum likelihood lX→Y (θ∗) is higher than lY→X(ψ∗), and
the difference is

1

T
lX→Y (θ∗)− 1

T
lY→X(ψ∗) = I(Y, N̂Y ;ψ∗). (10)

PROOF. According to (8), we have

1

T
lX→Y (θ∗) =

1

T

T∑
i=1

log p(X = xi, Y = yi)− I(X, N̂ ;θ∗), (11)

1

T
lY→X(ψ∗) =

1

T

T∑
i=1

log p(X = xi, Y = yi)− I(Y, N̂Y ;ψ∗). (12)

Bearing in mind that I(X, N̂ ;θ∗) → 0 as T → ∞, one substracts (12) from (11) and
obtains (10).
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3.2. Loss Caused by a Wrongly Specified Noise Distribution
As claimed in Theorem 2, estimating the functional causal model (1) by maximum
likelihood or mutual information minimization aims to maximize

JX→Y =

T∑
i=1

log p(N = n̂i)−
T∑
i=1

log
∣∣∣ ∂f
∂N

∣∣
X=x̂i,N=n̂i

∣∣∣. (13)

3.2.1. Theoretical results. In the linear model (i.e., f in (1) is a linear function of X plus
the noise term N ) or the nonlinear additive noise model (i.e., f is a nonlinear function
of X plus N ), ∂f

∂N ≡ 1, and the above objective function reduces to
∑T
i=1 log p(N = n̂i),

whose maximization further reduces to the ordinary regression problem. It is well
known that in such situations, if N is non-Gaussian, parameter estimation under the
Gaussianity assumption on N is still statistically consistent.

However, it is important to note that this might not be the case for the general func-
tional causal models. In fact, Bickel and Doksum [Bickel and Doksum 1981] investi-
gated the statistical consistency properties of the parameters in the Box-Cox trans-
formation, which is a special case of the PNL formulation (2) where f1 is linear and
f2 is in a certain nonlinear form. They found that if the noise distribution is wrongly
specified, one cannot expect consistency of the estimated parameters in the Box-Cox
transformation.

Roughly speaking, if the noise distribution is set to a wrong one, one cannot guar-
antee the consistency of the estimated f for the functional causal models where ∂f

∂N is
not constant, for instance, for the PNL causal model (2), where ∂f

∂N = f ′2 is not constant
if the post-nonlinear transformation f2 is nonlinear. Theoretical proof is very lengthy,
and here we give an intuition. If p(N) is wrongly specified, the estimated f is not nec-
essarily consistent: in this situation, compared to the true solution, the estimated f
might have to be distorted in order to make the estimated noise closer to the specified
distribution such that the first term in (13) becomes bigger; consequently, (13), a trade-
off of the two terms, is maximized. This will be illustrated by the following example
and by simulations in Section 5.

3.2.2. An Illustrative Example. Besides the above theoretical results, it is helpful to use
an example to illustrate the inconsistency of the estimated f caused by misspecifica-
tion of the noise distribution.

Let the true generating process fromX to Y be represented by the PNL causal model
given in (2) with the following simple settings:

f∗1 (X) = X, f∗2 (Z) = Z. (14)

In words, the data-generating process is

Y = f∗(X,N) = X +N, (15)

where N is the noise term. The true distribution of N used for data generation, p∗(N),
will be specified later.

Suppose we fit the following parametric functions as well as the assumed noise dis-
tribution on the data:

f1(X) = (k + 1)X, f2(Z) =
b

1 + e−c(Z−a)
− d, and N ∼ N (0, 1), (16)

where c > 0. That is, the assumed causal model is

Y = f(X,N) =
b

1 + e−c[(k+1)X+N−a]
− d. (17)
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We have certain constraints on the parameters, in particular, d > −mini(yi), b >
maxi(yi) + d, to ensure that all Y values on the data set are in the codomain (or the
range of Y ) of the above function.

Note that the above function could successfully approximate the true data generat-
ing process (15) with an appropriate choice of the involved parameters: let c → 0+,
b = 4/c, d = 2/c, k = 0, and a satisfy 4

c(1+eca) −
2
c = 0, one can see ∂f2

∂Z → 1 for small Z
values and that f2(0) = 0; in words, when c → 0+,f2 in (16) is approximately an iden-
tify mapping for small Z values, and f1 is an identity mapping since k = 0. Equation
(17) then becomes X+N when their values are not very large, that is, it reduces to the
true process (15). On the other hand, if c is not close to zero, f2 in (16) is nonlinear in
Z, meaning that the fitted model (17) is different from the true one (15).

Let us check if we can recover the true data-generating process (15) by fitting the
causal model (17) in which N ∼ N (0, 1). (17) implies that

N = a− 1

c
log
( b

Y + d
− 1
)
− (k + 1)X,

log
∣∣∣ ∂f
∂N

∣∣∣ = −c(Z − a)− 2 log(1 + e−c(Z−a)) + log bc

= log
( b

Y + d
− 1
)

+ 2 log(Y + d)− log b+ log c.

Recall that we set N ∼ N (0, 1) in (17). To estimate the involved parameters a, b, c, d,
and k, we maximize (13); equivalently, the following quantity is to be minimized:

Ĵ =
1

2

T∑
i=1

[
a− 1

c
log
( b

yi + d
− 1
)
− (k + 1)xi

]2
+

T∑
i=1

[
log
( b

yi + d
− 1
)

+ 2 log(yi + d)− log b+ log c
]
.

We note that it is not easy to find close-form solutions to the parameters. We there-
fore use numerical solutions obtained by the MATLAB ‘fmincon’ toolbox. Since we aim
to illustrate that the parameter estimate might be inconsistent when p(N) is wrongly
specified, we use a large sample size, T = 105, and various settings for p∗(N). Specifi-
cally, we let

p∗(N) = αExpc(1) + (1− α)N (0, 1), (18)
where Expc(1) denotes the centered exponential distribution with λ = 1, and 0 ≤ α ≤ 1.
For arbitrary α, p∗(N) always has a zero mean and unit variance. That is, p∗(N) and
p(N) used in (17) have the same mean and variance, and they differ in the shape
when α > 0. We vary α from 0 to 1, and Fig. 1 shows the estimated values of c and k.
Recall that if the true process is consistently estimated, ĉ should be be very small, k̂
is expected to be 0. In this figure, one can see that when α becomes larger, ĉ becomes
larger, and k̂ tends to be further away from 0. Roughly speaking, the more ĉ and k̂
deviate from 0, the more different the estimated functional causal model is from the
true one.

Fig. 2 shows the estimation results when the noise distribution is truly Gaussian
(α=0, see top panels of the figure) and when it is exponentially distributed (α = 1,
bottom panels). Not surprisingly, when the noise is Gaussian, both f1 and f2 are accu-
rately estimated. However, when the true noise distribution is an Exponential one, one
can see that f2 is no longer a linear function; as a consequence, the estimated noise is
closer to Gaussian, as seen from Fig. 2f.
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Fig. 1: The estimated parameters ĉ and k̂ in the functional causal model (17) when the
true noise distribution in the data-generating process (15) varies from the Gaussian
distribution (α=0) to the Exponential one (α=1).

4. ESTIMATING POST-NONLINEAR CAUSAL MODEL BY WARPED GAUSSIAN PROCESSES
WITH A FLEXIBLE NOISE DISTRIBUTION

In this section we focus on the PNL causal model, since its form is very general and
the causal direction is nevertheless identifiable in the general case (apart from the five
special situations [Zhang and Hyvärinen 2009b]). It has been proposed to estimate
the PNL causal model (2) by mutual information minimization [Zhang and Hyvärinen
2009b] with the nonlinear functions f1 and f−1

2 represented by multi-layer preceptrons
(MLPs). With this implementation, model selection for those nonlinear functions, i.e.,
selection of the numbers of hidden units in the MLPs, is non-trivial. With a too simple
model, the estimated noise tends to be more dependent on the hypothetical cause, and
a too complex one tends to cause over-fitting, such that the wrong causal direction could
appear plausible. Moreover, the solution was found to be dependent on initializations
of the nonlinear functions, i.e., it is prone to local optima.

As stated in Section 3, for any functional causal model, minimizing the mutual infor-
mation between noise and the hypothetical cause is equivalent to maximum likelihood
with a flexible model for the noise distribution; moreover, it was claimed that for esti-
mation of the functional causal model where noise is not additive, especially the PNL
causal model, the solution would be sensitive to the assumed noise distribution. There-
fore, we propose an approach for estimating the PNL causal model based on Bayesian
inference, which allows automatic model selection, and a flexible model for the noise
distribution.

We adopt the warped Gaussian process [Snelson et al. 2004] framework, which can
be interpreted as a two-step generative model of the output variable with values yi ∈ R
given input variable with values xi ∈ Rd, i ∈ {1, . . . , n}, to specify the nonlinear func-
tions and noise term in the PNL model (2). As stated in Section 3.2, for the PNL causal
model, parameter estimation under a wrong noise model is not necessarily statisti-
cally consistent. Hence, a crucial difference between the original warped Gaussian pro-
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Fig. 2: Examples to illustrate that the estimated functional causal may be inconsistent
with a wrongly specified noise model. The fitting functional causal model (17) assumes
a standard Gaussian distribution for the noise term. Top: the true noise distribution
is Gaussian. Bottom: the true noise distribution is an exponential one. From left to
right: the (X,Y ) data points (only 1000 are shown), and estimated function f2, and
the scatterplot of X and Ẑ as well as the estimated f1. Note that in the true data-
generating process f2 is an identity mapping.

cesses [Snelson et al. 2004] and our formulation is that the warped Gaussian process
assumes Gaussian noise, but in our formulation the model for the noise distribution
has to be flexible.

We will compare the performance of our proposed warped Gaussian process regres-
sion with the MoG noise (denoted by WGP-MoG) and that with the Gaussian noise
(denoted by WGP-Gaussian) with simulations.

4.1. The model and prior
In the first step, an unknown function f1 : Rd → R maps the value of the input variable,
xi to a latent variable

zi = f1(xi) + ni, (19)

where ni ∼ p(N ; Ω) is the noise distribution that is unknown. We approximate this
noise distribution by a Mixture of Gaussian (MoG) distribution with parameters Ω =
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{π,µ,σ}, given by

p(N |Ω) =

m∑
j=1

πjN (N |µj , σ2
j ), (20)

where µj is the mean, σj the standard deviation, and πj the positive mixing proportions
that sum to one. We introduce latent membership variables φi ∈ {1, . . . ,m} that rep-
resent from which Gaussian components the noises εi were drawn. The membership
variable φi follows a categorical distribution, i.e., p(φi = j|Ω) = πj . In our implementa-
tion we set the number of Gaussian components m = 5.

We place a Gaussian process prior on the unknown function f1 ∼ GP(0, k(·, ·)) with a
zero mean function. The GP is then fully determined by the covariance function k(·, ·).
In this paper, we consider the isotropic Gaussian covariance function, given by

k(xi,xj ; Θ) = α1 exp
(
−α2

2 ‖xi − xj‖2
)

+ α3δxi,xj , (21)

with parameters Θ = {α1, α2, α3}, where xi and xj are two observations of the variable
X.

Given the set of membership variables φ, the log posterior of the latent variables z
is given by

log p(z|x,C,Ω,Θ) = −1

2
log det(K + C)− 1

2
t̄
T
(K + C)−1z̄− n

2
log(2π),

where K is the covariance matrix, i.e., Ki,j = k(xi,xj), C a diagonal noise variance
matrix with Ci,i = σ2

ci , and z̄i = zi − µφi
the latent variable subtracted by the noise

mean.
In the second step, the latent variable zi is mapped to the output space by function

f2 : R→ R, whose inverse is denoted by g, so we have

yi = g−1(zi). (22)

The post-nonlinear transformation in (2) represents the sensor distortion or mea-
surement distortion; in practice, it is usually very smooth. We therefore use a rather
simple representation for it. Following [Snelson et al. 2004], we choose the inverse
warping function that is the sum of tanh functions and the identity function; for the
ith value of Y , we have

g(yi; Ψ) = yi +

k∑
i=1

ai tanh(bi(yi + ci)), (23)

where the parameters Ψ = {a,b, c} and ai, bi ≥ 0,∀i, such that g is guaranteed to be
strictly monotonic. Note that g−1 corresponds to f2 in (2); for convenience of parameter
estimation, here we directly parameterize f−1

2 , or g, instead of f2.
Given the set of membership variables φ, the log posterior log p(y|x,φ,Ω,Θ,Ψ) of the

outputs y is given by

L(φ) = −1

2
log det(K + C)− 1

2
z̄T (K + C)−1z̄ +

n∑
i=1

log
∂g

∂y

∣∣∣∣
yi

− n

2
log(2π),

where z̄i = g(yi; Ψ)− µφi
.

4.2. Parameter Learning
We use Monte Carlo Expectation Maximization [Levine and Casella 2001] to learn the
parameters Ω, Θ, and Ψ, with the membership variables φ marginalized out.
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The Monte Carlo EM algorithm seeks to find the maximum likelihood estimate of
the parameters by iteratively applying the following E-step and M-step.

In the E-step, we estimate

Q(Ω,Θ,Ψ|Ω(t),Θ(t),Ψ(t)) = Eφ|x,y,Ω(t),Θ(t),Ψ(t) [logL(φ)]. (24)

However, direct evaluation of Q is intractable, since we do not have a parametric rep-
resentation of posterior distribution of φ. We resort to approximating (24) with Gibbs
sampling. That is, we calculate

Q̃(Ω,Θ,Ψ|Ω(t),Θ(t),Ψ(t)) ,
1

L

L∑
l=1

logL(φl) (25)

instead, where φl is the lth value of φ sampled from the posterior

p(φ|x,y,Ω(t),Θ(t),Ψ(t)) ∝ p(y|x,φ,Ω(t),Θ(t),Ψ(t))p(φ|Ω(t)). (26)

Here L is the total number of sampled values of φ.
In the M-step, we find the parameters Ω(t+1), Θ(t+1), and Ψ(t+1) that maximize the

estimated Q̃(Ω,Θ,Ψ|Ω(t),Θ(t),Ψ(t)) using scaled conjugate gradient.
The MATLAB source code for estimating the PNL causal model with WGP-MoG is

available at http://people.tuebingen.mpg.de/kzhang/warpedGP.zip .

5. SIMULATION
In this section we use simulated data to illustrate different behaviors of the pro-
posed method for estimating the PNL causal model, which is based on warped Gaus-
sian processes with noise represented by MoG, the original warped Gaussian process
regression with the Gaussian noise [Snelson et al. 2004], and the mutual informa-
tion minimization approach with nonlinear functions represented with MLPs [Zhang
and Hyvärinen 2009b].4 The linear additive noise model and the multiplicative noise
model, both of which are special cases of the post-nonlinear causal model, were used
for data generation.

5.1. Simulation 1: With Data Generated by a Linear Model
For illustrative purposes, we first use linear transformations for both f1 and f2 to see
if they can be recovered by different methods. The one-dimensional inputs X were
uniformly distributed; the latent variable Z = f1(X) +N were generated with a linear
function f1(X) = 2X, and the output Y = f2(Z) were generated with an identity
warping function f2(Z) = Z. The noise N were drawn from a log-normal distribution.
We generated 200 data points. Figure 3a shows the simulated data points.

Figures 3 and 4 show the estimation results produced by WGP-Gaussian and WGP-
MoG, respectively. One can see that in this case WGP-Gaussian gives clearly a wrong
solution: the estimated post-nonlinear transformation f2 is distorted in a specific way
such that the estimated noise is closer to Gaussian that the true noise; as a conse-
quence, the true data-generating process cannot be recovered by WGP-Gaussian, and
finally the estimated noise is dependent from the input X, as seen from Figure 3d.
With WGP-MoG, both estimated f1 and f2 were close to the true ones, which are actu-
ally linear. We increased the sample size to 500, and observed the same difference in

4As pointed out by an anonymous reviewer, for the implementation with MLPs, the difficulty in model
selection of the MLPs could be addressed by exploiting a similar idea of using Gaussian process for hyperpa-
rameter optimization. In our implementation, we fixed the number of hidden units of the MLPs. Therefore.
in this sense, the comparison between WGP-MoG and the MLP-based implementation conducted in this
paper is not quite fair. We are grateful to the anonymous reviewer for making this clear.
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Fig. 3: Simulation 1: Simulated data with the linear additive noise model (with log-
normal noise) and estimation results by WGP-Gaussian. (a) Simulated data. (b) Esti-
mated warping function Y = f̂2(Ẑ). (c) Scatter plot of input xi and the recovered latent
variable ẑi = f̂−1

2 (yi), where the dashed lines showed the GP posterior mean of f1(X),
and the heat maps showed the conditional probability p(Ẑ|X). (d) Scatter plot of input
xi and the estimated noise N̂i, where the heat maps showed the conditional probability
p(N̂ |X).

the estimated f2 and f1 given by WGP-MoG and WGP-Gaussian. This illustrates that
the estimated f2 and f1 in the PNL causal model (2) might not be statistically consis-
tent if the noise distribution is set to Gaussian incorrectly, and verifies the statement
given in Section 3.2.

We also compare the above two approaches with mutual information minimiza-
tion approach with nonlinear functions represented by MLPs [Zhang and Hyvärinen
2009b], whose results are shown in Figure 5. This approach also uses a MoG to repre-
sent the noise distribution, and could estimate both function f1 and f2, as well as the
noise term, reasonably well in this simple situation.

We then distinguish cause from effect by estimating the PNL model followed by
testing if the estimated noise is independent from the hypothetical cause for both di-
rections. We adopted the Hilbert Schmidt information criterion (HSIC) [Gretton et al.
2008] for statistical independence test and set the significance level to α = 0.05. Both
WGP-MoG and the mutual information minimization approach correctly determined
the causal direction, which is X → Y , in that for X → Y the estimated noise is inde-
pendent from X while for Y → X the estimated noise is dependent on Y . When using
WGP-Gaussian, we found that the noise is dependent from the hypothetical cause for
both directions with the significance level 0.05, although the p-value for the direction
X → Y is larger (0.048 for X → Y and 0.010 for Y → X).
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Fig. 4: Simulation 1: Estimation results by WGP-MoG. (a) Estimated warping function
Y = f̂2(Ẑ). (b) Scatter plot of input xi and the recovered latent variable ẑi = f̂−1

2 (yi)
using WGP-MoG, where the dashed lines showed the GP posterior mean of f1(X), and
the heat maps showed the conditional probability p(Ẑ|X). (c) Scatter plot of input xi
and the estimated noise n̂i, where the heat maps showed the conditional probability
p(N̂ |X). (d) Estimated noise distribution p(N̂).

5.2. Simulation 2: With Data Generated by a Multiplicative Noise Model
In the second simulation, we generated 400 data point according to the multiplicative
noise model,

Y = X · N̊ , (27)

where X takes positve values and is uniformly distributed, and N̊ = eN with N being
the absolute value of the standard Gaussian variable. Note that this model actually
belongs to the class of post-nonlinear models: it can be rewritten as

Y = elogX+log N̊ = eZ = elogX+N , (28)
and hence it is a special case of (2) with f1(X) = logX and f2 being the exponential
transformation. Figures 6a shows the generated data points.

Figures 6 and 7 show the estimation results by WGP-Gaussian and WGP-MoG, re-
spectively. According to (28), if the warping function f2 is perfectly recovered, the re-
covered latent variable Ẑ will have a linear relationship with log Y . Comparing Fig. 6c
with Fig. 7b, one can then see that WGP-MoG gives a better estimate of f2. Fur-
thermore, as shown by Fig. 6e and Fig. 7d (or Fig. 7e), the noise estimated by WGP-
Gaussian becomes closer to Gaussian, and the distribution of the noise estimated by
WGP-MoG is closer to the absolute value of the standard Gaussian (up to a location
and scale transformation), which was the distribution of N in (28) for data genera-
tion. To save space, we skip the estimation results by MLPs-based mutual information
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Ẑ

Y

(a) Estimated PNL function f2

−2 −1 0 1 2
−5

0

5

10

15

20

25

X

Ẑ
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Fig. 5: Simulation 1: Estimation results by mutual information minimization with non-
linear functions represented by MLPs. (a) Estimated warping function Y = f̂2(Ẑ). (b)
Scatter plot of input xi and the recovered latent variable ẑi = f̂−1

2 (yi) where the red
points show f̂1(xi). (c) Scatter plot of input xi and the estimated noise n̂i

minimization approach and the results of distinguishing cause from effect on this data
set.

6. ON REAL DATA
We applied different approaches for causal direction determination on the cause-effect
pairs available at http://webdav.tuebingen.mpg.de/cause-effect/. The approaches in-
clude the PNL causal model estimated by mutual information minimization with non-
linear functions represented by MLPs [Zhang and Hyvärinen 2009b], denoted by PNL-
MLP for short, the PNL causal model estimated by warped Gausian processes with
Gaussian noise, denoted by PNL-WGP-Gaussian, the PNL causal model estimated by
warped Gausian processes with MoG noise, denoted by PNL-WGP-MoG, the additive
noise model estimated by Gaussian process regression [Hoyer et al. 2009], denoted by
ANM, the approach based on the Gaussian process prior on the function f [Mooij et al.
2010], denoted by GPI, and IGCI [Janzing et al. 2012]. The data set consists of 77 data
pairs. To reduce computational load, we used at most 500 points for each cause-effect
pair: if the original data set consists of more than 500 points, we randomly sampled
500 points from them; otherwise we simply used the original data set. The accuracy of
different methods (in terms of the percentage of correctly discovered causal directions)
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Fig. 6: Simulation 2: Simulated data with the multiplicative noise model (27) and esti-
mation results by WGP-Gaussian. (a) Simulated data. (b) Estimated warping function
Y = f̂2(Ẑ). (c) Scatterplot of the recovered latent variable ẑi and log yi, which will be
on a line if f2 is perfectly recovered. (d) Scatter plot of input xi and the recovered latent
variable ẑi = f̂−1

2 (yi), where the dashed lines showed the GP posterior mean of f1(X),
and the heat maps showed the conditional probability p(Ẑ|X). (e) Scatter plot of input
xi and the estimated noise N̂i, where the heat maps showed the conditional probability
p(N̂ |X).

Table I: Accuracy of different methods for causal direction determination on the cause-
effect pairs.

Method PNL-MLP PNL-WGP-Gaussian PNL-WGP-MoG ANM GPI IGCI
Accuracy (%) 70 67 76 63 72 73

is reported in Table I. One can see that PNL-WGP-MoG gives the best performance
among these methods.

On several data sets PNL-WGP-Gaussian and PNL-WGP-MoG give different conclu-
sions. For instance, on both data pairs 22 and 57, PNL-WGP-Gaussian prefers Y → X,
and PNL-WGP-MoG prefers X → Y , which would be the plausible one according to
the background knowledge. In fact, for data pair 22, X corresponds to the age of a par-
ticular person, and Y is the corresponding height of the same person; for data pair 57,
X denotes the latitude of the country’s capital, and Y is the life expectancy at birth in
the same country.

Figures 8 and 10 show the estimated post-nonlinear transformations f2, functions
f1, and the noise N produced by PNL-WGP-Gaussian, under both hypothetical causal
directions X → Y and Y → X, on data pairs 22 and 57, respectively. For comparison,
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Fig. 7: Simulation 2: Estimation results by WGP-MoG. (a) Estimated warping function
Y = f̂2(Ẑ). (b) Scatterplot of the recovered latent variable ẑi and log yi, which will
be on a line if f2 is perfectly recovered. (c) Scatter plot of input xi and the recovered
latent variable ẑi = f̂−1

2 (yi) using WGP-MoG, where the dashed lines showed the GP
posterior mean of f1(X), and the heat maps showed the conditional probability p(Ẑ|X).
(d) Scatter plot of input xi and the estimated noise n̂i, where the heat maps showed
the conditional probability p(N̂ |X). (e) Estimated noise distribution p(N̂).

Figure 9 and 11 show the results produced by PNL-WGP-MoG on the two data sets.
One can see that PNL-WGP-Gaussian tends to push the noise distribution closer to
Gaussian, making the estimated noise tend to be more dependent on the hypothetical
cause. Overall, PNL-WGP-MoG clearly outperforms PNL-WGP-Gaussian in terms of
the estimation quality of the PNL causal model and the performance of causal direction
determination.

7. CONCLUSION AND DISCUSSIONS
A functional causal model represents the effect as a function of the direct causes and a
noise term which is independent from the direct causes. Suppose two given variables
have a direct causal relation in between and that there is no confounder. A functional
causal model could determine the causal direction between them if 1) it could approx-
imate the true data-generating process, and 2) it holds for only one direction. When
using functional causal models for causal direction determination, one has to find the
direction in which the noise term is independent from the hypothetical cause. Under
the hypothetical causal direction, a natural way to estimate the function and noise is
to minimize the dependence between noise and the hypothetical cause. In this paper,
we have shown that minimizing the mutual information between them is equivalent
to maximizing the data likelihood if the model for the noise distribution is flexible. In
this way, the two model estimation principles are unified.
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Ẑy

X

 

 

warping function f2

(e) Estimated PNL function f2 for
Y → X

0 2 4 6 8 10

Y

Ẑ
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Fig. 8: Estimated PNL causal model for hypothetical causal direction X → Y (b-d) and
direction Y → X (e-g) on cause-effect pair 22 by PNL-WGP-Gaussian. (a) Data. Here
X and Y represent the age (in years) and height (in centimeters) of 452 patients, so it
is plausible to have X → Y . (b) Estimated warping function Y = f̂2(Ẑ) under X → Y .
(c) Scatter plot of input xi and the recovered latent variable ẑi = f̂−1

2 (yi) underX → Y .
(d) Scatter plot of input xi and the estimated noise n̂i underX → Y , with the p-value of
the HSIC independence test 0.0070. (e) Estimated warping function f̂2 under Y → X.
(f) Scatter plot of input yi and the recovered latent variable f̂−1

2 (yi) under Y → X. (g)
Scatter plot of input yi and the estimated noise n̂Y,i under Y → X, with the p-value of
the HSIC independence test 0.0470.

Furthermore, we have discussed that for a general functional causal model where
noise is not additive, estimation of the function as well as the noise term might not
be statistically consistent if the noise model is wrong. In light of these two points,
we advocate the Bayesian inference based approach with a flexible noise model to
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Fig. 9: Estimated PNL causal model for hypothetical causal direction X → Y (a-d)
and direction Y → X (e-h) on cause-effect pair 22 by PNL-WGP-MoG. (a) Estimated
warping function Y = f̂2(Ẑ) under X → Y . (b) Scatter plot of input xi and the re-
covered latent variable ẑi = f̂−1

2 (yi) under X → Y . (c) Scatter plot of input xi and
the estimated noise n̂i under X → Y , with the p-value of the HSIC independence test
0.3090. (d) Estimated noise distribution p(N̂) under X → Y . (e) Estimated warping
function f̂2 under Y → X. (f) Scatter plot of input yi and the recovered latent variable
f̂−1

2 (yi) under Y → X. (g) Scatter plot of input yi and the estimated noise n̂Y,i under
Y → X, with the p-value of the HSIC independence test 0.0480. (h) Estimated noise
distribution p(N̂Y ) under Y → X.

estimation of functional causal models of a more general form than the additive noise
model.

In particular, we focused on estimation of the post-nonlinear causal model, and pro-
posed to estimate it by warped Gaussian processes with the noise distribution repre-
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Fig. 10: Estimated PNL causal model for hypothetical causal direction X → Y (b-
d) and direction Y → X (e-g) on cause-effect pair 57 by PNL-WGP-Gaussian. (a)
Data. Here X and Y represent the latitude of each country’s capital and the female
life expectancy at birth for the same country. Naturally one would prefer X → Y . (b)
Estimated warping function Y = f̂2(Ẑ) under X → Y . (c) Scatter plot of input xi and
the recovered latent variable ẑi = f̂−1

2 (yi) under X → Y . (d) Scatter plot of input xi
and the estimated noise n̂i under X → Y , with the p-value of the HSIC independence
test 0.0220. (e) Estimated warping function f̂2 under Y → X. (f) Scatter plot of input
yi and the recovered latent variable f̂−1

2 (yi) under Y → X. (g) Scatter plot of input yi
and the estimated noise n̂Y,i under Y → X, with the p-value of the HSIC independence
test 0.0920.

sented by the mixture of Gaussians. We exploited Monte Carlo EM for inference and
parameter learning. Experimental results on simulated data illustrated that when
the noise distribution is far from Gaussian, this approach is able to recover the data-

ACM Transactions on Intelligent Systems and Technology, Vol. **, No. **, Article **, Publication date: ** 2014.



On Estimation of Functional Causal Models 39:21

−5 −4 −3 −2 −1 0 1 2 3 4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Ẑ
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Fig. 11: Estimated PNL causal model for hypothetical causal direction X → Y (a-d)
and direction Y → X (e-h) on cause-effect pair 57 by PNL-WGP-MoG. (a) Estimated
warping function Y = f̂2(Ẑ) under X → Y . (b) Scatter plot of input xi and the re-
covered latent variable ẑi = f̂−1

2 (yi) under X → Y . (c) Scatter plot of input xi and
the estimated noise n̂i under X → Y , with the p-value of the HSIC independence test
0.8540. (d) Estimated noise distribution p(N̂) under X → Y . (e) Estimated warping
function f̂2 under Y → X. (f) Scatter plot of input yi and the recovered latent variable
f̂−1

2 (yi) under Y → X. (g) Scatter plot of input yi and the estimated noise n̂Y,i under
Y → X, with the p-value of the HSIC independence test 0.1420. (h) Estimated noise
distribution p(N̂Y ) under Y → X.

generating process as well as the noise distribution, while the warped Gaussian pro-
cesses with the Gaussian noise could fail. We used the proposed approach to estimation
of the post-nonlinear causal model for determining causal directions on real data, and
the experimental results showed that the proposed approach outperforms other meth-

ACM Transactions on Intelligent Systems and Technology, Vol. **, No. **, Article **, Publication date: ** 2014.



39:22 K. Zhang et al.

ods for estimating the post-nonlinear causal model and other state-of-the-art methods
for causal direction determination.

Finally, we would like to remark that the background causal knowledge has been
demonstrated to be able to facilitate understanding and solving some machine learn-
ing problems, including semi-supervised learning [Schölkopf et al. 2012] and domain
adaptation [Zhang et al. 2013a]. In these scenarios one does not aim to find causal
directions, but may need to estimate the transformation from the cause to the effect,
and the theoretical results given in this paper, such as Lemma 1 and the discussion in
Section 3.2, might also help.
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