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Abstract—This paper presents a new volumetric representation
for categorizing objects in large-scale 3-D scenes reconstructed
from image sequences. This work uses a probabilistic volumetric
model (PVM) that combines the ideas of background modeling and
volumetric multi-view reconstruction to handle the uncertainty
inherent in the problem of reconstructing 3-D structures from
2-D images. The advantages of probabilistic modeling have been
demonstrated by recent application of the PVM representation
to video image registration, change detection and classification of
changes based on PVM context. The applications just mentioned,
operate on 2-D projections of the PVM. This paper presents the
first work to characterize and use the local 3-D information in the
scenes. Two approaches to local feature description are proposed
and compared: 1) features derived from a PCA analysis of model
neighborhoods; and 2) features derived from the coefficients of
a 3-D Taylor series expansion within each neighborhood. The
resulting description is used in a bag-of-features approach to
classify buildings, houses, cars, planes, and parking lots learned
from aerial imagery collected over Providence, RI. It is shown
that both feature descriptions explain the data with similar ac-
curacy and their effectiveness for dense-feature categorization is
compared for the different classes. Finally, 3-D extensions of the
Harris corner detector and a Hessian-based detector are used to
detect salient features. Both types of salient features are evaluated
through object categorization experiments, where only features
with maximal response are retained. For most saliency criteria
tested, features based on the determinant of the Hessian achieved
higher classification accuracy than Harris-based features.

Index Terms—3-D data processing, 3-D object recognition, ma-
chine vision, Bayesian learning.

1. INTRODUCTION

UTOMATED description of real-world 3-D scenes is an

important field of research for many urban and surveil-
lance applications, including city planning, virtual tourism,
autonomous navigation, and object localization, detection,
and tracking. Much work has been done to solve the object
recognition problem in 2-D images, and great performance ad-
vances have been achieved with the development of consistent
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image descriptors, e.g., SIFT [1] and HOG [2], non-parametric
machine learning techniques, e.g., SVM, and the availability
of public databases and competitions such as the PASCAL
challenge. However, the appearance inconsistencies in aerial
imagery of urban scenes caused by occlusions, non-Lambertian
properties of materials, sensor noise, shadows, transient objects,
and others, pose great challenges to 2-D recognition systems,
where consistent viewpoint invariant features do not exist.
Three-dimensional models of objects offer the advantage of
using the full dimensionality of an object’s shape and appear-
ance information and avoid the ambiguities due to projection.
The availability of large-scale point cloud data collected with
LIDAR sensors has led to recent efforts to detect and classify ob-
jects in large-scale urban 3-D models. Examples are the works
of Golovinskiy et al. [3], Frome et al. [4], Korah et al. [5], and
Patterson et al. [6]. The work in this paper addresses the same
application but based on a novel data representation. Specifi-
cally, this paper presents algorithms to represent and classify
objects in large-scale probabilistic volumetric scenes that are
learned from aerial imagery. Objects are represented as bag of
“volumetric words” that are learned from the appearance and
occupancy information in local neighborhoods of probabilistic
volumetric models (PVM). The PVM allows for dense 3-D re-
construction of a scene’s appearance and geometry, and han-
dles occlusions and ambiguities through probabilistic online up-
dating. By combining the ideas of multi-view geometry and
background modeling it is possible to learn occupancy infor-
mation that systems based on hard thresholds would not re-
cover due to appearance ambiguities. This advantage will be
further demonstrated in the experimental section. Furthermore,
one could imagine combining different kinds of available in-
formation, e.g., color, IR, LIDAR, etc., in a rigorous Bayesian
framework to produce detailed 3-D urban models. All these rea-
sons make the problem of object representation in probabilistic
volumetric models a relevant and promising field of research.
The 3-D modeling framework used in this work, has been
applied to video image registration [7], change detection [8],
and classification of changes as vehicles in 2-D [9], [10]. In
these applications, the probabilistic volumetric representation
predicts occlusion and appearance variability, providing accu-
rate detection of deviations from normal appearance in new im-
ages, i.e., change detection. To the authors’ knowledge, the work
presented in this paper is the first to characterize the 3-D in-
formation stored in the PVM, and furthermore, to base scene
classification on a volumetric probabilistic model. To do so,
voxels in an object are assigned a description of their neigh-
borhood using principal component analysis or Taylor series
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Fig. 1. Bag of volumetric features approach used to categorize objects from volumetric scenes.

approximation of the surface and appearance attributes. During
the learning phase, descriptors from different objects of different
categories are used to learn a common “volumetric vocabulary.”
This paper presents results for descriptors that are sampled in a
dense manner or located at features that maximize the saliency
response of the 3-D Harris detector, or the determinant of the
Hessian. Finally, descriptors are assigned to the most similar vo-
cabulary entry and quantized to learn distributions for different
object categories. A Bayesian classifier is used during the testing
phase to assign to each object the most probable class label. The
workflow just described is illustrated in Fig. 1. The work in this
paper aims to demonstrate, through simple feature description
and recognition approaches, the potential of the PVM represen-
tation for object recognition. The use of features based on local
neighborhoods in the PVM for recognition have not been ex-
plored thus far. This paper characterizes distribution of salient
information in the PVM data and quantifies the effectiveness of
local features in object categorization tasks.

The proposed framework was first introduced in a recent work
by the authors [11], where the effectiveness of the proposed fea-
tures for dense-feature classification is evaluated. This paper ex-
tends the analysis of these local volumetric features for 3-D ob-
ject recognition. Extensions of the 3-D Harris corner detector
and the determinant of the Hessian are used in the PVM to lo-
calize salient features. In addition, this paper presents compar-
isons between the proposed probabilistic volume PVM, and a
state-of-the-art 3-D point cloud reconstruction algorithm [12].
Finally, the experimental evaluation reported here is more com-
prehensive than that in [11].

II. RELATED WORK AND DISCUSSION OF MAJOR
DESIGN DECISIONS

A. 3-D Versus 2-D Modeling

While this paper is focused on the application of a 3-D rep-
resentation to object classification, it is important to note that
there exists a large body of recognition work that is based on
descriptions that are derived from 2-D images of a scene. These
approaches provide some inspiration for the type of features
and recognition algorithms that might be extended to a 3-D

representation. Most of the work on image-based recognition
in realistic scenes is performed using appearance-based tech-
niques. State-of-the-art systems use deformable part models
[13] to handle shape variations in single image views and
to account for the random presence/absence of parts caused
by occlusion and variations in viewpoint and illumination.
Multi-view models have also been proposed [14], where shape
models are based on 2-D descriptors observed in multiple
views, and single-view codebooks are learned and intercon-
nected on the space of observer viewpoints. However, it can be
argued that these multiview algorithms just reveal a subset of
the rich set of relationships and constraints that arise from a
full 3-D description.

Instead of basing recognition on single or multiple 2-D im-
ages, this work aims to use the PVM representation to extract
a dense 3-D reconstruction of the objects. Then, shape and ap-
pearance is characterized to perform one single 3-D detection.
In practice, the current system performs categorization and not
localization, as it will be explained in a later section. By using
a three-dimensional representation, the framework can take ad-
vantage of the full dimensionality of the learned appearance and
geometry. Another advantage of 3-D models is their potential
for better object/background segmentation by using depth in-
formation. Recently, Knopp et al. [15], [16], briefly investigated
the application of their implicit shape 3-D models for detection
in scenes reconstructed using structure from motion methods.
The successful qualitative results obtained by Knopp et al. pro-
vide encouragement for further research on object recognition
based on 3-D scene representation. Furthermore, the PVM has
produced high resolution large-scale scene reconstructions [17],
[18] that motivate their use for recognition applications.

B. 3-D Data Representation

Many 3-D shape recognition/retrieval methods [16],
[19]-[26] have been developed in recent years to search
the rapidly growing databases of 3-D models. Throughout most
of the object-retrieval literature, the underlying 3-D models are
synthetically generated or obtained in a controlled environment
using 3-D scanners. The dominant representation of 3-D geom-
etry is a mesh or point cloud, where the geometric properties
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of the representation are used to describe objects in recognition
systems.

Fewer works have employed volumetric representations.
However, volumetric descriptions are extensively used in med-
ical image applications [27], [28] and for action recognition
[29]. They have also been used to handle isometric deforma-
tions [30] and to segment models into parts [20]. Volumetric
representations can come directly from sensors (MRI), or can
easily be generated from meshes and point clouds (the contrary
is significantly more difficult). Additionally, by operating on
voxels (discrete 3-D volume cells), image processing methods
can be easily generalized to 3-D. For example, Yu et al. [31],
recently presented a performance evaluation of volumetric
interest point detectors for 3-D data.

In the experiments reported here, images are collected under
unrestricted conditions from an aerial platform and the recon-
structed geometry is expected to be noisy and ambiguous. This
work utilizes a volumetric representation as it allows for a nat-
ural way to model the uncertainty in 3-D surfaces reconstructed
from 2-D images, which is difficult to characterize with point
clouds or meshes. The representation of large 3-D urban scenes
for recognition in terms of discrete point cloud data has been
investigated to some extent, however to the best of the authors’
knowledge this paper presents the first recognition system based
on a dense probabilistic volume representation.

C. Local Versus Global Descriptors

There exist many different approaches to 3-D shape analysis.
For a review, the reader is referred to [32]. In the rigid shape re-
trieval community, global descriptors have been studied exten-
sively. Global features characterize the overall shape of a 3-D
model; examples are: features based on volume and area [33],
reflective symmetry descriptors [34], 3-D Zernic invariants [35],
among others. Instead of using global features directly, Osada et
al. used distributions of global features that showed robust dis-
crimination between classes of objects.

Local feature-based methods take into account the informa-
tion in the neighborhood around points on the surface. Although
methods of this type are less common in the shape retrieval com-
munity, they have recently gained popularity inspired by the suc-
cess of local descriptors such as HOG [2], SIFT [1], SURF [36],
and DAISY [37] for 2-D image-based recognition. There are
a large number of local descriptors for 3-D shapes, including
shape contexts [38], [39], local spherical harmonics [4], local
patches [40], spin images [6], [25], tensors [41], distance maps
[42], heat kernels [23], [30], and the SHOT descriptor [43].
There are also extensions to three dimensions of the SURF de-
scriptor [16]. The popular SIFT descriptor has been used in a
volumetric form for medical image analysis [27], [28], [44], and
for action recognition [29]. Local features are preferred for ap-
plications where robustness to clutter, noise, and missing data is
important [3], [4], [15], [16].

Local descriptors are used in this work to take advantage
of the power of the dense probabilistic data provided by the
PVM representation. Every voxel has well-defined local neigh-
borhood data in spite of occlusion and appearance ambiguities
that arise in cluttered urban scenes. Furthermore, the success of
global shape descriptors is critically dependent on proper de-

tection and segmentation of objects. While the majority of the
work using global descriptors requires a segmented instance of
the object, it has been demonstrated that local descriptors can
handle object segmentation and classification tasks simultane-
ously [15].

D. Invariance to Scene Transformations

Invariance to scene transformations can be achieved by nor-
malizing the pose and scale of the 3-D objects prior to anal-
ysis, or by constructing a representation that is invariant under
different transformations. The dataset used in the experiments
described below contains objects of various sizes and aspect ra-
tios. However, the internal camera parameters and approximate
viewing distance are the same for all the aerial scenes consid-
ered in the experiments. Thus, the PVM representation is recon-
structed in 3-D with consistent scale but with the unknown pose,
i.e., 3-D rotation and translation.

It can be expected that local 3-D structural features such as
the intersections of walls, roofs, etc., will exhibit repeatable
PCA and derivative operator characteristics across scenes for
a given feature orientation. The bag of features representation
is invariant to feature position since only the frequency of oc-
currence of the feature-derived k-means codebook entries de-
termines the classification outcome. However, features with dif-
ferent orientations and thus a different codebook histogram will
be produced if an object is rotated. For the aerial scenes consid-
ered here, the orientation ambiguity is approximately confined
to rotations in the x — y plane since the vertical direction is
consistently maintained by identifying the ground plane in the
scene.

The remaining rotational ambiguity could be handled by em-
ploying feature descriptors that are intrinsically invariant to ori-
entation, such as the heat kernel signatures [30] or by estab-
lishing a local reference frame with respect to surface normal
orientation, see for instance [25], [45]. However, in this work,
there is no attempt to develop such rotationally invariant de-
scriptions and different object ground plane orientations are ac-
counted for by the training process.

E. Detection Versus Categorization

The majority of the work in the 3-D object retrieval commu-
nity is performed on isolated objects. Although, the effects of
noise and occlusion have been studied, the 3-D object databases
typically consist of segmented objects. More recently, scans of
entire 3-D scenes have become available with the advance of
comprehensive 3-D reconstruction algorithms [8], [12], [18],
[46], [47] and the ready availability of LIDAR and triangu-
lation-based range sensors. With 3-D representations of entire
scenes, there has been an increase of interest (and need) in the
area of 3-D object segmentation. The works of Knopp et al.
[15], Korah et al. [5], and Golovinsky et al. [3] have achieved
significant progress in the area of 3-D segmentation in real life
scenes. Ultimately, segmentation and recognition processing is
intertwined, and the success of both depend on the availability
of effective local features. The focus of this investigation is to
characterize the performance of local operators on categoriza-
tion of manually segmented objects, which will lay the ground-
work for automatic object segmentation in future work.
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F. Learning Approach

The object recognition experiments described below are
based on aerial imagery collected in Providence, RI, USA.
Recognition training is based on eighteen volumetric scene
models. These models represent a variety of landscapes, ar-
chitectural styles and contain a large number of objects. It is
believed that no major constraints are imposed by the place of
collection and the proposed framework is applicable to data
from other geographic locations. Each model, composed of ap-
proximately 30 million voxels, covers an estimated ground area
of (500 x 500) m?. The data used in these experiments has been
released to the community! to support progress in 3-D scene
understanding. This work presents the first framework capable
of processing large scale probabilistic volumetric scenes for
object categorization tasks. Scenes are processed to compute
local descriptors that are combined to form bag-of-features
object representations. Learning is done in a supervised manner
and categorization tasks are performed for objects from five
different categories. This processing pipeline provides a basic
framework for the development of more complex feature
descriptors and recognition algorithms in such probabilistic
volumetric scenes.

III. CONTRIBUTIONS

In summary, the contributions of the work presented in this

paper are as follows.

1) The first work to implement a framework for object catego-
rization tasks on probabilistic volume models that combine
geometry and appearance information, and that are learned
in unrestricted settings from aerial image sequences.

2) The construction of novel, image viewpoint-invariant, vol-
umetric features extracted from probabilistic information
of 3-D surface geometry and appearance.

3) A demonstration of the descriptive power, through rigorous
analysis of function approximation and object recognition
experiments, of features based on a Taylor series approxi-
mation, and PCA analysis of the probabilistic information
in the models.

4) An analysis of the effectiveness of salient differential fea-
tures in representing object categories described by proba-
bilistic volume models.

5) The creation of the largest database of probabilistic volume
models available today.

IV. PROBABILISTIC VOLUME MODEL

In general, the problem of reconstructing 3-D surfaces from
2-D image projections is ill-posed. Bhotika et al. [48] charac-
terize the difficulties of inferring 3-D shapes from a set of n
noisy images as: scene ambiguity and scene uncertainty. Shape
ambiguity arises due to the existence of multiple photo-consis-
tent solutions of the multi-view reconstruction problem. This
situation is shown in Fig. 2(a), where the resulting surface can
lie anywhere within the diamond-shape regions in Fig. 2(b). On
the other hand, shape uncertainty is caused by the presence of

Thttp://vision.lems.brown.edu/project_desc/Object-Recognition-in-Proba-
bilistic-3D-Scenes.
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Fig. 2. Ambiguity of surface geometry for featureless surfaces. (a) Two cam-
eras view a surface with three uniformly colored region. (b) The reconstructed
surface can lie anywhere within the shaded regions.

Fig. 3. Various sources of uncertainty in the scene geometry of the Capitol
building, Providence, RI. (a) A sample video frame. (b) Transient foreground
objects such as cars. (c) Specularities not modeled by reflectance model.
(d) Appearance variation due to sensor noise and other nonlinear effects.

sensor noise, camera calibration errors, violations of a surface
reflectance model, and occlusions (see Fig. 3). The 3-D models
used in this work, and to be described in this section, infer
surface and appearance information by combining the ideas of
probabilistic background modeling and multi-view 3-D recon-
struction, handling scene ambiguities, and uncertainties through
Bayesian inference.

The probabilistic volume model used in this work was first
proposed by Pollard and Mundy [8], [49]. The framework is de-
signed to be updated in an online manner to be able to adapt
to changing world surfaces and moving objects. In Pollard’s
model, a region of three-dimensional space is decomposed into
a regular 3-D grid of cells, called voxels [see Fig. 4(a)]. At
any point in time, a voxel X has two possible states: contains
empty space or contains a solid surface. The probability that
a voxel X contains a surface element is denoted P(X € S).
Voxels are also associated with a probabilistic model for ap-
pearance as observed in images. In this paper, the image ap-
pearance is restricted to grayscale, but in general the model can
be extended to handle, color, IR, or LIDAR [49]. Appearance is
modeled with a Gaussian mixture distribution that can account
for a range of variability due to illumination direction, shadows
and image misregistration. It is also assumed that a calibrated
camera model is supplied with each image to be processed.

The estimation of appearance and geometry is a joint process.
It takes into account the success of the appearance models in
explaining the observed image intensity, as well as how likely
a voxel is to contain the observed surface given the possibility
of occlusion. The process of updating the appearance model
and occupancy probabilities is explained in the following
subsections.
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Fig. 4. PVM proposed by Pollard and Mundy [8], [49]. (a) The volume of interest is decomposed into a regular grid of voxels. (b) The observed pixel I x is caused
by an a priori unknown voxel V' lying a long the ray R x . In order to update the surface probability and appearance model of voxel X, all other voxels X’ that lie
on R x have to be considered. (c) Octree subdivision of space proposed by Crispell [50].

A. Updating the Appearance Model

The appearance of each voxel is modeled with a Gaussian
mixture distribution as given by (1). I, refers to the grayscale
intensity but could be considered a vector with various elements
to account for color. The quantities, g, o} and wg, are the
mean, covariance, and mixing parameters associated with each
Gaussian distribution. W is the sum of wy, for all k. The number
of mixtures is given by k; for this particular example there are

p(I) =

three mixture components:
3 —up)?
Wi < 1 e p_%) (1)
= — | ——=ex s .
2
=1 WA\ / 2moj,

The parameters of the mixture are learned using a modified
expectation maximization (EM) algorithm similar to that used in
video background modeling [51]. The update of the parameters
is as follows:

w,jcv"'l :w,zcv—l—dw,]cv"'l
dw
2 2 dw 2 2
(o 7)) = (o) + do+ o ((1N+1 — ) = (oF) ) :

2

The increment in mixing weight, dw, upon observing image
N + 1 is determined by analyzing the distributions in other
voxels along the same camera ray, that could contribute to pixel
intensity, IV +1. This computation is described in the next sec-
tion. The components of the distribution are adapted as neces-
sary to account for image intensities (colors) as new images are
observed. If an intensity value I is not within few standard de-

replaced with a high variance mode with mean IV *1 and weight
dw. If a narrow range of intensity values are observed over the
image sequence, then the mixing probability of the nearest com-
ponent will approach one and the density will be sharply peaked
around the mean.

B. Updating the Surface Probabilities

The update to the mixture distribution of a particular voxel X
is determined by considering all the voxels { X'} along the ray
Rx (through X) and the corresponding image pixel location as
shown in Fig. 4(b). The ray may intersect several surfaces in the
world. It is not known for certain which voxel produced the color
in the image, but the probability of each voxel X’ producing the
color, PN(V = X’), can be computed. P (V = X’) depends
on the belief that voxel X" is a surface element and that it is
not occluded by other voxels along the ray. The surface prob-
ability is updated by incremental Bayesian learning, as shown
in (3) and (4) at the bottom of the page, where the probability
of a voxel X containing a surface element after N + 1 images
increases if the Gaussian mixture (1) at that voxel explains the
intensity observed in the N + 1 image better than any other voxel
along the projection ray.
To make the PVM representation clear, a term by term expla-
nation of the update equation in (4) is outlined.
* The term p¥ (I{ ™ |V = X') is computed using the mix-
ture of Gaussians model stored at the voxel X”.

 The probability of a voxel X’ producing the color in the
image is interpreted geometrically, where a voxel produces
the intensity seen in the image if it is a surface element and
it is not occluded by other voxels along the ray. Thus,

PN(V =X')= PN(X’' € )PV (X’ is not occluded).

viations of any mode, the least probable mode is destroyed and 5)
N ( 7N+1
p (I Xes
PNTH(X € 8) = PN (X € 5) ( = IJ|V+1 ) (©)
PN (Ix ™)
: NIt | v=X)PV=X'|X€eS

Sver PN (IXTH V=X) PNV = X)
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The probability of occlusion is defined as the probability
that all voxels between X’ and the sensor are empty,
namely:

PY (X" is not occluded) = H (1-PN(X" €8)).
X"<X!

(6)

¢ The term PY(V = X'| X € S) is computed analogously
to PN(V = X'). However, any instance of PV (X € S)
takes probability one.

C. Effects of the Number of Views and the Camera Path

Pollard showed that a voxel X lying on a world surface will
converge to the correct probability provided that the surface im-
ages a constant color in all views, and that all voxels X’ near X
lying beneath the surface frequently project into some pixels of
sufficiently different color from the true surface color at X . The
camera path and the number of images available influence the
quality of the models. For incomplete camera paths (those that
are not a full circle), it is expected that models will have missing
information. Camera paths with views at grazing angles, impede
the surface reconstruction near the ground plane, due to occlu-
sion. It is observed that the convergence of surface models is im-
proved by the use of additional images. Typically, one hundred
images with distinct viewpoints are required to produce good
quality models, depending on the degree of scene occlusion.

D. Octree Representation of the PVM

In a fixed-grid voxel representation, most of the voxels may
correspond to empty areas of a scene, making storage of large,
high-resolution scenes prohibitively expensive. Crispell [17],
[50] proposed a continuously varying probabilistic scene model
that generalizes the discrete model proposed by Pollard and
Mundy. All the quantities proposed by Pollard can be computed
using Crispell’s continuous model. The details of this model are
not included here, but the reader can refer to [17], [50] for fur-
ther information. Crispell’s model allows nonuniform sampling
of the volume leading to an octree representation that is more
space-efficient and can handle finer resolution required near 3-D
surfaces; see Fig. 4(c).

The adaptive resolution representation proposed by Crispell
makes it feasible to store models of large urban areas. However,
learning times of large scenes using the PVM remained imprac-
tical until recently, when a GPU implementation was developed
by Miller et al. [18]. With a GPU framework in place it is now
possible to carry out multi-class object recognition tasks where
the large number of objects instances required for training can
be processed in a reasonable amount of time.

V. VOLUMETRIC FEATURE DESCRIPTION

The focus of the work by Pollard [8] was on detecting changes
in a new image. Change detection is based on the fact that occu-
pancy and appearance information in the model can be used to
render synthetic images of the expected scene appearance [49].
The predicted appearance of a given pixel in the image, is com-
puted as the summation across all voxels of the corresponding
back-projection ray. The ray summation is an expectation based

on the appearance distribution of each voxel and the likelihood
that each voxel on the ray is responsible for the observed image
intensity.

The equations used to generate expected images are defined
in a similar way to those presented in Section IV-B. Consider a
pixel Iy, which back projects into a ray of voxels {X'}. If V'
is the unique voxel that causes the intensity value at the pixel,
then the expected intensity at [x is explained by the following
equations:

E(Ix)= Y E(Ix|V=X)P(V =X (7)
X'ER
= Y E(x|V=X)P(X'eS)
X'ER

P(X'1is not occluded). (8)

For every ray containing a particular voxel X', the quantity
E(I, |V = X")P(X' € S) is fixed, and the only ray-depen-
dent term is P(X’ is not occluded). When learning neighbor-
hood configurations in the PVM only the ray-independent infor-
mation is taken into account, reducing the information at every
voxel to the following equation:

E(I,|V = X')P(X' € S). ©)

Here, the quantity in (9) is referred to as a voxel’s expected
appearance, and the volume of expected appearances, as the
expectation volume model, EVM. This work proposes to use
a voxel’s expected appearance as the underlying information
to be characterized. The motivation for this choice is that, by
combining the appearance information with the surface prob-
abilities, it is possible to detect structures that may lie on the
same surface but have differing appearance, such as windows
or doors. As another example, vehicles do not have significant
height relief with respect to the 3-D ground plane but typically
differ significantly from the background in appearance.

A. PCA Features

One way to represent the volumetric model is by identifying
local spatial configurations that account for most of the vari-
ation in the expected appearance data. Principal component
analysis (PCA) is carried out to find the orthonormal basis that
represents the volumetric samples in the best mean squared
error sense. The principal components are arranged in de-
creasing order of variation as given by the eigenvalues of the
sample scatter matrix.

In order to perform PCA, feature vectors are obtained by
sampling locations on the scene according to the octree struc-
ture, i.e., fine sampling in regions near surfaces and sparse sam-
pling of empty space. At each sampled location, ngl X nyi X
n.l cubical regions are extracted (centered at the sampled loca-
tion), where [ is the length of the smallest voxel present in the
3-D scene. The extracted regions are arranged into vectors by
traversing the space at a resolution of I, using a raster visita-
tion schedule. The scatter matrix S, of randomly sampled vec-
tors, is updated using a parallel scheme [52] to speed up com-
putation, and the principal components are found by the eigen-
value decomposition of S. In the PCA space, every neighbor-
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hood (represented by a d-dimensional feature vector x) can be
exactly expressed as x = X+ Z,‘f:laiei, where e; are principal
axes associated with the d eigenvalues, and a; are the corre-
sponding coefficients. A k-dimensional (k < d) approximation
of the neighborhoods can be obtained by using the first & prin-
cipal componentsi.e., X = X+ Zle a;e;. Section VIII presents
an analysis of the reconstruction error of local neighborhoods,
namely |x — >~<|2. In the remainder of this paper, the vector ar-
rangement of projection coefficients in the PCA space is referred
to as a PCA feature.

B. Taylor Features

One advantage of the PCA features is that by learning the
basis directly from the data no major assumptions about the
local neighborhoods are imposed. However, learning the local
features is not always convenient. As new information is intro-
duced to the system, the PCA space may need to be relearned,
making necessary to store past data.

A set of derivatives computed up to a given order can be used
to approximate the expected appearance function in a neighbor-
hood. The idea of using differential descriptors has been around
for along time in the image analysis community [53]-[56]. Al-
though distribution-based descriptors [1], [2] have become more
popular, differential descriptors have been shown to be an effec-
tive alternative in view of the high-dimensionality of histogram-
based descriptors [56]. This paper proposes the use of differen-
tial descriptors obtained from a Taylor series approximation of
the local neighborhoods, whose performance is compared to that
of PCA descriptors for neighborhood reconstruction and object
classification tasks. It will be demonstrated that differential de-
scriptors provide an efficient representation of local informa-
tion, comparable to that of PCA vectors. Additionally, an evalu-
ation of performance or Taylor features lays the groundwork for
the development of distribution-based descriptors (based on the
responses of differential operators) in future work in the PVM.

The computation of derivatives in the expectation volume
model, EVM, can be expressed as a least square error minimiza-
tion of the following energy function:

E= Z Z Z (V(i.j, k) = V(i,j.k)>  (10)

i=—nij=—njk=—nk

where ‘7(6 Jj, k) is the Taylor series approximation of the ex-
pected 3-D appearance of a volume V' centered on the 3-D point
(1,7, k). Using the second degree Taylor expansion of V' about
0, 0, 0), (10) becomes

2

E = Z (V(x) — Vo —xTaG - %XTHX> a1
where Vj, G, H are the zeroth derivative, the gradient vector
and the Hessian matrix of the volume of expected 3-D appear-
ances about the point (0, 0, 0), respectively. The coefficients
for 3-D derivative operators can be found by minimizing (11)
with respect to the zeroth, first- and second-order derivatives,
ie, Vo, Ve, Vo, Vi, Vaa, Viyys Vazy Vay, Vi, V2. The computed
derivative operators are applied algebraically to neighborhoods

in the EVM. The responses to the ten Taylor operators are ar-
ranged into 10-dimensional vectors, here referred to as Taylor
features.

VI. FEATURE DETECTION

Building object representations from local features is a two-
stage process. The first step is feature detection. During this step
the objective is to locate repeatable neighborhoods that capture
relevant information about the object. The second step is fea-
ture description, where a representation of the object properties
are extracted at these stable positions. Developing features that
are repeatable in spite of scene transformations and that carry
sufficient information for recognition tasks is a key goal of this
effort.

In this paper, the results of a set of object categorization ex-
periments are presented. During the first part of the experiments
the detection process is avoided by describing local features in
a dense manner. Features are described using either the PCA
or Taylor coefficients as outlined in the previous section. The
second part of experiments studies the performance of features
detected using two other popular neighborhood operators,
namely the Harris corner detector and the determinant of the
Hessian. For these experiments, neighborhoods are represented
by Taylor descriptors as they are faster to compute and are
shown to have similar performance to PCA descriptors.

A. Harris Corner Features

Harris and Stephens [57] proposed a corner detector that finds
positions in 2-D images where the intensity function varies in
more than one direction. The detector is based on the local av-
erage of the second moment matrix, i.e.,

2
(3 (%3

2
o1 o1 o1
oz Oy dy

The eigenvalues, A\; and )y, of M constitute descriptors
of variations along the two image directions. In particular,
the presence of a corner feature can be identified when both
eigenvalues are large. Instead of performing explicit compu-
tation of the eigenvalues, Harris and Stephens used the trace
and determinant of M to define the following corner response
measure:

M = local weighted mean of

12)

R = det(M) — & trace*(M). (13)
The parameter « is chosen based on the desired ratio between
the eigenvalues, i.e., K = a/(a + 1)%, and a = A2/\;. In
image-based applications, a values between 10 and 20 have
been suggested [1]. Large positive responses of R indicate the
presence of corners, while large negative responses indicate the
presence of edge features.

Laptev [58] introduced a generalization of the Harris corner
detector to find space-time interest points for video categoriza-
tion. The corner response measure proposed by Laptev is given
by

Rianis = det(M) — & trace®(M) (14)
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where the second moment matrix, M, in 3-Dimensions is given
by the local weighted mean of

2 a1/
(29 (55%) (%)

2
oV oV oV
oz Oy oy

(595 (5%%) (39

15)

ox Oz dy Oz

Corner features satisfying R > 0, have x < a3/(a+3+1)3,
where &« = A/\1 and 3 = A3/ ;. In this work, all components
of M are computed using the differential operators obtained
from a Taylor series approximation as explained in the previous
section and various values of x are evaluated.

B. Hessian Features

Similar to the Harris corner detector, another differential ap-
proach for detecting interest points is the determinant of the
Hessian matrix, i.e., Rp,g = det(H). This detector was first
introduced by Beaudet [59] and recently used as the basic in-
terest-point detector in the SURF descriptor [36]. A recent eval-
uation of volumetric interest point detectors [31], suggests that
for 3-D shapes the Hessian detector performs better than the
Harris corner detector. In this work, object recognition experi-
ments were performed using features that maximize Rp, . The
recognition accuracy is compared to that of Harris-based fea-
tures, and the descriptive power for different categories is an-
alyzed. The components of the Hessian matrix are computed
using the differential operators obtained from a Taylor series
approximation as explained in the previous section.

VII. 3-D OBJECT LEARNING AND RECOGNITION

A. The Model: Bag of Volumetric Features

Bag-of-features models have their origins in texture recog-
nition [60], [61] and bag-of-word representations for text cat-
egorization [62]. Their application to categorization of visual
data has been studied extensively [63], [64], and have produced
impressive results in recognition benchmark datasets [65]. The
independence assumptions inherent to bag-of-features represen-
tation make learning models for few object categories a simple
task, assuming enough training samples are available to learn
the classification space. Taking advantage of the simplicity of
the method and inspired by the success in the computer vision
and 3-D shape retrieval communities [23], this work represents
objects as bags of volumetric features. The process is outlined
in the following subsections.

B. Learning a Volumetric Vocabulary With k-Means

In order to produce a finite dictionary of 3-D expected appear-
ance patterns, the scenes are represented by a set of features,
e.g., dense-PCA, dense-Taylor, Hessian-based or Harris-based,
that are quantized using k-means clustering. Each mean repre-
sents a region of the feature space that contains a significant
population of feature instances (clusters) from the objects of in-
terest. Two major limitations of k-means clustering are: 1) the
algorithm does not determine the best number of means, i.e., k;
and 2) the algorithm often converges to a local minimum that
may not represent the optimum placement of cluster centers.

To address 1), various values of k were determined heuristi-
cally, and clustering performance was evaluated for the different
values, leading to a suitable value. Regarding 2), based on the
evaluation of different initialization methods reported by Maitra
et al. [66], the algorithm proposed by Bradley and Fayyad [67]
is chosen to initialize the means. In their algorithm a random set
of subsamples of the data are chosen and clustered via modified
k-means. The clustering solutions are again clustered using clas-
sical k-means, and the solution that minimizes the sum of square
distances between the points and the centers is chosen as the ini-
tial set of means. In order to keep computation time manageable,
while still choosing an appropriate number of subsamples (ten
being suggested in [66] and [67]), an accelerated k-means algo-
rithm [68] is used whenever the classical k-means procedure is
required. After initializing the means, samples inside manually
labeled bounding boxes of the objects were clustered using ac-
celerated k-means [68] to find a common feature vocabulary.

C. Learning and Classifying Object Categories

With a 3-D appearance vocabulary in place, individual objects
are represented by feature vectors that indicate the volumetric
vocabulary elements present in a given object instance. These
feature vectors can be used in supervised multi-class learning,
where a naive Bayes classifier is used for its simplicity and
speed. During learning, the classifier is passed training objects
used to adjust the decision boundaries; during classification, the
class label with the maximum a posteriori probability is chosen
to minimize the probability of error.

Formally, let the objects of a particular category be the set
0O, = Ui\il 0,, where [ is the class label and [V; is the number
of objects with class label /. Then, the set of all labeled objects
is defined as O = Ufil QO;, where N, is the number of cate-
gories. Let the vocabulary of 3-D expected appearance patterns
be defined as V = Ule v;, where k is the number of cluster
centers in the vocabulary. From the quantization step a count is
obtained, c;;, of the number of times a cluster center, v;, occurs
in object o;. Using Bayes formula, the a posteriori class prob-
ability is given by

P(Cy|o;) x P(o; | Cy)P(Cy). (16)

The likelihood of an object is given by the product of the like-
lihoods of the independent entries of the vocabulary, P(v; | C)),
which are estimated during learning. The full expression for the
class posterior becomes

k

P(Cioi) x P(C) [] P(vi| Co) (17)
=1
J . o
K Z Cm
H km:l:o;\,,rEOl (18)
XX om

n=1m=1:0,,€0;

According to the Bayes decision rule, every object is assigned
the label of the class with the largest a posteriori probability.
In practice, log likelihoods are computed to avoid underflow of
floating point computations.
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Fig. 5. Names and sample images of the 18 sites used in this work.
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Fig. 6. From left to right (column by column): Camera path obtained using structure from motion algorithm [46]. Details of collected video frames. The learned
expected appearance volumes, EVM. Examples of bounding boxes around objects of interest.

VIII. EXPERIMENTS AND RESULTS

The data collection and scene reconstruction processes are
now described, followed by comparisons of scene data mod-
eling accuracy based on either PCA and Taylor features. The
section concludes with multi-class object recognition results,
where test objects were classified among five categories; planes,
cars, houses, buildings, and parking lots.

A. Data Collection and Scene Formation

The aerial data used to build 18 different probabilistic volume
scenes was collected from a helicopter flying over Providence,
RI, and its surroundings; see Fig. 5 for a reference on site names
and sample frames. The helicopter flew at an average height
of between 300 and 450 meters. An approximate resolution of
30 cm/pixel is obtained in the imagery and matched by having

the highest resolution voxels span 30 cm on a side in the 3-D
models. The camera matrices for all image sequences were ob-
tained using the Bundler software provided by Snavely et al.
[46]. The probabilistic volume models were learned using the
GPU implementation by Miller et al. [18]. Fig. 6 shows ex-
amples of camera-paths, aerial images and the corresponding
expectation volume models. To carryout multi-class category
learning, bounding boxes around objects of interest were manu-
ally constructed and assigned the corresponding class label. See
Fig. 6 for examples of such bounding boxes.

The volumetric models shown in Fig. 6 present expected 3-D
appearance of voxels, [see (9)], which ranges from [0, 2]. For
empty space, the information in the voxels is dominated by the
occupancy probability, which takes values in the interval [0, 1];
thus, empty neighborhoods appear black. Appearance values,
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TABLE I
AVERAGE APPROXIMATION ERROR OVER ALL 5 X 5 X 5 NEIGHBORHOODS.
PCA AND TAYLOR ERRORS ARE COMPARED FOR EIGHT TEST SCENES

Site (see Fig. 5) PCA Error | Taylor Error
Airport 1 2.195 2.323
Parking 3 3.241 3.407

Residential 1 3.219 3.387
Residential 4 5.687 5.949
Rock. Library 4.242 4.41
Biltmore Hotel 3.627 3.776
Greene St. Bldgs 3.25 3.389
Full Parking 1 4.745 4.973
Average 3.781 3.952

which are initially learned between [0, 1], are offset to [1, 2], to
avoid confusing dark surfaces with empty space. White voxels
represent white surfaces with a high occupancy probability; dark
surfaces are represented by gray voxels, with a value near one.

B. Neighborhood Reconstruction Error

This section presents the data modeling error achieved using
PCA and Taylor-based features. Ideally, the difference between
the original expected appearance data and the data approximated
using PCA or a Taylor series expansion should be small. The
difference between the reconstructed data and the original data
was measured as the average square difference between neigh-
borhoods, i.e., (1)/(N)> ;2 |x — %|”, where x and % are the
vector scans of the original and the approximation neighbor-
hoods, respectively. N is the number of samples used to com-
pute the error. In the experiments, the size of the extracted neigh-
borhoods is 51 x 5[ X 51, , [ being the length of the smallest voxel
in the model.

The reconstruction error for a 10-dimensional approxima-
tion in the PCA space was compared to the reconstruction error
achieved using a 2nd-degree Taylor approximation. The error
was evaluated over eight scenes (for reference on site names
please see Fig. 5) and the results are reported in Table I. On av-
erage, and for every test scene, the results indicate that a second-
degree Taylor approximation represents expected appearance of
3-D patterns with slightly less accuracy than a PCA projection
onto a 10-dimensional space. The PCA basis was learned using
random samples from the remaining of the scenes (those not
used for testing).

C. 3-D Object Recognition Using Dense-Feature Models

This section presents multi-class object recognition results
achieved by bag-of-features models where objects were de-
scribed in a dense manner by either PCA or Taylor descriptors.
These descriptors were clustered through k-means to form the
volumetric vocabulary. Basis kernels for PCA and Taylor are
shown in Fig. 7. The Taylor basis is the same for all validation
sets. The PCA basis was recomputed for each validation set
using all available samples in the training objects. Only the
first ten principal components were retained to form the feature
descriptors.

With a feature vocabulary in place, the models for five ob-
Ject categories (planes, cars, buildings, houses, and parking lots)
were trained using all available 5/ x 5/ x 5/ neighborhoods cen-
tered on leaf cells that met the following criteria: 1) the leaf cell
is at the finest level of the octree; 2) the leaf cell is contained

o - : ‘
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Fig. 7. (a) PCA kernels, i.e., volumetric representation of the first ten principal
components. Note that these kernels are learned from training objects. (b) Taylor
kernels.
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Fig. 8. Classification accuracy for dense Taylor and PCA-based models. The
curves represent the fraction of correctly classified objects as a function of the
number of clusters.

TABLE II
NUMBER OF TRAINING AND TESTING OBJECT INSTANCES
IN EACH CATEGORY ACROSS TEN TRIALS

Set Planes | Cars | Houses | Buildings | Parking Lots
Trial 0 Train 16 37 48 24 16
Test 16 46 58 20 20
Trial 1 Train 11 33 57 15 23
Test 21 50 49 24 21
Trial 2 Train 12 37 51 18 19
Test 20 46 55 21 25
Trial 3 Train 11 39 54 21 23
Test 21 44 52 18 21
Trial 4 Train 18 42 51 19 21
Test 14 41 55 20 23
Trial 5 Train 16 42 48 21 24
Test 16 41 58 18 20
Trial 6 Train 18 47 50 23 23
Test 14 36 56 16 21
Trial 7 Train 15 47 53 22 28
Test 17 36 53 17 16
Trial 8 Train 12 44 55 20 21
Test 20 39 Sl 19 23
Trial 9 Train 13 43 49 16 25
Test 19 40 57 23 19

within the corresponding bounding box of the object of interest.
It is worth noting that the bounding boxes were not necessarily
tight around the objects, and due to constraints in the labeling
method, all boxes were axis-aligned.

To find an appropriate vocabulary size, classification results
were evaluated while varying the number of clusters in the code-
book from £ = 2 to & = 100. Fig. 8 presents classification
accuracy, i.e., the fraction of correctly classified objects, as a
function of the number of clusters, i.e., number of entries in the
volumetric vocabulary. For both Taylor-based and PCA-based
features, the performance improves rapidly up to a 20-word
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TABLE III
SUMMARY OF CLASSIFICATION ACCURACY FOR DENSE TAYLOR-BASED MODELS
Trial — 0 1 2 3 4 5 6 7 8 9 Mean Std. Dev.
Planes 0.875 0.9048 0.95 0.9524 | 0.9286 | 0.9375 1 0.8824 0.85 1 0.9281 | 2.3054e-03
Houses 0.7414 | 0.7755 | 0.6909 | 0.7885 | 0.7273 | 0.6724 | 0.7857 | 0.7547 | 0.7843 | 0.7719 | 0.7493 | 1.5183e-03
Buildings 0.75 0.6667 | 0.7619 | 0.6667 0.75 0.7778 0.75 0.7647 | 0.6842 | 0.7826 | 0.7355 | 1.8294e-03
Cars 0.9348 0.96 0.9348 | 0.8864 | 0.9512 | 0.9512 | 0.8889 | 0.9444 | 0.9487 0.875 0.9275 | 8.9641e-04
Parking Lots 1 1 1 1 1 1 1 1 1 1 1 0
Overall 0.8602 | 0.8614 | 0.8675 | 0.8588 | 0.8714 | 0.8678 | 0.8849 | 0.8692 | 0.8534 | 0.8859 | 0.8681 0.1121
TABLE IV
SUMMARY OF CLASSIFICATION ACCURACY FOR DENSE PCA-BASED MODELS
Trial — 0 1 2 3 4 5 6 7 8 9 Mean Std. Deyv.
Planes 0.875 0.9048 0.9 0.9524 | 0.9286 | 0.9375 1 0.8824 0.75 1 0.9131 0.0047
Houses 0.7759 | 0.6939 | 0.6909 | 0.7308 | 0.6909 | 0.6207 | 0.8393 0.717 0.6863 | 0.7018 | 0.7147 0.0031
Buildings 0.75 0.7083 | 0.8095 | 0.7222 0.75 0.7778 0.75 0.7647 | 0.7368 | 0.7826 | 0.7552 0.0008
Cars 0.8913 0.9 0.8696 | 0.9545 | 0.9024 | 0.9024 | 0.8333 | 0.8889 | 0.8974 0.875 0.8915 0.0008
Parking Lots 1 1 1 1 1 1 1 0.9375 1 1 0.9938 0.0004
Overall 0.8584 | 0.8414 0.854 0.872 0.8544 | 0.8477 | 0.8845 | 0.8381 | 0.8141 | 0.8719 | 0.8536 0.1126
0.35 : . .
==m Plane
0.3 msm HoOuse b
— Building
0.251 o mmm Car i
/Q—)N\ 028 — Parking Lot||
= |
a, 0.15 H 1
0.1 H 8
gl | \| I o ‘ |
00 ”IIIIL\IIL\ LT | ORI ILI virm |0 ‘ILI‘I; ‘ JI,.IL' Ul
: [o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| FXX X &L 1.2 I )
Volumetric Words
0.35
= Plane
0.3 | ==m House i
— Building
o.25 | mem Car . i
— Parking Lot
& o=27F g
=
A o.15 | 1
0.1 | g
0.05 | J R
0.0 o I I{I | I[I B,

B 3 a4 5 6 7 8 9 10 11 12 13 ‘ Ex

L 3 G - S s B . - 1 J
Volumetric Words

Fig. 9. Class histograms for the vocabulary that achieved best performance across ten validation sets. The top row corresponds to class representations learned

with dense PCA-based features. The bottom row corresponds to those learned with dense Taylor-based features. The x-axis shows the volumetric form of the 20
volumetric words. The y-axis corresponds to the probability of each word given the class label (i.e., frequency).

codebook, with little or no improvement for larger vocabularies.
Thus, for the remaining of the experiments the number of vocab-
ulary entries was set to 20.

For the rest of the experiments, two measurements were used
to evaluate the classification performance: classifier accuracy
and the confusion matrix. Every object in the data set was ran-
domly assigned to the training or testing set. This process was
repeated ten times to form different validation sets. The number
of objects in the different data splits are reported in Table II.

Tables III and IV present the classification accuracy for PCA
and Taylor-based features. The results are reported for each val-
idation set, as well as the corresponding mean and standard de-
viation. Both methods recognize planes, cars, and parking lots
with high accuracy. The accuracy of the Taylor-based represen-
tation is slightly higher across all categories.

Fig. 9 presents an example of the class distributions learned
with PCA and Taylor codebooks of 20 features. To facilitate
interpretation, the volumetric form of the vocabulary entries are



RESTREPO et al.: CHARACTERIZATION OF 3-D VOLUMETRIC PROBABILISTIC SCENES FOR OBJECT RECOGNITION 533

Parking

True Class RPN L
P ot

House Building Car

True Class House Building| Car |Torking
— Lot

0.000

0.000 WUSAEN 0.23  0.000 0.000

0.000  0.000 0.000 0.000  0.000 0.005 0.000

0.000 WUNEVE 0.250 0.007 0.000
0.000 0.162 WUYERE 0.010 0.000
(XIEM 0.928 R}

0.000 0.051

Building Building

0.000 0.175 WUYEER 0.02  0.000
0.005  0.05 0.015 EOESYE 0.006

Parking Lot 0.082  0.06

0.000 0.052

0.000 0.088 Parking Lot 0.072  0.037

(a) (b)
Fig. 10. Confusion matrix for a 20-keyword codebook of PCA based features
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Fig. 11. Classification accuracy of different models based on the volume of
occupancy probabilities, the EVM and the volume based on the PMVS [12]
output. The error bars span the maximum and minimum accuracy over five trials.
The mean is represented by the circular markers.

arranged along the z-axis. The y-axis indicates the frequency
of the volumetric words for each object category. Keep in mind
that the expected 3-D appearance at each voxel ranges from
[0, 2] (black to white). Empty neighborhoods appear black,
white voxels represent white surfaces with a high occupancy
probability and dark surfaces are represented by gray voxels.
Finally, the confusion matrices for PCA-based features and
Taylor-based features are shown in Fig. 10(a) and (b). The con-
fusion matrices indicate that both methods often confuse houses
and buildings. During Bayesian learning, the likelihood of a vo-
cabulary entry is normalized with respect to the total number of
features in the object. The models learned for houses and build-
ings are very similar and the scale difference between instances
is not captured by the normalized bag of features representation.

D. Effectiveness of the EVM

This work proposes to use appearance information in addition
to occupancy probabilities to achieve better classification per-
formance. The effectiveness of this approach is demonstrated
experimentally. Fig. 11 presents comparisons of classification
accuracy for models learned using the EVM and those learned
using the volume of occupancy probabilities (no appearance).

The results are reported over 10 splits of the test/train data.
Taylor descriptors were used during these experiments since
their basis does not have to be re-learned for every validation set.
Furthermore, in the previous section Taylor descriptors achieved
slightly higher accuracy than PCA-based descriptors. For every
category, the average accuracy is labeled by a circular marker
in Fig. 11. The error bars span the maximum and minimum
accuracy attained in the ten trials. Several conclusions can be
drawn from these experiments. It is not possible to reliably rec-
ognize parking lots using only occupancy information. This re-
sult is likely due to the fact that parking lots are generally fea-
tureless, making it difficult to form accurate surface geometry.
However, the appearance information allows the system to build
models for parking lots that are consistently different from the
other categories. Planes and cars also exhibited lower recogni-
tion performance when using only occupancy information. On
average, buildings were recognized with very similar accuracy,
with or without appearance. Finally, classification accuracy ex-
hibited smaller variance when using the EVM than with occu-
pancy alone.

E. Effectiveness of Probabilistic Volumetric Reconstruction

To demonstrate the advantages of probabilistic learning com-
pared to a threshold-based 3-D reconstruction framework, the
categorization algorithm was run on scenes obtained using a
state-of-the-art, point cloud based, dense 3-D reconstruction al-
gorithm, PMVS [12]. In order to apply the proposed classifi-
cation algorithm to the scenes reconstructed using PMVS, the
output point clouds were voxelized. Two types of voxelization
processes were tested: 1) the intensity at each point in the point
cloud was stored at a leaf of the finest resolution in the octree;
2) a Gaussian kernel was applied to the volumes achieved using
1). The width of the Gaussian kernel was chosen to match the
width of the Taylor-kernel. Fig. 12 presents the EVM and the
volumes recovered from PMVS using Gaussian smoothing. By
inspecting Fig. 12, itis apparent that the information in the EVM
is much denser than in the PMVS-based volume. The method
proposed by Furukawa and Ponce [12] is not able to recover in-
formation in many rooftops and streets, likely due to the absence
of surface texture or other sources of distinct image appearance.

The object categorization results based on the scenes obtained
using PMVS are reported in Fig. 11. The results obtained from
the voxelized model with Gaussian smoothing are very similar
to those without smoothing. The classification accuracy is sig-
nificantly lower than the accuracy obtained for the EVM, except
for the building category. Another observation is that the results
obtained across the ten splits of the data are more stable for the
EVM than the PMVS-based models, as indicated by the error
bars.

F. 3-D Object Recognition Using Sparse-Feature Models

This section presents object categorization results for models
learned with Taylor features that were filtered based on their
saliency using: 1) the 3-D extension of Harris corner measure
in (14) 2) the determinant of the Hessian as explained in
Section VI-B. Fig. 13 summarizes the classification accuracy
for different saliency criteria. The blue, green, and magenta
curves report the results for Harris-based features. The results
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Fig. 12. Top: The expected appearance volume model (EVM) for a sample
scene. Bottom: The volumetric model of the same scene obtained using PMVS
[12] and Gaussian smoothing. The zoomed-in details show an example of a
roof where due to appearance ambiguities, PMVS cannot recover the geometry.
More information about the appearance and geometry of the roof is present when
probabilistic learning was used.
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Fig. 13. Classification accuracy for models learned using sparse Taylor fea-
tures that maximize the 3-D Harris corner and determinant of hessian measures.
The curves represent the fraction of correctly classified objects as a function of
the percentage of features retained. Accuracy results are reported for values at
1%, 5%, 10%, 20%, 50%, 75%, and 90%. The error bars span the maximum
and minimum accuracy over five trials. The mean is represented by the circular
markers.

are compared for three different values of the curvature param-
eter k : 0.005,0.0075 and 0.01. This parameter corresponds to
values of « and 3 curvature ratios equal to twenty three, fifteen
and ten, respectively. The z-axis of the accuracy plot corre-
sponds to the to p-percent of corners retained per object. The
accuracy plot in Fig. 13 reveals that for stable (see error bars)
and accurate classification performance, large number of corner
features are necessary (at least 50%). Classification accuracy
increases as the number of features increases. On average, the
three curvature parameters led to similar performance, except
at 20% where k = 0.005 had inferior performance. However,
the variance in accuracy was lower as the curvature parameter,
K, in (14) was increased, i.e., corners become less elongated.
This is expected since localization of edge features is generally
less consistent. The red curve in Fig. 13 reports the results
when retaining the determinant of Hessian-based features. For
most tested percentage values, these features achieved higher
accuracy and smaller variance that Harris-based features.

Fig. 14 presents the average confusion matrices over five
trials for various combinations of saliency measure and per-
centage of features retained. Small percentages of salient
features are able to classify planes and parking lots with satis-
factory rates. To achieve recognition rates above 0.7 for both
buildings and houses, at least the top 50% of the salient features
need to be retained. For percentages below 50%, the accuracy
obtained for houses, buildings, and cars appears unstable.

Fig. 15(a), (b), and (c) present running times of various stages
of the training and testing process as a function of the percentage
of features retained. Running times are reported for a computer
using two 2.93 GHz, Quad-Core Intel Xeon processors, where
the algorithms were run on multiple threads. It is important
to mention that running times of multi-threaded tasks are af-
fected by the availability of cores and system locks, and that run-
ning times were not optimized to factor out these waiting times.
Fig. 15(a) reports the running time (in seconds) during vocabu-
lary learning. During this step, computation time is dominated
by the complexity of the k-means clustering algorithm and re-
ducing the number of features leads to significantly shorter run-
ning times. During learning of object categories [see Fig. 15(b)]
and during classification [see Fig. 15(c)] running times are very
similar for all percentages. Although, shorter times are expected
for decreasing number of features, one possible reason for the
observed results is that running times are dominated by disk I/O
operations.

IX. CONCLUSION AND FURTHER WORK

This paper presents a completely new representation for ob-
ject recognition models, where features are extracted directly
from 3-D probabilistic information. The representation is used
to learn and categorize objects from five different categories. To
the authors’ knowledge, this work represents the first attempt to
apply this representation to the classification of aerial scenes or
indeed any type of scene, making a contribution towards the un-
derstanding of realistic 3-D scenes.

The performance of the proposed features, was rigorously
tested through reconstruction accuracy and object categoriza-
tion experiments. The recognition results are very encouraging
with high accuracy on labeling bounded regions containing
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objects of the selected categories. The experiments show that
differential geometry features derived from appearance lead
to essentially the same recognition performance as PCA. This
suggests that additional features representing geometric rela-
tionships defined on differential geometry are likely to have
good performance and represent a basis for formally extending

the current feature vocabulary.

It was demonstrated that through probabilistic volumetric
learning, it is possible to recover 3-D information more densely
than through frameworks that are committed to forming an
explicit geometry such as a point cloud. Specifically, the object
categorization performance was shown to be superior for the
EVM than for the volume based on the point cloud output of

PMVS [12]. The categorization results also demonstrated the
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superiority of models that combined appearance and geometry
information over a models based on occupancy alone.

The overall accuracy of dense-feature representations was su-
perior than that obtained using small percentages of salient fea-
tures based on the Harris corner measure or the determinant of
the Hessian. However, for few object categories, salient features
demonstrated the ability to reduce the complexity of the fea-
ture space without sacrificing recognition performance. Across
different validation sets, the results for Hessian-based features
were more stable than for Harris-based features.

Future work will explore representations for rotation-in-
variant features. Localization of objects is also a desirable goal
for future research. Finally, more advanced recognition models
should make full use of the geometric relations inherent in
the probabilistic volume model. Compositional recognition
models can provide a way to learn and share parts, allowing
for object representations that are efficient, discriminative and
geometrically coherent.
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