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Abstract—This paper presents a novel framework for surface
reconstruction from multi-view aerial imagery of large scale ur-
ban scenes, which combines probabilistic volumetric modeling
with smooth signed distance surface estimation, to produce very
detailed and accurate surfaces. Using a continuous probabilistic
volumetric model which allows for explicit representation
of ambiguities caused by moving objects, reflective surfaces,
areas of constant appearance, and self-occlusions, the algo-
rithm learns the geometry and appearance of a scene from
a calibrated image sequence. An online implementation of
Bayesian learning precess in GPUs significantly reduces the
time required to process a large number of images. The
probabilistic volumetric model of occupancy is subsequently
used to estimate a smooth approximation of the signed distance
function to the surface. This step, which reduces to the solution
of a sparse linear system, is very efficient and scalable to large
data sets. The proposed algorithm is shown to produce high
quality surfaces in challenging aerial scenes where previous
methods make large errors in surface localization. The gen-
eral applicability of the algorithm beyond aerial imagery is
confirmed against the Middlebury benchmark.

Keywords-computational geometry, object modeling; stereo
vision; online Bayesian learning; octrees; optimization;

I. INTRODUCTION

Automated estimation of the geometry and appearance

of a scene from multiple images is an important research

problem with a wide range of applications, including real-

istic modeling for the feature film production, mapping and

gaming industries, quantitative measures for urban planning,

autonomous navigation, as well as various surveillance tasks.

The problem of image-based 3-d modeling or multi-view

stereo has been widely studied in the field of computer

vision, computer graphics and computational photography.

While many multi-vew stereo methods resolve with high

accuracy the surface geometry for isolated and unoccluded

objects, only a few methods are scalable to realistic, clut-

tered urban scenes where accurate modeling is difficult

due to severe occlusions, highly reflective surfaces, varying

illumination conditions, misregistration errors and sensor

noise. On the other hand, most scalable 3-d reconstruction

techniques have demonstrated results that are sufficient for

visualization purposes, but do not offer a clear solution to

the problem of accurate surface reconstruction.

This paper presents a framework targeted to solve the

surface estimation problem from high resolution aerial im-
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agery of challenging large scale urban scenes. The ambi-

guities caused by moving objects, reflective surfaces, areas

of constant appearance, and self-occlusions, among others,

are modeled explicitly using probabilistic volumetric scene

modeling. The approach allows for a representation that is

dense and general, where no assumptions are made about

the underlying geometry of the scene, such as piecewise

planarity. A continuous formulation is used, allowing for

various adaptive discretizations of space. The space is finely

discretized near the estimated surfaces, and coarsely in

regions of empty space, resulting in significant reduction

in terms of storage and processing time costs. Once all

images have been used to learn the scene in an unconstrained

manner, the proposed algorithm uses a novel variational ap-

proach to reconstruct a surface that best represents the image

data summarized in the probabilistic volumetric model. An

overview of the proposed approach is shown in Fig. 1.

The effectiveness of the proposed framework is validated

through experiments on various large scale urban scenes.

Results indicate extracted surfaces contain high resolution

detail while staying smooth in areas of ambiguity. Compar-

isons show that prior methods can not resolve as much detail

and tend to over-smooth important features. Also, the gen-

eral applicability of the proposed framework is tested in the

Middlebury benchmark [26]. Results are highly competitive

in terms of accuracy and completeness scores.

II. RELATED WORK

In recent years, multi-view stereo (MVS) has seen much

attention and a plethora of algorithms have been introduced.

Please refer to [27] for a review and taxonomy of MVS

algorithms. In particular, the Middlebury benchmark [26]

has fueled the development of algorithms tailored for small

objects under controlled environments, where the top per-

forming methods are capable of challenging the accuracy

of laser scanners. However, most of these approaches are

not suitable for dealing with high resolution aerial imagery

of large scale urban scenes. In particular, algorithms that

partially rely on shape-from-silhouette techniques [13], [31],

[16], under the assumption that a single object is visible and

can be segmented from the background, are not applicable

to aerial imagery due to unavailability of fully visible

silhouettes.

The Patch-based Multi-view Stereo (PMVS) algorithm

proposed by Furukawa and Ponce [10] is considered state
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Figure 1. An overview of the proposed system.

of the art amongst methods based on feature extraction

and matching. It produces colored oriented point clouds,

and performs well for small objects as well as for large

urban scenes, and can recover significant geometry in such

scenes (see Fig. 4 top right image). However, methods based

on feature extraction and matching often show significant

errors caused by severe occlusions, highly reflective surfaces

and areas of constant appearance. Such phenomena are

commonplace in urban scenes, resulting in the generated

point clouds often containing gross errors in localization and

significant regions where feature points are not detected at all

(see Fig. 4 middle right and bottom right images). Surface

reconstruction algorithms, such as those reviewed in [15],

[8], [2] are typically applied to the resulting point clouds.

Although these methods produce excellent quality surfaces

when applied to clean and accurate data, they often produce

inaccurate surfaces when the input point cloud contains too

many inaccuracies and outliers (see Fig. 5 first column).

Probabilistic models have been proposed as an alternative

approach to handle complicated scene geometry. These

models do not make hard decisions about surface geometry

and/or appearance; instead they explicitly represent uncer-

tainties by assigning probabilities to multiple hypothesis

within the volume. Early works along this line [4], [3]

can be regarded as extensions of Space Carving [17], and

more recently, algorithms based on generative models for the

reverse image formation process have been introduced [20],

[11]. Using Bayesian inference, these algorithms infer the

maximum a-posteriori probabilities in the volume from the

joint probability of all the images. Pollard and Mundy [23]

propose an online alternative, which in theory, can handle an

infinite number of images. However, none of these volumet-

ric methods implemented with regular grid discretizations

gracefully scale up to large scenes because of the cubic

space and time complexity. Crispell et al. [6], [7] addressed

these limitations with a continuous formulation of Pollard

and Mundy’s method implemented in an octree. Moreover,

a GPU implementation presented in [21] is capable of

learning high resolution probabilistic volumetric models of

large urban scenes efficiently where one pass of the online

update takes approximately one second.
It is not clear how to estimate surfaces from probabilistic

volumetric model. A simple approach is to compute the

isosurface associated with a certain probability threshold [9],

[20], [7]. Since a different threshold may be necessary in

different regions of space, this method often fails to pro-

duce satisfactory results, and the lack of surface orientation

information may result in “double-sided” surfaces. Yezzi et
al. [32] propose a surface evolution approach to obtain

smooth surfaces. Also related are global optimization meth-

ods such as graph cuts to extract surfaces from a volumetric

photo-consistency function [12], [19], [18]. While graph cuts

allows for flexible energy functions and exact solutions, the

method is not applicable to large scenes due to its very high

memory requirements [18].
The proposed surface reconstruction method extends the

Smooth Signed Distance (SSD) approach introduced by

Calakli and Taubin [5]. Because of its continuous volumet-

ric formulation, the SSD approach is particularly comple-

mentary to the probabilistic volumetric methods described

above. SSD estimates a smooth approximation to the signed

distance function to output a surface from an oriented point

cloud, using adaptive octree-based discretizations which

reduce the problem to the solution of a sparse system of

linear equations. The resulting algorithm is efficient and

scalable to large data sets.
This paper uses a continuous probabilistic volumetric

model (CPVM) to explicitly represent ambiguity in both

surface geometry and appearance [6] and to learn large

scale urban scenes from high resolution aerial imagery in

an efficient manner [21]. Once the model is learned, surface

reconstruction is performed by fully utilizing uncertainties

in geometry in the entire volume using a novel extension

of the SSD approach, hereby referred to as GSSD. Finally,

appearance (already present) in the CPVM is transferred to

the surface estimate. This transfer is not only computation-

ally cheap but also avoids the difficulties faced by texture
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mapping algorithms such as photometric discontinuities,

i.e. seams between face boundaries, ghosting effects and

blurring [1].

III. PROPOSED FRAMEWORK

A. Continuous Probabilistic Volumetric Modeling

This framework uses a scalable volumetric approach to

model uncertainties in geometry and appearance, as pro-

posed by [6]. Crispell et al. propose a variable-resolution

model based on a continuous density that removes the

dependency on regular-sized grids of previous volumetric

models [20], [23]. Although no constraints are imposed

about the type of subdivision, an octree is used in prac-

tice to approximate the underlying continuous quantities as

piecewise constant, achieving several orders of magnitude

of storage savings.

Surface probabilities are closely related to a scalar func-

tion termed the occlusion density α(x). The occlusion den-

sity at a point is a measure of the likelihood that the point

occludes points behind it along any line of sight, assuming

that the point itself is not occluded. Points along a ray

(e.g. the line of sight ) may be parametrized by a distance s
from q (e.g. camera center) as x(s) = q + sr s ≥ 0. The

visibility probability (1) of a point x(s) is related to the

integration of occlusion density from q to q+sr (see [6] for

derivation). Intuitively, the visibility along a ray will drop

significantly when it hits a point of high occlusion, i.e. a

surface. An example of this relationship is shown in Fig 2a.

vis(s) = e−
∫ s
0
α(t)dt (1)

Learning the occlusion density from images follows an

online Bayesian learning algorithm similar to that proposed

by Pollard and Mundy [23]. In [23], the probability of a

voxel being part of a surface, P (X ∈ S), is updated with

the intensity, I , observed in the pixel associated with a

corresponding projection ray. Following Pollard’s reasoning,

for a discrete set of voxels, the surface update equation is

expressed as:

P (X ∈ S|IN+1) = PN (X ∈ S)
PN (IN+1|X ∈ S)

PN (IN+1)
, (2)

where the conditional PN (IN+1|X ∈ S) and marginal

PN (IN+1) are computed using the surface probabilities and

appearance models stored in the voxels along the corre-

sponding projection ray.

The definitions proposed by Crispell et al. allow for a

generalization of (2). In [23], information along the projec-

tion ray is approximated by a series of voxels that intersect

the ray, with no regard to the ray/voxel intersection geom-

etry. However, in Crispell’s model, the occlusion density is

defined continuously and therefore, the model can account

for the exact geometry of ray/voxel intersection, i.e. the

length of intersection segment. A ray is partitioned into a

series of M intervals, where the ith interval is the result of

the intersection of the ray and ith cell along the ray. The

starting location and length of each interval are denoted by

si and li respectively. Fig. 2b depicts an illustration of this

ray reasoning for the octree discretization.

The segment length occlusion probability is defined as

the probability that a segment starting at si of length li is

occluding and can be expressed as:

P (Qli
si) = 1− vis(si + li)

vis(si)
= 1− e−αili (3)

Equation (2) can now be written in terms of P (Qli
si) i.e.

P (Qli
si |IN+1) = PN (Qli

si)
pN (IN+1|Qli

si)

pN (IN+1)

= PN (Qli
si)

prei + vis(si)pi(IN+1)

pre∞ + vis∞p∞(IN+1)
(4)

prei ≡
i−1∑
j=0

PN (Qli
si)vis(sj)pi(IN+1) (5)

vis∞ ≡
M−1∏
i=0

[1− PN (Qli
si)] (6)

The term prei accounts for the probability of observing

the given intensity IN+1 taking into account all segments

between the camera center and segment i − 1. The term

vis∞ measures the probability of a ray passing unoccluded

through the model; in such cases the observed appearance

can be thought of as the appearance of “background”, which

is modeled by the density p∞. The new update equations can

be used to update α(x) directly using (3).

Equation (4) has a simple interpretation, the occlusion

density of a cell increases if the appearance model at the

cell, explains the intensity observed in the image better

than any other cell along the ray or by the background.

The appearance at each cell is modeled with a Gaussian

mixture distribution that is updated as in [23] using an on-

line approach based on Stauffer and Grimson’s background

modeling algorithm [29].

B. Generalized Smooth Signed Distance Surface Recon-
struction (GSSD)

In this section, the original formulation of SSD [5], which

reconstructs surfaces from oriented point cloud data, is first

summarized. Then, this formulation is generalized, targeted

to reconstruct surfaces from probabilistic volumes.

Given an oriented point cloud D =
{(x1, n1), . . . , (xN , nN )}, where xi is a surface location

sample, and ni is the corresponding surface normal sample

oriented towards outside of the object, SSD reconstructs

a watertight surface S defined by an implicit equation

S = {x : f(x) = 0}, where f : V → R is a signed

distance field defined on a bounded volumetric domain V
contained in Euclidean three dimensional space, so that
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Figure 2. (a) Plots of occlusion density α and vis as a ray travels through volume. α peaks (and visibility drops) as the ray pierces the two walls of
the (almost) empty cube. (b) A parametrization of the ray into intervals according to octree cell intersections. (c) Primal vertex indices associated with an
octree leaf.

f(xi) ≈ 0, ∇f(xi) ≈ ni, for i = 1, . . . , N . The resulting

distance field is f(x) < 0 inside and f(x) > 0 outside of

the object. Since the points xi are regarded as samples of

the surface S, and the normal vectors ni as samples of the

surface normal at the corresponding points, the distance

field should ideally satisfy f(xi) = 0 and ∇f(xi) = ni for

all the points i = 1, . . . , N in the data set. These conditions

are satisfied in the least squares sense by minimizing the

following energy:

Q(f) = 1

N

N∑
i=1

f(xi)
2 +

λ1

N

N∑
i=1

‖∇f(xi)− ni‖2

+
λ2

|V |
∫
V

‖Hf(x)‖2 dx, (7)

where {λ1 , λ2} are positive constants used to control the

weights of the different terms, Hf(x) is the Hessian matrix

of f , and the norm of the matrix is the Frobenius matrix

norm. The integral is over the volume V and |V | = ∫
V
dx

is the measure of this volume. The first two data terms of the

energy function force the implicit function to approximate

the signed distance function to the underlying surface. The

third regularization term forces the gradient of the function

to be close to constant away from the data points.
To generalize SSD, the energy function Q(f) is modified

by replacing the finite oriented point cloud with a continuous

distribution of oriented points. The proposed energy function

is

E(f) =
∫
V

f2dμ+ λ1

∫
V

‖∇f−n‖2dμ+ λ2

∫
V

‖Hf‖2 dσ,
(8)

where dμ(x) and dσ(x) are finite measures (in the sense

of measure theory), and n(x) is a vector field defined in

the volume. When these measures are defined by non-

negative continuous densities μ(x) and σ(x) (i.e. when

dμ(x) = μ(x)dx and dσ(x) = σ(x)dx), the values of σ(x)
and μ(x) should be chosen to make sure that the first two

data terms dominate near high probability areas (i.e. μ(x)
should be large and σ(x) small), and the regularization term

dominates near low probability areas (μ(x) small and σ(x)

large). Note that this formulation also allows for singular

measures, or generalized functions as densities. In particular,

the original SSD formulation (7) can be regarded as a special

case of the continuous formulation (8), where

dμ(x) =

N∑
i=1

1

N
δ(x− xi)dx and dσ(x) =

1

|V |dx (9)

or more generally with a weight μi = μ(xi) assigned to

each point xi.

In this analysis, f is restricted to belong to a finite

dimensional vector space of functions:

f(x) =
∑
ω∈Ω

fω φω(x) = Φ(x)T F, (10)

where ω denotes an index which belongs to a finite set

Ω, say with K elements, φω(x) is a basis function, and

fω is the corresponding coefficient. Then, the energy func-

tion E(f) results in a non-homogeneous quadratic function

F tAF − 2 btF + c in the K-dimensional parameter vector

F = (fω)ω∈Ω. The matrix A is symmetric and positive def-

inite, and the resulting minimization problem has a unique

minimum. The global minimum is determined by solving

the system of linear equations AF = b. The coefficients of

matrix A and vector b requires computing inner products of

every pair of basis functions. Depending on how large the

support of chosen basis functions, large number of basis

functions may overlap at any given point in the volume

V . In effect, accumulating the coefficients of the matrix

A and the vector b may require significant computation.

An octree based finite-element/finite differences scheme is

presented in [5] for the minimization of Q(f) of (7), where

the problem still reduces to the solution of linear equations

AF = b, but the matrix A is much sparser, resulting in a

fast and space-efficient algorithm.

This discretization is particularly attractive as CPVM

estimates surface density μ(x) and normal vector field n(x)
on an octree representation, i.e. μ(x) is a piecewise constant

function, one value per octree leaf, and similarly n(x) is a

piecewise constant function, one vector per octree leaf. The
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parameter vector F has K elements, one value per vertex of

the primal graph of the octree.
The primal graph represents the signed distance function

f , and the dual graph of the octree (which has the octree

leaf centroids as vertices) represents the surface density μ.

{β0, β1, . . . , β7} ⊆ Ω denotes the primal vertex indices

associated with dual vertex (i.e. an octree leaf) β, as depicted

in Fig. 2c.
Note that f(x) is a piecewise trilinear function, i.e. its

value at a point x in the volume V is determined through

f(x) =
∑7

h=0 wh fβh
where w0, . . . , w7 are the trilinear co-

ordinates of x in leaf β. By taking the piecewise definitions

of f and μ into account, the integrals of energy function

E(f) of (8) conveniently become finite sums over the octree

leaves:

E(f) ≈ 1

W1

∑
β

f(xβ)
2μβ +

λ1

W1

∑
β

‖∇f(xβ)− nβ‖2 μβ

+
λ2

W2

∑
(β,γ)

‖∇f(xβ)−∇f(xγ)‖2 σβγ , (11)

where xβ is the centroid location of leaf β, μβ is the surface

density at leaf β, nβ is the oriented normal vector associated

with leaf β. Note that μβ , and nβ are estimated by CPVM,

and kept fixed during surface estimation. The signed distance

function f and its gradient∇f are written using the elements

of the parameter vector F :

f(xβ) =
1

8
(fβ0 + fβ1 + fβ2 + fβ3 + fβ4 + fβ5 + fβ6 + fβ7),

∇f(xβ) =
1

4Δβ

⎛
⎝fβ4

−fβ0
+fβ5

−fβ1
+fβ6

−fβ2
+fβ7

−fβ3

fβ2
−fβ0

+fβ3
−fβ1

+fβ6
−fβ4

+fβ7
−fβ5

fβ1
−fβ0

+fβ3
−fβ2

+fβ5
−fβ4

+fβ7
−fβ6

⎞
⎠

,

(12)

where Δβ the side length of leaf β. The third energy term

is a sum over the pair of octree leaves, β and γ that share

a common face. The associated smoothing density σβγ is

determined naturally from the octree subdivision, i.e. σβγ =
Aβγ

Δβγ
, where Aβγ is the area of the common face and Δβγ is

the Euclidean distance between the centroids of these leaves.

W1 =
∑

β μβ and W2 =
∑

(β,γ) σβγ are normalization

factors so that μβ’s sum up to one and σβγ’s sum up to one.
Iterative Multigrid Solver: The discretization described

above reduces to the solution of a sparse linear system

AF = b, which is solved using a cascading multi-grid

method, along with a Jacobi preconditioned conjugate gra-

dient solver. The problem is first solved on a much lower

depth of the octree than desired, then the solution obtained

at a given depth is interpolated to the next depth; and used

to initialize the iterative solver.
Polygonization: Once the signed distance function f(x) is

estimated, a polygonal approximation (mesh) of the isolevel

zero is constructed using the Dual Marching Cubes (DMC)

algorithm [25].

Mesh painting: Since CPVM produces color information

represented as a volume texture at high resolution, estimating

surface colors reduces to volume texture evaluation, and

they are represented as polygon mesh vertex attributes. This

approach avoids most of the pitfalls of texture mapping

from images where occlusion and extreme warping produce

unsuitable textures [1].

IV. IMPLEMENTATION

Scene Learning: The probabilistic geometry and appear-

ance of all scenes is learned using the GPU implementation

of CPVM as proposed in [21].
Visibility information: The visibility information plays an

important role during online Bayesian learning. Surfaces are

resolved with increasing accuracy as new views become

available. The appearance distributions in empty cells out-

side of objects fail to explain the intensity of background

object, causing α to converge to very low (ideal) values on

empty (but visible) space. On the other hand, α converges

to infinity (ideal) at surface locations. As the value of the

occlusion density increases near surfaces, cells located inside

of objects are updated with decreasing weight. Hence, after

convergence of the model, the information inside objects

could be meaningless due to ambiguous regions that were

learned during early stages of the on-line training process.

The erroneous information inside objects can potentially

hinder the accuracy of surface extraction. These cells can

be detected using the visibility information already present

in the model. For each cell, a measure of its visibility,

vis score(x), is computed using a number of viewing

directions [7]. Cells with low vis score(x) are detected

and the corresponding α is set to 0 to eliminate online

learning artifacts. In practice, the viewing directions can be

selected from the cameras used during learning or simply

by defining a canonical set of directions, e.g. samples from

a unit sphere. For scenes with poorly distributed cameras,

the former method might be preferred to avoid possibly

unreliable visibility computation due to poorly resolved

surfaces.
Normal estimation: Surface normals are computed using

the gradient information of the occlusion density ∇α. The

gradient direction is computed via convolving first order

derivatives of the three-dimensional gaussian kernel with the

volume. For all experiments, six oriented kernels were used

and their responses interpolated into an estimate of ∇α.

Closed objects in the scenes contain mostly empty space,

therefore when computing surface normals from the gradient

direction, there is an orientation ambiguity. In order to have

surface normals oriented consistently towards the outside of

objects, the normal directions are oriented to the hemisphere

that yields the maximum visibility.
Surface density: The proposed surface density is the

following

μ(x) = α(x)× vis score(x)× ‖∇α(x)‖. (13)
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(b) (c)(a)

Figure 3. Sample frames and camera locations: (a) Middlebury
dataset [26], “Full” set of cameras in blue, “Ring” in red; (b) “Downtown”
site; (c) “SciLi” site.

The desired surface should pass through volume of high

occlusion density α(x) and high visibility vis score(x).
Moreover, ‖∇α(x)‖ is included to increase robustness to

outliers such as isolated cells (in the air) with high occlusion

density.

V. EXPERIMENTS AND EVALUATION RESULTS

A series of experiments are conducted to evaluate the

proposed framework in three aspects. First, it is examined

how well the probabilistic learning estimates the underlying

geometry. Then, the quality of the reconstructed surfaces

using GSSD is assessed. Finally, comparisons to other

MVS reconstruction methods are presented. PMVS [10]

with Poisson Reconstruction [15] (PMVS+Poisson) is used

as a baseline method because it achieves high ranking in

the Middlebury benchmark [26] and is applicable to large

scale scenes. The reader is referred to the supplementary

material for further comparisons. The results focus on the

reconstruction of 3D models from aerial imagery where both

the underlying geometry and the reconstructed surfaces are

shown to be superior to PMVS+Poisson. In addition, numer-

ical accuracy of the proposed algorithm is demonstrated on

the Middlebury benchmark where highly competitive results

are obtained.

The dataset consists of images from two challenging urban

sites and two benchmark models. Fig. 3a presents a sample

image from the Temple and Dino objects that are part of the

Middlebury dataset [26]. Both objects were reconstructed

using both the “Full” set of cameras, (312 views for Temple,

363 views for Dino), and the “Ring” set (47 views for

Temple, 48 view for Dino). Fig 3b and 3c correspond

to images from two urban sites in Providence, RI, USA

(publicly available in [24]). The urban sites, here referred to

as “Downtown” and “SciLi”, cover an area of approximately

(500m)×(500m) and have an approximate resolution of 30

cm/pixel. The camera paths follow a circle around each site;

the size of all images is 1280x720 pixels, 174 views are

available for “Downtown” and 337 for “SciLi”. The camera

matrices for all aerial image sequences were obtained using

the Bundler software [28]. The resulting models were trained

in approximately 2 hours for “Downtown” and 3 hours for

“SciLi” and both contain roughly 30 million leaf cells.

Figure 4. Point cloud visualization of “Downtown” (from left to right
column wise): point cloud using the top (13) 70% of CPVM samples;
point cloud using the top (13) 10% of CPVM samples; PMVS point cloud.

Urban Scenes: This section begins with an examination

of the quality of the surface density learned in the CPVM.

In order to make comparisons to PMVS easy to visualize

and fair, locations (octree leaf cell centroids) are sampled

from CPVM to generate a point cloud. The cell locations are

filtered using the surface density (13) as a threshold criteria.

The point clouds are visualized in Fig. 4, where the full

“Downtown” scene as well as details are shown for the top

70% and 10% of the sampled cells, together with the PMVS

point cloud. Comparisons in Fig. 4 demonstrate three clear

advantages of CPVM over PMVS. Namely, (a) both systems

do well on planar textured surfaces, however in regions

of high curvatures, CPVM produces much more accurate

results than PMVS, e.g. edges of buildings in bottom row;

(b) CPVM is able to resolve details at higher resolution than

PMVS, e.g. pillars and tip of the building in middle row; (c)

information is very dense in the probabilistic model, e.g. the

point cloud of CVPM even with 10% of the surface voxels

is denser than PMVS.

Fig. 5 presents the comparisons of surfaces reconstructed

for both the “SciLi” and the “Downtown” sites using

PMVS+Poisson and the proposed framework. The figure

demonstrates that the proposed method produces pleasing

surfaces while staying faithful to the high detail information

available in the data, notice the sharpness of building walls

and corners, and ability to capture small details such as roof-

top pipes and tiny windows, as shown in bottom row. The

produced surfaces are well defined and crisp, even in regions

of high surface curvature, as seen in second row. All these

qualities are a direct result of the variational formulation of

equation 11. The first two data terms make sure that the

surface pass through the highly surface-like regions while

the third term forces certain smoothness constraints. It has
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Figure 5. Reconstructed surfaces from the “Downtown” and “SciLi” sites, using PMVS+Poisson (leftmost column) and the proposed framework (mid
column). Sample images for the corresponding scenes (rightmost column).

Figure 6. Renderings of 3D models (colored mesh) of the “SciLi” (left) and the “Downtown” (right) sites reconstructed by the proposed framework. Note
the high resolution texture on buildings.

been observed that when PMVS and CPVM have difficulties

modeling the appearance and underlying geometry of highly

specular surfaces, the reconstruction algorithms can not

recover accurate surfaces (see supplementary video1 for an

example).

Fig. 6 shows renderings of the colored meshes. Notice

the high resolution and completeness of the appearance

information such as chimney and cone of the highlighted

house (in purple), as well as texture detail on buildings (in

green).

All meshes were obtained using GSSD parameters λ1 = 1
and λ2 = 4 (see (11)). The running time for GSSD was

roughly 12 minutes using an Intel Xeon @2.9 Ghz. Both

urban scenes contained approximately a million cells with

significantly high μ.

Middlebury Evaluation Performance: Quantitative eval-

uations reported2 in [26] show that the proposed method

is highly competitive both in terms of accuracy(mm) and

1http://vimeo.com/45316105
2submission under “Generalized-SSD”.

completeness(%). Table I presents results for a selection of

methods obtained from [26]. In [7], Crispell et al. recon-

struct a surface by extracting the isosurface of the implicit

function vis score using Marching Cubes. The superiority

of GSSD compared to this method is clear in both Temple

and Dino (Ring) datasets. Also included are the results for

PMVS+Poisson obtained in [10]. At the time of writing, this

method achieved some of the best results at [26] including

top scores in Full Dino. The proposed framework performs

competitively, especially in the Full Temple dataset. It should

be noted that most of the best performing algorithms re-

ported at [26], including [10], take advantage of the fact

that reasonable silhouettes can be extracted. This fact in not

exploited in this paper, as the main focus is on applicability

to realistic urban scenes.

VI. CONCLUSION AND FUTURE WORK

This paper presented a framework targeted to solve sur-

face reconstruction for aerial imagery of large scale urban

scenes. The main contribution has been the introduction

of Generalized-SSD, capable of extracting highly detailed

31



Table I
QUANTITATIVE EVALUATIONS TAKEN FROM [26]. THE FIRST VALUE

CORRESPONDS TO ACCURACY (MM) AND THE SECOND TO

COMPLETENESS (%). ALL MESHES WERE OBTAINED USING GSSD
PARAMETERS λ1 = 1 AND λ2 = 1 (SEE (11))

Temple Dino
Full Ring Full Ring

PMVS+Poisson [10] 0.54 99.3 0.55 99.1 0.32 99.9 0.33 99.6
Proposed Framework 0.53 99.4 0.81 95.8 0.55 98.1 0.6 96.0

CPVM + Marching Cubes[7] - - 1.89 92.1 - - 2.61 91.4

surfaces from probabilistic volumes. The advantages of

the proposed framework were shown via comparisons to

state of the art methods, namely PMVS [10] and Poisson

surface reconstruction [15], chosen due to their popularity

and software availability. Comparisons to other related work

such as [14], [30], [22] will be performed in the near

future. In addition to experiments in aerial scenes, the

framework was also tested in the Middlebury evaluation [26]

where it performed competitively in terms of accuracy and

completeness. Most remarkably, it achieved results on par

with algorithms that exploit high resolution silhouettes.

An important future direction is to consider more sophis-

ticated appearance models that can explain specular reflec-

tion, which would result in more robust surface estimates.

Currently, a difficulty inherited from the CPVM is dealing

with voxels inside of surfaces which contain inaccurate

information from early stages of the update process. Such

voxels are removed as a post-processing step but ideally,

they will be handled during the online Bayesian learning.

Finally, application of GSSD to other probabilistic volumet-

ric models, such as those found in medical imaging, will be

investigated.

The software implementation of GSSD used to create

figures shown in this paper is available for download from

http://mesh.brown.edu/gssd/.
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