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Abstract

Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained

numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit

a local quadratic approximation to the objective function. We show that many, including the most

popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression

under varying prior assumptions. This new notion elucidates some shortcomings of classical algo-

rithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make

more efficient use of available information at computational cost similar to its predecessors.
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1. Introduction

Quasi-Newton algorithms are arguably the most popular class of nonlinear numerical optimization

methods, used widely in numerical applications not just in machine learning. Their defining prop-

erty is that they iteratively build estimators Bi for the Hessian B(x) =∇∇⊺ f (x) of the objective func-

tion f (x), from observations of f ’s gradient ∇ f (x), at each iteration searching for a local minimum

along a line search direction −B−1
i ∇ f (x), an estimate of the eponymous Newton-Raphson search di-

rection. Some of the most widely known members of this family include Broyden’s (1965) method,

the SR1 formula (Davidon, 1959; Broyden, 1967), the DFP method (Davidon, 1959; Fletcher and

Powell, 1963) and the BFGS method (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,

1970). Decades of continued research effort in this area make it impossible to give even a superfi-

cial overview over the available literature. The textbooks by Nocedal and Wright (1999) and Boyd

and Vandenberghe (2004) are good modern starting points for readers interested in background.

An insightful and extensive contemporary review was compiled by Dennis and Moré (1977). The

ubiquity of optimization problems in machine learning has made these algorithms tools of the trade.

But, perhaps because they predate machine learning itself, they have rarely been studied as learning

algorithms in their own right. This paper offers a probabilistic analysis.

Throughout, let f ∶ RN
_ R be a sufficiently regular, not necessarily convex, function; ∇ f ∶

R
N

_ R
N its gradient; B ∶RN

_ R
N×N its Hessian. We consider iterative algorithms moving from

location xℓ−1 ∈ RD to location xℓ. The algorithm performs consecutive line searches along one-

dimensional subspaces xi(α) = αei + x0
i , with α ∈ R+ and a unit length vector ei ∈ RN spanning the

line search space starting at x0
i . Evaluations at xi evince the gradient ∇ f (xi) (and usually also f (xi),
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though this will not feature in this paper). The goal is to find a candidate x∗ for a local minimum: a

root ∇ f (x∗) = 0 of the gradient.

The derivations of classical quasi-Newton algorithms proceed along the following line of argu-

ment: We require an update rule incorporating an observation ∇ f (xi+1) into a current estimate Bi

to get a new estimate Bi+1, subject to the following desiderata:

1. Low Rank/Cost Updates Optimization problems regularly have dimensionality above N ∼
103, even beyond N ∼ 106. To keep computational costs tractable, the update to the estimator

Bi for the Hessian should be of the form

Bi = Bi−1+uCv⊺ with u,v ∈RN×M,C ∈RM×M,

with low rank M (usually M = 1 or 2), because, by the matrix inversion lemma, its inversion,

and multiplication with the gradient has (worst-case) cost O(N2+NM+M3).
2. Consistency with Quadratic Model If f is locally described well to second order, then

yi ≡∇ f (xi)−∇ f (xi−1) ≈ B(xi)si, (1)

with si ≡ xi−xi−1. Because this is the fundamental idea behind this family of algorithms, it is

also known as the quasi-Newton equation.

3. Symmetry The Hessian of twice differentiable functions is symmetric; so the estimator

should be symmetric, too.

4. Positive Definiteness Convex functions have positive definite Hessians everywhere. Over

time, it has become common conviction that, even for non-convex problems, positive defi-

niteness of the estimator is desirable.

1.1 Outline

This first half of this paper (Section 2) constructs a new conceptual interpretation of quasi-Newton

methods. Adopting a probabilistic viewpoint, we interpret the two requirements classically used

to derive this family of methods as log likelihood and log prior, both of a specific Gaussian form.

Varying the prior covariance and choosing one of two possible likelihoods gives rise to the different

members of the family of quasi-Newton methods. A surprising insight arising from this analysis is

that the way symmetry and positive definiteness (desiderata 3 and 4 above) are ensured in existing

quasi-Newton methods differs from the way one would naı̈vely choose from the probabilistic per-

spective. In fact, the posterior arising from the newly identified prior and likelihood assigns nonzero

probability mass to non-symmetric (Section 2.1), and to indefinite matrices (Section 2.2). It is only

the maximum of the posterior, the estimator used by quasi-Newton methods, that is both symmetric

and positive definite. Interestingly, the “proper” probabilistic way to ensure these properties has

much higher computational complexity (Sections 2.1 and 3.5).

The second half of the paper (Section 3) uses the insights gained in Section 2 to construct

a novel nonparametric Bayesian quasi-Newton algorithm. This replaces the approximate form of

desideratum 2 above with an exact, analytic expression. We show that the structural ideas developed

in Section 2 extend from the classic parametric formulation to a Gaussian Process model keeping

computational cost linear in the input dimensionality (it has costO(NM+M3)). A further advantage
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of the nonparametric formulation is that it allows the use of every gradient observation calculated

during a line search instead of just the last one, something that is not easily achievable under the old

parametric models.

1.2 Notation

The derivations in the following sections require a compact notation for joint Gaussian probability

densities over the elements of matrices. This often requires re-arranging the elements of a matrix

A ∈RN×M into a vector in R
NM, which we denote by

Ð⇀
A . We will assume this vectorization operation

stacks the rows of A into column vector row by row, not column by column (this choice is relevant,

it has effects Equation (3) below). Instead of introducing a new scalar index for the elements of such

vectors, it will be convenient to keep the original indices i, j of the matrix A, and interpret them as

an index set (i j) of the vector.

Throughout, we make use of the following sum convention: Indices that appear more than

once on one side of an equation are summed over, unless they also appear on the other side of

the equation. We also extensively use the Kronecker product. Given A ∈ RI×K and B ∈ RJ×L, the

Kronecker product A⊗B ∈RIJ×KL has elements

(A⊗B)(i j)(kℓ) = AikB jℓ. (2)

In this notation, using the sum convention defined above, the vectorization of the matrix product

AXB can be re-written as

ÐÐÐ⇀(AXB)i j = AikXkℓBℓ j = AikB⊺jℓXkℓ = [(A⊗B⊺)Ð⇀X ]
i j
. (3)

Some important properties of Kronecker products are

(A⊗B)(C⊗D) = AC⊗BD, (A⊗B)−1 = A−1⊗B−1,

α(A⊗B) = (αA⊗B) = (A⊗αB), rk(A⊗B) = rkA ⋅ rkB,

tr(A⊗B) = trA ⋅ trB, det(A⊗B) = detrk(B)A ⋅detrk(A)B.

The identities in the left column directly follow from (2), the less straightforward identities on the

right can be found in matrix algebra collections (e.g., Lütkepohl, 1996; Minka, 2000a).

2. Quasi-Newton Methods as Approximate Bayesian Regressors

Aiming for a probabilistic interpretation of quasi-Newton methods, we consider them as regularised

maximum likelihood (that is, maximum a posteriori) estimation schemes. The quasi-Newton equa-

tion (1) is a likelihood for B. Using si = xi−xi−1, we can write it using Dirac’s distribution as

p(yi ∣B,si) = δ(yi−Bsi) = lim
β_0
N [yi;S

⊺
▷
Ð⇀
B ,(Vi−1⊗β)] , (4)

with any arbitrary N×N matrix Vi−1, a scalar β, and the linear operator S▷ = (I⊗si) (the significance

of the subscript ▷ will become clear later). Instead of enforcing this point mass likelihood (4), we

could equivalently minimize its negative logarithm

− log p(yi ∣B,si) = lim
β_0

1
β
(yi−Bsi)⊺V−1(yi−Bsi)+const.
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Since the N real numbers in yi are not sufficient to identify the N2 numbers in B, classic derivations

(Dennis and Moré, 1977; Nocedal and Wright, 1999) choose the estimator minimizing a regularized

loss,

Bi = argmin
B∈RN×N

{ lim
β_0

1
β
(yi−Bsi)⊺V−1(yi−Bsi)+∥B−Bi−1∥F,V−1

i−1
} ,

using the weighted Frobenius norm ∥ ⋅ ∥F,V−1
i−1

from the current best estimate Bi−1 from previous

iterations. The weight in the Frobenius norm is encoded using a positive definite matrix, which we

will suggestively call V−1
i−1 and identify with the Vi−1 of Equation (4)

∥B−Bi−1∥F,V−1
i−1
≡ tr(V−1

i−1(B−Bi−1)⊺V−1
i−1(B−Bi−1))

= (Ð⇀B −Ð⇀B i−1)⊺(V−1
i−1⊗V−1

i−1)(Ð⇀B −Ð⇀B i−1). (5)

The new estimate is the unique matrix Bi minimizing the regularizer subject to Equation (4). In-

specting Equation (5) we see that, up to additive constants, the Frobenius regularizer is the negative

logarithm of a Gaussian prior

p(B) =N [Ð⇀B ;
Ð⇀
B i−1,Σi−1 ≡ (Vi−1⊗Vi−1)] . (6)

Gaussian likelihoods are conjugate to Gaussian priors (the sum of quadratic forms is a quadratic

form). So the posterior is Gaussian, too, even for the limit case of a Dirac likelihood. We perform

the following derivations for finite β, then take the limit at the end. A first form for the posterior can

be found by explicitly multiplying the two Gaussians and “completing the square” in the exponent

of the product of Gaussians: Posterior covariance and mean are

Σ▷ = (Σ−1
i−1+S▷(V−1

i−1⊗β−1)S⊺▷)−1,

B▷ = Σ▷(S▷(V−1
i−1⊗β−1)Ð⇀Y +Σ−1

i−1

Ð⇀
B i−1).

The following observation is helpful in the search for a more compact form (e.g., Rasmussen and

Williams, 2006, Equation 2.12). Because Σ▷ is invertible for any finite β,

S▷(V−1
i−1⊗β−1)(S⊺▷Σi−1S▷+Vi−1⊗β) = Σ−1

▷ Σi−1S▷,

Σ▷S▷(V−1
i−1⊗β−1)(S⊺▷Σi−1S▷+Vi−1⊗β) = Σi−1S▷,

Σ▷S▷(V−1
i−1⊗β−1) = Σi−1S▷(S⊺▷Σi−1S▷+Vi−1⊗β)−1.

The step from the first to the second line is multiplication from the left by Σ−1
▷ , the one from the

second to the third is multiplication from the right by (S⊺▷Σi−1S▷ +Vi−1⊗β)−1. Using this result,

we re-write the posterior mean, using the Matrix inversion lemma, as

Ð⇀
B▷ = Σ▷((V−1

i−1⊗β−1)S▷Ð⇀Y +Σ−1
i−1

Ð⇀
B i−1)

=
Ð⇀
B i−1+Σi−1S▷(S⊺▷Σi−1S▷+Vi−1⊗β)−1 ⋅ (Ð⇀Y −S⊺▷Ð⇀B i−1).
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Now we plug in the explicit expressions for S▷ and Σi−1. Note that Σi−1S▷ = (Vi−1⊗Vi−1)(I⊗ si) =(Vi−1⊗Vi−1si) and likewise S⊺▷Σi−1S▷ = (Vi−1⊗s⊺i Vi−1si). So the posterior has mean and covariance

Bi = Bi−1+ lim
β_0

(yi−Bi−1si)s⊺i Vi−1

s⊺i Vi−1si+β
= Bi−1+ (yi−Bi−1si)s⊺i Vi−1

s⊺i Vi−1si

and

Σi =Vi−1⊗(Vi−1− lim
β_0

Vi−1sis
⊺
i Vi−1

s⊺i Vi−1si+β
) =Vi−1⊗(Vi−1−Vi−1sis

⊺
i Vi−1

s⊺i Vi−1si

)
≡Vi−1⊗Vi, (7)

respectively. The new mean is a rank-1 update of the old mean, and the rank of the new covariance

Σi is one less than that of Σi−1. The posterior mean has maximum posterior probability (minimal

regularized loss), and is thus our new point estimate. Choosing a unit variance prior Σi−1 = I⊗ I

recovers one of the oldest quasi-Newton algorithms: Broyden’s method (1965):

Bi = Bi−1+ (yi−Bi−1si)s⊺i
s⊺i si

.

Broyden’s method does not satisfy the third requirement of Section 1: the updated estimate is, in

general, not a symmetric matrix. A supposed remedy for this problem, and in fact the only rank-1

update rule that obeys Equation (4) (Dennis and Moré, 1977) is the symmetric rank 1 (SR1) method

(Davidon, 1959; Broyden, 1967):

Bi = Bi−1+ (yi−Bi−1si)(yi−Bi−1si)⊺
s⊺i (yi−Bi−1si) .

The SR1 update rule has acquired a controversial reputation (e.g., Nocedal and Wright, 1999, §6.2):

While some authors report good results using this method, others note that it is unstable and overly

limited. Our Bayesian interpretation identifies the SR1 formula as Gaussian regression with a data-

dependent prior variance involving Vi−1 with

Vi−1si = (yi−Bi−1si).
Given the explicitly Gaussian prior of Equation (6), there is no rank 1 update rule that gives a

symmetric posterior. This blemish of rank-1 updates is also reflected in Equation (7): Uncertainty

drops only in the “row”, or “primal” subspace of the belief (the right hand side of the Kronecker

product in the covariance). While this still means uncertainty goes toward 0 over time, it does so in

an asymmetric way.

2.1 Symmetric Estimates, but no Symmetric Beliefs

Many classic quasi-Newton methods provide symmetric estimators for B. Is it possible to encode

the Hessians symmetry directly in the probabilistic belief? The proper probabilistic way to do so is

to include an additional factor

δ(∆Ð⇀B −Ð⇀0 ) = lim
τ_0
N (Ð⇀0 ,∆

Ð⇀
B ,τI) (8)

using ∆, the antisymmetry operator—the linear map defined through

∆
Ð⇀
X =

1

2

ÐÐÐÐÐ⇀(X −X⊺).
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Since this is a linear map, the resulting posterior is analytic, and Gaussian. But the rank of ∆ is

1/2 ⋅N(N −1) (e.g., Lütkepohl, 1996, §4.3.1, Equations 12 & 20), so the corresponding update rule

does not obey the first requirement of Section 1. So, while it is possible to encode symmetry, it is

not practical. However, the structure of Equation (7) hints at another idea, which in fact turns out to

give rise to the most popular quasi-Newton methods. We introduce a second, dual observation (dual,

as in “dual vector space”, not as in “primal-dual optimization”), using the operator S◁ = (si⊗I), the

dual of S▷,

p(y⊺i ∣B,s⊺i ) = δ(y⊺i − s⊺i B) = lim
γ_0
N [y⊺i ;S⊺◁

Ð⇀
B ,(γ⊗Vi)] . (9)

Note that the limit uses Vi, not Vi−1 as in Equation (4). The posterior has mean

Ð⇀
B i =
Ð⇀
B▷+Σ▷S◁(K◁+γI⊗V▷)−1(Ð⇀y⊺i −S⊺◁Ð⇀B▷)
=
Ð⇀
B i−1+(I⊗ Vi−1si

s⊺i Vi−1si+β
)ÐÐÐÐÐÐ⇀(yi−Bi−1si)

+(Vi−1si⊗Vi)[(s⊺i Vi−1s+γ)⊗Vi]−1

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ⇀

[y⊺i − s⊺i (Bi−1+ yi−Bi−1si

s⊺i Vi−1si+β
s⊺i Vi−1)].

The calculation for the posterior covariance can be reduced to a simple symmetry argument. Ex-

panding the Kronecker products as before, we find that the posterior after both primal and dual

observation is a Gaussian with mean and covariance

Bi = Bi−1+ (yi−Bi−1si)s⊺i V⊺
i−1

s⊺i Vi−1si

+Vi−1si(yi−Bi−1si)⊺
s⊺i Vi−1si

−Vi−1si(s⊺i (yi−Bi−1si))s⊺i Vi−1(s⊺i Vi−1si)2 , (10)

Σi = (Vi−1−Vi−1sis
⊺
i Vi−1

s⊺i Vi−1si

)⊗Vi =Vi⊗Vi. (11)

The posterior mean is clearly symmetric if Bi−1 is symmetric (as Vi−1 is symmetric by definition).

Choosing the unit prior Σi−1 = I ⊗ I once more, Equation (10) gives what is known as Powell’s

(1970) symmetric Broyden (PSB) update. Equation (10) has previously been known to be the most

general form of a symmetric rank 2 update obeying the quasi-Newton equation (1) and minimizing

a Frobenius regularizer (Dennis and Moré, 1977). This old result is a corollary of our derivations.

But note that symmetry only extends to the mean, not the entire belief: In contrast to the posterior

generated by Equation (8), samples from this posterior are, with probability 1, not symmetric. Of

course, they can be projected into the space of symmetric matrices by applying the symmetrization

operator Γ defined by

Γ
Ð⇀
X =

1

2

ÐÐÐÐÐ⇀(X +X⊺) (note that I = Γ+∆;Γ∆ = 0). (12)

Since Γ is a symmetric linear operator, the projection of any Gaussian belief N (X ;X0,Σ) onto

the space of symmetric matrices is itself a Gaussian N (ΓX ;ΓX0,ΓΣΓ). But symmetrized samples

from the posterior of Equations (10), (11) do not necessarily obey the quasi-Newton Equation (1).

While Equation (9) does convey useful information, it is not equivalent to encoding symmetry. It is

cheaper, but also weaker, than using the likelihood (8), which encodes the full information afforded

by symmetry.
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2.2 Positive Definiteness: Meaning or Decoration?

So quasi-Newton methods ensure symmetry in the maximum of the posterior, but not the posterior

itself. What about desideratum 4 from Section 1, positive definiteness? Consider choosing Vi−1 = B.

The prior (6) then turns into the non-Gaussian form

p(B)∝ ∣B∣−N2/2 ⋅exp[−1

2
(N −2tr(Bi−1B−1)+ tr(Bi−1B−1Bi−1B−1))] . (13)

This is an intriguing prior. The last term in the exponential has the form of the natural Riemannian

metric on the space of positive definite real matrices (Savage, 1982), and may also remind some

readers of the Wishart distribution. But the second term in the exponential means this prior is

broader than the Wishart. It is not well-defined for degenerate matrices, and it is not clear whether

it is proper. It is thus surprising to discover that it engenders the two most popular quasi-Newton

methods: If we use the quasi-Newton equation (1) a second time to replace Vi−1s = y, Equation (13)

gives the DFP method (Davidon, 1959; Fletcher and Powell, 1963)

Bi = Bi−1+ (yi−Bi−1si)y⊺i
s⊺i yi

+ yi(yi−Bi−1si)⊺
y⊺i si

− yi(s⊺i (yi−Bi−1si))y⊺i(yisi)2 .

And, if we exchange in the entire preceding derivation s ] y, B ] B−1, Bi−1 ] B−1
i−1, then we arrive

at the BFGS method (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), which ranks

among the most widely used algorithms in numerical optimization. Table 1 gives an overview over

the relationships between quasi-Newton methods described so far. It also mentions methods by

Greenstadt (1970) and McCormick (see Pearson, 1969) which contain the “missing links” in this

table but have not been mentioned so far. These works are also briefly discussed by Dennis and

Moré (1977), from where we take these citations.

DFP and BFGS owe much of their popularity to the fact that the updated Bi,DFP and B−1
i,BFGS are

guaranteed to be positive definite whenever Bi−1,DFP and B−1
i−1,BFGS are positive definite, respectively,

and additionally y⊺i si > 0. How helpful is this property? It is relatively straightforward to extend a

theorem by Dennis and Moré (1977) to find that, assuming Bi−1 is positive definite, the posterior

mean of Equation (10) is positive definite if, and only if,

0 < (y⊺i B−1
i−1Vi−1si)2+(yi−Bi−1si)⊺B−1

i−1yi ⋅ s⊺i Vi−1B−1
i−1Vi−1si

⇔ 0 < s⊺i Vi−1[B−1
i−1yiy

⊺
i B−1

i−1−y⊺B−1
i−1yi+ s⊺i yi]Vi−1si.

If the prior covariance is not to depend on the data, it is thus impossible to guarantee positive defi-

niteness in this framework—BFGS and DFP circumvent this conceptual issue by choosing Vi−1 =B,

then applying Equation (1) a second time. But, even casting aside such philosophical reservations,

our analysis also casts doubt upon the efficacy of the way in which DFP and BFGS achieve positive

definiteness: Equation (13) does not exclude indefinite matrices; in fact it assigns positive density to

every invertible matrix. For example, under a mean Bi−1 = I, the indefinite matrix B = diag(1,−1) is

assigned p(B)∝ exp(−2). DFP and BFGS achieve positive definiteness, not by including additional

information, but by manipulating the prior such that the MAP estimator (not the belief) happens to

be positive definite. These observations do not rule out any utility of guaranteeing positive definite-

ness in this way, and the prior (13) deserves closer study. But these results suggest there is less value

in the positive definiteness guarantee of DFP and BFGS than previously thought.
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likelihood prior inferring B inferring B−1

y = Bs

V = I Broyden (1965)

V = B Pearson (1969) McCormick

V s = (y−Bs) SR1 (Davidon, 1959)

y = Bs∧y⊺ = Bs⊺
V = I PSB (Powell, 1970) Greenstadt (1970)

V = B DFP BFGS

Table 1: Overview over probabilistic interpretations of various quasi-Newton methods, based on the

combination of prior and likelihood. The “McCormick” entry refers to a note in Pearson

(1969), see also Dennis and Moré (1977). The SR1 method is identical for inference on

either B or its inverse. The abbreviation DFP stands for Davidon (1959), Fletcher and

Powell (1963), while BFGS stands for Broyden (1970), Fletcher (1970), Goldfarb (1970)

and Shanno (1970).

2.3 Rank M Updates

The classical quasi-Newton algorithms update the mean of the belief at every step in a rank 2

operation, then, implicitly, reset their uncertainty in the next step, thereby discarding information

acquired earlier. Albeit inelegant from a Bayesian point of view, this scheme is still a good idea

given other aspects of the framework: Since the quasi-Newton likelihood models the objective

function as a quadratic, with constant Hessian everywhere, strict Bayesian inference from this prior

would simply average over the Hessian everywhere, which is obviously not a good model. But it

is instructive to consider the effect of encoding more than just the most recent observation. It is

straightforward to extend Equation (4) to observations (Y,S) from several line searches:

Ynm =∇n f (xim)−∇n f (xim−1), Snm = xim,n−xim−1,n.

Given a prior p(B) =N (B;B0,V0), the Gaussian posterior then has mean and covariance

Bi = B0+(Y −B0S)(S⊺V0S)−1S⊺V0+V0S(S⊺V0S)−1(Y −B0S)⊺ (14)

−V S(S⊺V0S)−1(S⊺(Y −B0S))(S⊺V S)−1S⊺V0,

Σi = (V0−V0S(S⊺V0S)−1S⊺V0)⊗(V0−V0S(S⊺V0S)−1S⊺V0) .
Here, the absence of information about the symmetry of the Hessian becomes even more obvious:

No matter the prior covariance V0, because of the term S⊺Y in the second line of Equation (14),

the posterior mean is not in general symmetric, unless Y = BS, (e.g., if the objective function is in

fact a quadratic). See Section 4, particularly Figure 3, for a simple experiment with this parametric

algorithm.

2.4 Summary

The preceding section showed that quasi-Newton algorithms, including the state-of-the-art BFGS

and DFP algorithms, can be interpreted as approximate Bayesian regression from the primal and

dual likelihood of Equations (4) and (9) under varying priors, in the following sense: At each quasi-

Newton step, fix a Gaussian prior ad hoc, update the mean, then “forget” the covariance update.
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Two particularly interesting observations concern the way in which the desiderata of symmetry and

positive definiteness of the MAP estimator are achieved in these algorithms. Symmetry is encoded

via dual observations, which is a useful but imperfect shortcut. Similarly, positive definiteness is

just guaranteed for the mode, not the entire support of the posterior distribution. There may well

be a non-obvious value to the “scale-free” prior of Equation (13) (see also Nocedal and Wright,

1999, Equations 6.11–6.13), but our analysis raises doubt on whether the proven good performance

of BFGS and DFP is actually down to positive definiteness, or to a different effect involving the

broader non-Gaussian prior (13).

3. A Nonparametric Bayesian Quasi-Newton Method

Section 2 used the probabilistic perspective to gain novel insight into classical methods. It showed

that quasi-Newton methods can be interpreted as Gaussian regressors using algebraic structure to

weaken prior knowledge, in exchange for lower computational cost. In this second part of the paper

we depart from the traditional framework to construct a nonparametric, Bayesian quasi-Newton

method, de novo. To motivate this effort, notice some other deficiencies of DFP/BFGS not directly

connected to computational cost: Equation (4) assumes that the function is (locally) a quadratic. Old

observations collected “far” from the current location (in the sense that a second order expansion

is a poor approximation) may thus be useless or even harmful. The fact that the function is not

quadratic should be part of the model. On an only slightly related point, individual line searches

typically involve several evaluations of the objective function f and its gradient; but the algorithms

only make use of one of those (the last one). This is clearly wasteful, but even the exact Bayesian

parametric algorithm of Section 2.3 has this problem, because the matrix S of several observations

along one line search has rank 1, so the inverse of S⊺V0S is not defined. The following section

will address all these issues, using the framework of nonparametric Gaussian process regression to

model the objective function more closely.

3.1 A Nonparametric Prior

Defining a prior for the function B ∶ RN
_ R

N×N , we choose a set of N2 correlated Gaussian pro-

cesses. The mean function is assumed to be an arbitrary integrable function B0(x) (in our imple-

mentation we use a constant function, but the analytic derivations do not need to be so restrictive).

The core idea is to assume that the covariance between the element Bi j at location1 x¾ and the entry

Bkℓ at location x¼ is

cov(Bi j(x¾),Bkℓ(x¼)) = kik(x⊺¾,x⊺¼)k jℓ(x¾,x¼) = (k⊗k)(i j)(kℓ)(x¾,x¼)
with an N×N matrix of kernels, k. To give a more concrete intuition: In our implementation we use

one joint squared exponential kernel for all elements. I.e.

ki j(x¾,x¼) =Vi j exp(−1

2
(x¾−x¼)⊺Λ−1(x¾,x¼)) (15)

1. We use the notation x¼ and x¾ (read “x up” and “x down”) to denote two separate, arbitrary elements of the input

space. The combinations x∗ and x∗ or x and x′, or x1 and x2 are more widely used in the literature. But since this

document is heavy on indices, we prefer this notation as it prevents confusion over sub- and superscripts and named

indices.
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with a positive definite matrix V and length scales Λ. This means

cov(Bi j(x⊺¾),Bkℓ(x¼)) =VikVjℓ exp(−1

2
(x¾−x¼)⊺2Λ−1(x¾−x¼)) ,

and in particular, the marginal variance of any particular local Hessian element is

var(Bi j(x¾)) = cov(Bi j(x¾),Bi j(x¾)) =ViiVj j.

So the prior variance of element Bi j is ViiVj j, not Vi j, as one might think at first. Similarly, the length

scale on which the elements change is not Λ, but Λ/2. So it is not possible to encode separate signal

scales for the off-diagonal elements of the Hessian in this framework. They are determined entirely

by the scales of the diagonal elements. Even so, if V is diagonal, then beliefs between any two

different elements of B are independent.

Other kernels can of course be chosen; but it will become clear that an important practical

requirement is the ability to efficiently integrate the kernel. This is feasible, though nontrivial, with

the squared exponential kernel.

3.2 Line Integral Observations

For the Hessian B(x) of a general function f , the quasi-Newton equation (4) is only a zeroth order

approximation (a second-order approximation to f itself), assuming a constant Hessian everywhere.

In our treatment, we will replace this approximate statement with its exact version: We observe the

value of the line integral along the path ri ∶ [0,1]_R
N , ri(t) = xi−1+ t(xi−xi−1),

Yni =∑
m
∫

ri
m

Bnm(x)dxm.

Note that, for scalar fields φi with Bim = ∇mφi, such as the gradient φi = ∇i f , it follows from the

chain rule that (the following derivations again use the sum convention defined in Section 1.2)

d

dt
φi(r j(t)) =∇mφi(r j(t))∂r

j
m(t)
∂t

= Bim(r j(t))∂tr
j
m(t).

Thus, our line integral obeys

Yi j =∫
r j

Bim(x)dxm =∫
1

0
Bim(r j(t)) ⋅∂tr

j
m(t)dt (16)

=∫
1

0
∂tφi(r j(t))dt = φi(r j(1))−φi(r j(0)).

This is the classic result that line integrals over the gradients of scalar fields are independent of

the path taken, they only depend on the starting and end points of the path. In particular, our path

satisfies ∂tr
j
m(t) = S jm (its derivative is constant), and our line integral can be written as

Yi j =∫
1

0
Bim(r j(t))S jm dt = δik ⋅S jm∫

1

0
Bkm(t j)dt j,

Ð⇀
Y = [I⊗(S⊺⊙∫

t
)]Ð⇀B ≡S▷Ð⇀B . (17)
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Figure 1: One-dimensional Gaussian process inference from integral observations (squared expo-

nential kernel). Four observations, average values (integral value divided by length of in-

tegration region) and integration regions denoted by bars. Posterior mean in thick green,

two standard deviations as shaded region, three samples as dashed lines. The left-most

integral is over a very small region, which essentially reduces to the classical case of a lo-

cal observation. Corresponding integrals over the mean, and each sample, are consistent

with the integral observations.

where ⊙ denotes the Hadamard, or element-wise, product (a⊙b)kℓ = akℓbkℓ. In words: For every

projection S j∶ of the rows of B, there are N one-dimensional functions (Bs)i(t j) ∶ R _ R. Each of

those functions are integrated from 0 to 1 (this is an affine projection onto the space of integrals

over [0,1]). This amounts to taking each component Bi j(t) of each projection and applying the

integral-projection—hence the Hadamard product. We write the likelihood as

p(Y ∣B(x),S▷) = lim
β_0
N [Y ;S⊺▷

Ð⇀
B ,(k⊗βIM)] ,

using the linear operator S▷ defined in Equation (17). An interesting aspect to note is that, while

path-independence holds for the ground-truth integrals of Equations (16), the prior covariance of

Equation (15) does not encode this fact. The prior used here is more conservative than necessary, in

the sense that it assigns nonzero probability mass on algebraically impossible functions, in exchange

for lower computational cost. This is not unlike the aspects of parametric quasi-Newton methods

discussed in Sections 2.1 and 2.2, where nonzero probability mass is assigned to the algebraically

impossible case of non-symmetric Hessians. See Section 3.5 for more on this issue.

3.3 Gaussian Process Inference from Integral Observations

Because the Gaussian exponential family is closed under linear transformations, Gaussian process

inference is analytic under any linear operator. Since integration is a linear operation, it is a corollary

that Gaussian process inference is possible, in closed form, from integral observations. Neverthe-

less, this idea has only rarely been used in the literature (e.g., by Minka, 2000b). So we briefly

digress here to introduce it in detail. Let there be a function f (x) ∶ R _ R (extension to multi-
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variate functions is straightforward). Assume a Gaussian process prior, with mean function µ(x),
covariance function (kernel) k. We observe, up to Gaussian noise, the value of a definite integral

y = ξ+∫ b

a
f (x)dx; ξ ∼N (0,σ2).

What is the posterior? We construct the answer from the finite-dimensional case, then take the

Riemann limit. Consider observing the noisy weighted sum of N Gaussian variables, with weights

δmi:

y = ξ+ N

∑
i

δmi fi ≡ ξ+m⊺ f ; p( f ) =N (µ;K).
The posterior can be found as above, by “completing the square”

p( f ∣y) =N (Ψ(K−1µ+σ−2my),Ψ)
with the covariance

Ψ = (K−1+σ−2mm⊺)−1 =K− Kmm⊺K

σ2+m⊺Km
.

Now consider the limit transition N _∞, such that the weights δmi converge to a measure m(xi)dxi

(m = 1 is a special case). We get

Km =Ki jm j _ ∫
b

a
k(xi,x j)dm(x j) and

m⊺Km =miKi jm j _∬
b

a
k(xi,x j)dm(xi)dm(x j).

The mean has the form

µ− Kmm⊺µ

σ2+m⊺Km
+σ−2Km(1− m⊺Km

σ2+m⊺Km
)y = µ+Km( y−m⊺µ

σ2+m⊺Km
)

which, in the limit, transforms to

µ+ y−∫ b

a µ(x̃)dm(x̃)
σ2+∬ b

a k(xi,x j)dm(xi)dm(x j) ∫
b

a
k(xi,x j)dm(xi).

Figure 1 gives a toy 1D example for intuition.

3.4 Posterior on Hessians

Using an argument entirely analogous to that of Section 2, we find that the primal posterior after M

observations has mean function

Ð⇀
B▷(x¾)
=
Ð⇀
B 0(x¾)+(ΣS▷)(x¾)(K+(k⊗βI))−1(Y −S⊺▷Ð⇀B 0)
=
Ð⇀
B 0+[k⊗k(S⊙∫

t
)](k⊗(S⊙∫ )⊺ k(S⊙∫ )+k⊗βI)−1 (Y −S⊺▷Ð⇀B 0).
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The terms of this equation can be further identified using the Gram matrix

(S⊙∫ )⊺ k(S⊙∫ )∣
jℓ

=∫
1

0
dt j∫

1

0
dtℓS

j

k
kkm(x¾(t j),x¼(tℓ))Sℓm (18)

= S jk [∬ 1

0
kkm(x¾(t j),x¼(tℓ))dt j dtℓ]Smℓ

≡K ∈RM×M,

the integrated kernel map

k(S⊙∫ )∣
k j

(x¾) =∫ 1

0
kkm(x¾,x¼(t j))dt jS jm (19)

≡ k(x¾) ∈ {RN
_R

N×M},
and the integrated mean function

S
⊺
▷
Ð⇀
B 0∣

mk
= S jk∫

1

0
B0

m j(x(tk))dtk ≡B ∈RN×M. (20)

These objects are homologous to concepts in canonical Gaussian process inference: B0,nm is the

n-th mean prediction along the m-th line integral observation. knm(x¾) is the covariance between

the n-th column of the Hessian at location x¾ and the m-th line-integral observation. Kpq is the

covariance between the p-th and q-th line integral observations. The derivations for the covariance

are similar and contain the same terms. Together with the dual observation, we arrive at a posterior,

which has mean and covariance functions

B◇(x¾) = B0(x¾)+(Y −B0)K−1
k
⊺(x¾)+ k(x¾)K−1(Y −B0)⊺− k(x¾)K−1S⊺(Y −B0)K−1

k
⊺(x¾),

Σ◇(x¾,x¼) = [k(x⊺¾,x⊺¼)− k(x⊺¾)K−1
k
⊺(x¼)]⊗ [k(x¾,x¼)− k(x¾)K−1

k
⊺(x¼)] .

The actual numerical realisation of this nonparametric method involves relatively tedious algebraic

derivations, which can be found in Appendix A.

An important aspect is that, because k is a positive definite kernel, unless two observations are

exactly identical, K has full rank M (the number of function evaluations), even if several observa-

tions take place within one shared 1-dimensional subspace. So it is possible to make full use of all

function evaluations made during line searches, not just the last one, as in the parametric setting of

existing quasi-Newton methods. Figure 2 uses another toy setting to give an intuition for why this

matters. Just as in Section 2.3, it is clear that the posterior mean is not in general a symmetric matrix.

So we project into the space of symmetric matrices using the arguments surrounding Equation (12).

A downside is that evaluating the mean function involves finding the inverse of K, at cost

O(M3). Two aspects of numerical optimization make this issue less problematic than one might

think. First, solving an optimization problem takes finite time, often just a few hundred evaluations;

so the cubic cost in M is often manageable. Where it is not, note that, because optimization proceeds

along a trajectory through the parameter space, old observations tend to have low covariance with

the Hessian at the current location, and thus a small effect on the local mean estimate. So they can

often simply be ignored. The simplest possible way to do so is to just throw away all observations
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Figure 2: Simulated line search, a toy problem to elucidate why it helps to use all line search

observations instead of only the first and last ones. Observations at locations X =[−4;−1;2;2.5;3;2.6], observed 1D Gradients of ∇ f (X) = [−2;−1;−1;−0.1;0.2;−0.001].
Left: Traditional inference based on only the first and last observations. Right: Our non-

parametric model can use all observations. Gaussian process posterior with thick mean

and two standard deviations marginal variance as shaded region, as well as three sam-

ples as dashed lines. Effective observations yi/(xi−xi−1) as bars. Gradient values as thin

lines on the abscissa for intuition. The posterior from all observations captures much

more structure, and in particular a different mean estimate at the end of the line search

(x = 2.6), where its value defines the next search direction.

older than some memory bound M0. This is the approach of the L-BFGS method (Nocedal, 1980).

Since the regression framework quantifies the contribution of each observation to the prediction, in

the vector kK−1, we can also use the relative sizes of these elements to order past observations and

discard those ranked below M0.

3.5 Diversion: Naı̈ve Gaussian Regression is Too Costly

The discussion in Section 2 established that, with a few caveats (Section 2.2), quasi-Newton meth-

ods are Gaussian regressors; and we then extended to nonparametric Gaussian process inference.

Importantly, the prior from Section 3.1 is over the elements of the Hessian, and gradient observa-

tions are integrals of this function. One may wonder why we did not just start with a Gaussian

process prior on the objective function f and used observations of the gradient to infer the Hessian

directly from there. This is possible because differentiation, like integration, is a linear operation:

Under a Gaussian process prior on f with kernel k f and mean function µ f , the mean function of

the prior belief over the gradient is µ∇ f =∇µ f , and the covariance between elements of ∇ f at two
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different points x¾ and x¼ is (Rasmussen and Williams, 2006, §9.4)

cov
⎛⎝∂ f (x¾)

∂x¼i
,
∂ f (x¾)

∂x¾j

⎞⎠ = ∂2k(x¾,x¼)
∂x¼i ,∂x¾j

, which, for an SE kernel, is (21)

=
⎛⎝ 1

λ2
j

δi j + (x¼i −x¾i )(x¼j −x¾j )
λ2

i λ2
j

⎞⎠kSE(x¼,x¾).
The covariance between elements of the Hessian and elements of the gradient is

cov
⎛⎝∂2 f (x¾)

∂x¼i dx¼
k

,
∂ f (x¾)

∂x¾j

⎞⎠ = ∂2k(x¾,x¼)
∂x¼i ,∂x¾j

, which, for an SE kernel, is

=
⎛⎝

δik(x¼j −x¾j )+δ jk(x¼i −x¾i )
λ2

i λ2
j

− (x¼k −x¾k )
λ2

k

⎞⎠kSE(x¼,x¾).
So, given observations of the gradient at M points xm, we can evaluate the mean over the elements

of the Hessian B(x∗) as

B̂ik(x∗) = µB(x∗)+cov(Bik(x∗),∇ j f (xm))K−1
( jm)(ℓq)(∇ℓ f (xq)−µ∇ℓ f (xq)),

with a Gram matrix K ∈ RMN×MN of elements K( jm)(ℓq) = cov(∇ j f (xm),∇ℓ f (xq)). From Equa-

tion (21) we see that this Gram matrix has specific structure, so it might be possible to construct its

inverse faster than inO(M3N3). But even then, this scheme would only provide a belief over the el-

ements of B. Since Newton’s method requires the inverse of B, this mean prediction would still have

to be inverted, at cost O(N3). This would defeat the point of a quasi-Newton method: constructing

a low-rank estimate of the Hessian, and thus a fast estimate of its inverse. If N is small enough

to allow for general (cubic) inversion of B̂, we might as well just calculate the true Hessian of f

and invert that instead. So quasi-Newton methods are not “just” standard Gaussian regression on

Hessians. Their key advantage stems from the weaker prior assumptions, as discussed in Sections

2.1 and 2.2, which allow the construction of a low-rank estimate.

4. Experiments

The calculations required by nonparametric quasi-Newton algorithm using the squared-exponential

kernel involve exponential functions, error functions, and numerical integrals (see Appendix A for

details). A side-effect of these is that this algorithm has slightly lower numerical precision than

its predecessors. This issue becomes clear when minimizing quadratic functions (Figure 3), whose

constant Hessian voids the modeling advantage of the nonparametric method:2 The nonparametric

algorithm behaves more regularly initially, but towards the end of the optimization process the nu-

merical conditioning of the kernel calculations begins to play a role, offering an advantage to the

better conditioned older methods. In real, non-quadratic optimization problems, however, this prob-

lem only arises close to the end of optimization, when the algorithm is very close to the optimum. In

2. This is only a diagnostic example. Quadratic functions, whose optimization amounts to solving a positive-definite

linear program, are not a realistic use-case for quasi-Newton methods, parametric or not. Specialised methods, like

the method of conjugate gradients (Hestenes and Stiefel, 1952), or plain Cholesky decomposition for low-dimensional

cases, are better suited for this simple setting.
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Figure 3: Minimization of a 100-dimensional quadratic. All algorithms shared the same line search

method. Averages over 20 sampled problems (see text for details). The two dashed lines

in this log-log plot mark linear and quadratic convergence. The Bayesian algorithms

converge more regularly and faster initially, but suffer from bad numerical conditioning

toward the end of the optimization.

this small region, a local quadratic approximation is valid and the Hessian is essentially constant. In

our practical implementation, we thus check for convergence, then pass the learned inverse Hessian

to the better conditioned BFGS for the final few steps, in which the learned Hessian barely changes.

For intuition, Figure 4 shows results from a popular two-dimensional test problem—Rosenbrock’s

polynomial. The plot also shows the mean belief on one element of the Hessian. The availability of

this explicit estimate for the entire function is an additional benefit of the nonparametric method.

In problems where the Hessian is not constant everywhere, the nonparametric Bayesian opti-

mizer can sometimes offer drastic advantages over the classical alternatives. Figure 5, left, shows

averages of experiments on a 200-dimensional domain. The objective functions is a prior over hy-

perparameters of a Gaussian process regressor: the logarithm of products of Gamma distributions,

with different parameters for each dimension. The right part of the figure shows that the perfor-

mance advantage is not always so drastic. It was gathered on the corresponding posterior after the

addition of 10 datapoints per problem. This makes the objective function less regular, meaning

that the optimal Newton path to the minimum has more complex shape, and more line searches are

necessary to converge to the minimum.

Figure 6 shows performance on a set of low-dimensional but challenging set of problems: Func-

tions sampled from a Gaussian process with quadratic prior mean, after conditioning on 10 obser-

vations of the function’s Hessian (drawn separately from a Wishart distribution, to ensure positive

definiteness). In all experiments, however, the Bayesian algorithm performs at least as good, and

regularly better than its classical competitors. For numerical optimization, even performance gains

of a few percent are valuable, because optimization is such a widely encountered problem. Speed-

ing up quasi-Newton methods by 10% means speeding up large parts of machine learning by that

amount. Our experiments show that, at least in some cases, the new algorithm offers improvements

much beyond that.
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Figure 4: Minimizing Rosenbrock’s polynomial, a non-convex function with unique minimum at

(1,1). All algorithms start from (-1,2.5). Top left: Function values, line search trajec-

tory of the Bayesian algorithm in white. Top Right: True value of the (1,1) element of

the Hessian (other elements have less interesting structure). Middle Row: Two times

marginal posterior standard deviation (a.k.a. posterior uncertainty, left) and mean esti-

mate (right) of the Bayesian regressor. Comparing the top right and middle right plots

shows good agreement in the regions visited by the algorithm. Bottom: function value as

function of the number of line searches. The cross after 24 line searches marks the point

where the Bayesian method switches to a local parametric model for numerical stability.

4.1 Cost

As pointed out above, the computational complexity of this algorithm, given a diagonal prior mean,

is O(NM+M3) per update of the search direction, where M is the number of function evaluations

used to build the model (which can be controlled ad hoc within the algorithm by excluding redun-
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Figure 5: Left: Minimizing the 200-dimensional (Gamma) prior over the hyperparameters of a

Gaussian process regression modell. Right: Minimizing the corresponding posterior

after the addition of 10 datapoints sampled from the correct model. The datapoints create

a more complicated optimization problem in which line searches tend to be shorter, thus

reducing the advantage of the Bayesian method gained from superior Hessian estimates.

Averages over 20 sampled problems; plotted is the relative distance from initial function

value (shared by all algorithms) to the minimum, as a function of the number of line

searches (all algorithms use the same line search method).

dant or irrelevant evaluations). This compares to O(NM) for the corresponding cases of DFP and

BFGS. Although the overhead created by the squared-exponential integrals is nontrivial, we found

the computational demands of our implementation manageable: In our experiments, the cost of con-

structing and inverting the matrix K was negligible, and could, in very time-sensitive settings, be

further reduced by a more efficient implementation.

5. Outlook

In this paper we primarily focused on a better understanding for quasi-Newton methods. For an

intuition on the potential of Bayesian formulations of numerical optimization, apart from the new

nonparametric algorithm derived in Section 3 and tested in Section 4, consider some potential for

future work: Perhaps the most obvious insight is that Gaussian process regression is trivial to extend

to noisy evaluations. An upcoming conference paper (Hennig, 2013) will study how this can be

used to construct optimizers robust to noise. Repeated integration, and non-Gaussian likelihoods in

combination with approximate inference, may allow optimization without gradients, and from only

gradient sign observations, respectively. Structured and hierarchical priors are a third direction,

offering new avenues for optimization of very high-dimensional functions.

6. Conclusion

We have shown that the most popular quasi-Newton algorithms can be interpreted as approximations

to Bayesian regression under Gaussian and other priors. This deepens our understanding of these

algorithms. In particular, it emerged that symmetry in the estimators of SR1, PSB, DFP and BFGS,
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Figure 6: Minimizing randomly generated 4-dimensional analytic functions. Left: For illustration.

One slice through the (x,y,0,0) plane of one of the sampled functions. Neither starting

point of the search nor the found optimum lie within this slice, and are thus not shown.

Right: function values achieved by three numerical optimizers as a function of the num-

ber of line searches. All algorithms shared the same line search routine. Plotted is the

difference between best function value achieved by any of the optimizers for each func-

tion, normalized by the initial function value (which is identical for all algorithms). The

lines are averages of the logarithmic values from 10 iid. experiments.

and positive definiteness in those of DFP and BFGS, are encoded in approximate ways which do

not capture all available prior information but allow for low computational cost.

As a parallel result, our analysis also gives rise to a new class of Bayesian nonparametric quasi-

Newton algorithms. These use a kernel model to learn from all observations in each line-search,

explicitly track uncertainty, and thus achieve faster convergence towards the true Hessian. While

the new methods are not trivial to understand and implement, their computational cost lies within

a constant of that of their predecessors. Our research implementation is available at http://www.

probabilistic-optimization.org/Newton.html.
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Appendix A. Numerical Implementation

As mentioned above, for a concrete implementation, we chose to use the squared exponential kernel

(15), and a constant mean function assigning B0(x¾) = I everywhere. It is another advantage of the

Bayesian formulation that prior assumptions are directly accessible for analysis: The squared expo-
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nential prior amounts to the assumption that the elements of the Hessian vary independently over

the parameter space, on one unique set of length-scales Λ. Multiple length scales could be modeled

using sums of kernels, but our implementation does not currently offer this option. Changing the

length scales Λ amounts to a form of pre-conditioning. The fact that this can be done automatically

using methods from machine learning is another advantage of a Bayesian formulation. A naı̈ve

approach for such an optimization would be to optimize the hyperparameters by type-II maximum

likelihood, as is often done in standard Gaussian process regression. Since this amounts to an opti-

mization problem itself, though, one might hope to find closed form estimators. We will not dwell

further on this issue here, leaving it for future work.

A numerical challenge in the implementation arises from the required integrals over squared

exponentials. Of the three objects in Equations (18), (19), and (20) only the last one, B, is truly

straightforward, thanks to our choice of constant mean function. The other two will be derived in

this section. For this purpose, it is helpful to use an explicit notation for individual line searches:

We change the index set from m to ( jh): Let observation ym have been taken as the h-th observation

of line search number j. If the line search proceeded along unit direction e j and started from x0 j,

then the h-th observation was the difference between the gradients at locations x0 j+(ηh−νh)e j and

x0 j +νhe j.

A.1 k

The elements of the N×M matrix k(x¾) are, (the ellipses are placeholders for the second, analogous

part of quadratic forms)

k
j

nh
(x¾) = (ηh−νh)Vnme j

m∫
1

0
exp[− 1

2
(x¾−(νhe j +x0 j)−(ηh−νh−1)te j)⊺Λ−1 . . .]dt

= (Ve j)n exp(−c−b2/a2

2
) 1

a
∫
(ηh−νh)a+b/a

b
exp(− u2

2
)du

= (Ve j)n exp(−c−b2/a2

2
)√ π

2a2
[erf((ηh−νh)a2+b√

2a2
)−erf( b√

2a2
)] ,

with

a =
√

e⊺j Λ−1e j

b = e⊺j Λ−1(x0 j +νhe j −x¾)
c = x⊺¾Λ−1x¾−2x¾Λ−1(x0 j +νhe j)+(x0 j +νhe j)⊺Λ−1(x0 j +νhe j).

This involves the error function, for which good double-precision approximations are widely avail-

able.
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A.2 K

The M ×M matrix K has two types of elements. Along its block diagonal lie covariance between

observations collected as part of the same line search. These have the form

K
ii
hk = (ηh−νh)(ηk−νk)(e⊺i V ei)θ2

∬
1

0
exp[− 1

2
[(ηh−νh)thei+νhei+x0i−(αk −νk)tkei−νkei−x0i]⊺Λ−1[. . .]]dth dtk

= e⊺i V eiθ
2∫

ηh

νh

∫
αk

νk

exp[− (uh−uk)2
2σ2

i

]duh duk.

So these terms are double integrals over a one-dimensional squared exponential. Such integrals

can be integrated by parts, leading to an analytic expression that only involves error functions and

exponential functions (Peltonen, 2012).

The most challenging calculations involve elements of K describing the covariance between

observations made along different line search directions. We make use, once more, of the closure

of the Gaussian exponential family under linear maps, to write

K
i j

hk
=(ηh−νh)(ηk−νk)e⊺j V ei

∬
1

0
exp[− 1

2

⎛⎜⎝
(ηh−νh)th(ηk −νk)tk

1

⎞⎟⎠
⊺⎛⎜⎝

e j−ei

νhe j +x0 j −νkei−x0i

⎞⎟⎠
⊺

Λ−1 . . .]dth dtk

=
2πe⊺j V ei exp[−1

2
(c−b⊺A−1b)]√(1−ρ2)AhhAkk[Φ(uh f ,uk f ,ρ)+Φ(uhi,uki,ρ)−Φ(uhi,uk f ,ρ)−Φ(uh f ,uki,ρ)]

with the bivariate Gaussian CDF

Φ(b1,b2,ρ) = 1

2π
√

1−ρ2
∫

b1

−∞
∫

b2

−∞
exp[−(x2−2ρxy+y2)/2(1−ρ2)]dx dy

and

A−1 = ( e⊺j Λ−1e j −e⊺j Λ−1ei−e⊺j Λ−1ei e⊺i Λ−1ei
)−1

=

(e⊺i Λ−1ei e⊺j Λ−1ei

e⊺j Λ−1ei e⊺j Λ−1e j
)

e⊺j Λ−1e je
⊺
i Λ−1ei−(e⊺j Λ−1ei)2 ,

b = ( e⊺j Λ−1(νhe j +x0 j −νkei−x0i)−e⊺i Λ−1(νhe j +x0 j −νkei−x0i)) ,
c = (νhe j +x0 j −νkei−x0i)⊺Λ−1(νhe j +x0 j −νkei−x0i),

as well as

ρ =
e⊺j Λ−1ei√

e⊺j Λ−1e je
⊺
i Λ−1ei

,

ui =
√

1−ρ2 diag(√[Ahh,Akk])A−1b,

u f =
√

1−ρ2 diag(√[Ahh,Akk])[(ηh−νh

ηk −νk
)+A−1b] .
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Just like in the univariate case, bivariate Gaussian CDFs are not analytic. But single and double

precision numerical approximations at acceptable computational cost exist (Genz, 2004).

From Sec. 1, recall that updating the search direction requires the inverse of B. Explicit inversion

costs O(N3), but the inverse can be constructed analytically, from the matrix inversion lemma, in

O(N2+NM+M3). Using an argument largely analogous to the derivation of the L-BFGS algorithm

(Nocedal, 1980) a diagonal prior mean B0 lowers cost to O(NM +M3), linear in N. Just like L-

BFGS, the nonparametric method is thus applicable to problems of even very high dimensionality.
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