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Abstract
We advocate the inference of qualitative information

about 3D human pose, called posebits, from images.
Posebits represent boolean geometric relationships between
body parts (e.g. left-leg in front of right-leg or hands close
to each other). The advantages of posebits as a mid-level
representation are 1) for many tasks of interest, such qual-
itative pose information may be sufficient (e.g. semantic
image retrieval), 2) it is relatively easy to annotate large
image corpora with posebits, as it simply requires answers
to yes/no questions; and 3) they help resolve challenging
pose ambiguities and therefore facilitate the difficult task of
image-based 3D pose estimation. We introduce posebits, a
posebit database, a method for selecting useful posebits for
pose estimation and a structural SVM model for posebit in-
ference. Experiments show the use of posebits for semantic
image retrieval and for improving 3D pose estimation.

1. Introduction

While tremendous effort has focused on the extraction of
quantitative 3D human pose from images and video, in this
paper we consider the estimation of qualitative pose infor-
mation, called posebits. Posebits are attributes of pose that
specify the relative positions or orientations of body parts.
They have the advantage that one can easily collect posebit
image annotations for training purposes, and they can be
reliably inferred from images. Further, they are useful for
resolving 3D pose ambiguities and for myriad other tasks
where quantitative pose is not required.

The effective use of both generative and discriminative
approaches to pose estimation require training data com-
prising image features and corresponding 3D poses (e.g.,
see [16, 3, 12, 19, 21]). In practice these data are difficult to
obtain, either from high-fidelity commercial marker-based
MoCap (Motion Capture) systems [20] or from RGB-D sys-
tems such as Microsoft Kinect. They are limited primarily
to indoor lab environments, and require significant data cu-
ration. Manual annotation of 3D pose from images is not an
effective alternative as it is very time-consuming and prone

Right hand above the hips?                    
Right foot in front of the torso?               
Left foot in front of the torso?                  
Left hand above the hips?                        
Right hand above the neck ?                    
Left foot to the left of the hip?                  
Left hand to the left of the shoulder?        
Right hand to the right of the shoulder?    
Right knee bent ?                                      
Right foot to the right of the hip?          

Example posebits:
yes
yes
no
yes
no
no
no
yes
yes
no

Samples of poses conditioned on the posebits           

Figure 1. Top: Posebits are inferred directly from image features
using a trained classifier. Since posebits consist of simple yes/no
questions, images can be easily annotated by humans. They may
be useful for many tasks. For example, on the bottom image, we
show samples of poses conditioned on the posebits depicted on
the top image. By conditioning the poses on posebits uncertainty
about the pose is reduced. Notice how the poses are qualitatively
very similar to the observed image. In this example we show the
ground truth posebyte. Our model also takes into account uncer-
tainty in the estimation of posebits by marginalizing over them.

to errors [4, 5].
By contrast, it is relatively simple to obtain training data

for posebits from human annotations. Indeed, people often
perceive and express pose in terms of the relative positions
between body parts (see Fig. 1), rather than absolute 3D po-
sition or joint angle representations that are commonly used
in pose estimation tasks. For example, common human ver-
balizations of pose are: the left leg in front of right leg, left
hand in front of the torso, etc. It is therefore quite natural to
explore the design, inference and use of mid-level, qualita-
tive pose representations.
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Figure 2. Posebits are qualitative attributes of 3D pose, inferred di-
rectly from images. Here, we consider three posebit types, namely,
1) joints distance, 2) articulation angle and 3) relative position.
For example, the posebit of type 3 (right) checks whether the right
hand is on the right of the shoulder. The plane is centered at the
shoulder and the normal direction is the vector going from the
chest to the shoulder joint.

To this end, we have constructed a preliminary database
of images with posebit annotations. Given a task, inspired
by work on feature selection and decision trees we also
provide a method for selecting useful subsets of posebits.
This is accomplished with an algorithm that greedily se-
lects posebits from a pool of candidates by maximizing in-
formation gain. Given a set of posebits, called a posebyte,
we formulate the image classification problem in terms of a
structural SVM with loss-based slack rescaling [24]. This
exploits both the correlation among pose classes, as well as
co-occurrences of posebits. Finally, we show that the infer-
ence of posebits facilitates 3D pose inference by reducing
uncertainty that stems from pose ambiguities. In particu-
lar, it has proven very difficult to fully exploit all available
image information when learning mappings from images to
full body 3D pose. We find that subtle properties of im-
age appearance can be leveraged more effectively by con-
centrating on mappings from image features to posebits,
thereby helping to reduce pose ambiguity in subsequent
pose estimation.

2. Related Work

Most recent work on estimating 3D human pose has fo-
cused on the estimation of skeletal joint angles or 3D po-
sitions. Faced with measurement noise, missing data, and
ambiguity, extensive use of 3D pose data has been com-
mon, either to learn generative pose priors, or discrimi-
native mappings from image features to 3D pose (e.g. see
[3, 12, 13, 18]). Posebits also require labeled training data,
but unlike 3D pose, it is easy to obtain posebit annotations.
We also make use of MoCap, but without the need for syn-
chronized image and MoCap data.

There also exist geometric approaches to lifting 2D pose
to 3D by enumerating 3D poses [10, 22] or by exploiting
priors from MoCap dataset [17]. Our work is partially re-
lated to [2, 7, 23] in that we also define an intermediate pose
representation. However, posebits are more flexible than ac-
tion classes because they are compositional.

Posebits can also be viewed as attributes of pose. Advan-
tages of attributes have been demonstrated for object cate-
gorization [8, 25], and human action recognition [11, 28]
with emphasis on transfer learning between classes. Pose
attributes have been used for content-based MoCap retrieval
[14]. Attributes have also been used to retrieve action-
specific priors to stabilize tracking [2]. But none of these
approaches infer pose attributes directly from images.

Finally, our work is inspired by work on poselets [5], a
new notion of parts, which do not necessarily correspond
to intuitive body parts (e.g. as in [1, 27]). It is argued that
the detection of configurations of body is often easier than
single parts. However, whereas poselets have shown good
performance for people detection, here we focus on estimat-
ing the 3D pose information from single images. Unlike
poselets, we do not require 3D annotations for training.

3. Posebits
Posebits represent binary, geometric relationships be-

tween body parts. They may be useful for myriad tasks,
in and of themselves, or as an intermediate representation,
e.g., toward 3D pose estimation.

Broadly speaking, we consider three types of posebits
which appear relevant to 3D pose inference. But we do not
rule out other types that might be relevant to other tasks.
The three types, depicted in Fig. 2, are:

1. Joints distance: Posebits are activated when two joints
in the body are closer or further than a given threshold.

2. Articulation angle: Posebits are activated when a
given joint angle is bent more than α degrees.

3. Relative position: Posebits are activated when a body
part A is to the left, right, above, below, in front or
behind relative to a second body part B. To determine
such posebits, the signed distance between body part
A and a plane centered at body part B is computed.

Further, while one might identify hundreds of useful spe-
cific posebits, initial exploration of the concept focused only
on a relatively small set of 30 candidates, chosen at random
from among the three types listed above.

3.1. Posebits database

For selecting, learning and inferring posebits, we ex-
ploit a MoCap corpus and a collection of annotated im-
ages, which we call the Posebit Database (PbDb). As dis-
cussed above, to date we have only annotated images with
30 posebits, but ideally one might want to have annotations
with many more than 30 posebits.

At present, PbDb comprises 1) a MoCap database com-
prising 10000 poses taken from Human-Eva [20] and
HMODB [15], and 2) a set of 4000 images, each anno-
tated with 30 posebits. Images were collected from four



Figure 3. Semantic queries: We queried PbDb with 3 posebits:
left/right foot to the left/right of the hip, left foot far from the right
foot. Top row shows several poses retrieved from MoCap DB.
Bottom row shows images retrieved from Image DB. Notice how
poses are qualitatively similar based on as few as 3 posebits.

publicly available databases. There are 1500 images from
Human-Eva [20], 1500 images from HMODB [15], 685 im-
ages from Fashion [26] and 305 from Parse [27].

Human-Eva and HMODB come with 3D pose annota-
tions, so it is trivial to compute the corresponding posebits
using simple geometric tests, such as point to point, or point
to plane, distances, or by thresholding joint angles. Fashion
and Parse images do not have 3D pose annotations. How-
ever it is straightforward to obtain posebit annotations us-
ing Amazon Mechanical Turk, where turkers simply answer
yes/no questions about each image. Indeed, based our initial
data collection this is an effective way to gather annotations
for a much larger image corpus and for many more than 30
posebits. The PbDb image dataset is split into two subsets
of 1995 images for training and testing. Fig. 3 shows the
result of querying PdDb with a small subset of posebits to
obtain semantically similar images.

3.2. Selection

Posebits may be effective in different ways. They may be
sufficient for some tasks directly. Or they may be useful as
an intermediate representation. Here we focus on their use
as a mid-level encoding to facilitate 3D pose inference. It is
also clear that different posebits may be useful for different
tasks, or redundant. Hence choosing a good set of posebits
is essential. To this end we advocate the use of a simple
selection mechanism, inspired by decision trees, to choose
subsets of posebits from PbDb.

For a given task (e.g., 3D pose estimation), we aim to
select a subset of posebits Sm from a pool of candidates SC
(i.e. PbDb). To this end we use two criteria: Useful posebits
are those that can be reliably inferred from image features
r, and that help reduce uncertainty in the hidden variable
of interest, x. Selection makes use of small set of training
pairs of image features and 3D poses L = {ri,xi}Li=1, and
a larger set of 3D poses U = {xj}Pp=1.

To make the problem tractable, we select posebits greed-
ily, one bit at a time, using a forward selection mechanism.
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Figure 4. Posebit Binary Tree: Each leaf node contains poses con-
strained by all posebits in a posebyte. Nodes higher in the tree are
constrained by fewer posebits, and hence have greater pose vari-
ance. The top left figure depicts poses drawn from the pose distri-
bution conditions on a single posebit. The top right shows the dis-
tribution conditioned on 10 posebits. The bottom two plots show
the poses at the same nodes projected onto their top two principle
directions (i.e., using PCA). Here, red dots depict k-medoids cen-
ters, and black dots denote the remaining samples. The variance
reduction as one moves down the tree is evident.

Once selected, each posebit partitions the data in two. A
set of m posebits yields 2m posebytes, corresponding to
the leaves of a balanced binary tree. At step j, we choose
posebit a to maximize information gain:

a∗ = argmax
a∈SM

Ij = ICj + µ · IRj , (1)

where Ij is the mixed information gain at the j-th level of
the tree. It comprises a reliability term, IRj , and a clustering
term, ICj . The parameter µ balances the influence of the two
terms (µ = 0.5 in all experiments below).

3.2.1 Clustering

Let a vector ofm posebits, called a posebyte, be denoted by
a = (a1, . . . , am) ∈ Am, where A = {−1, 1}. To reduce
pose ambiguity, we want posebits that minimize the entropy
of p(x|a), i.e., at each leaf of the binary tree. Thus, when
adding the jth posebit, the clustering information gain is
computed as ICj = Hj−1 − Hj , where Hj is a weighted
sum of entropies at each node of the j-th level of the tree:

Hj =

2j∑
c=1

|Sxc |
|Sx|

H(Sxc ) . (2)

Here, Sx = U is the set of MoCap poses, Sxc ⊆ (U) is
the subset of poses xp in posebyte class c, and H(S) is the
differential entropy of the pose density for the cluster.



Entropy is difficult estimate with high-dimensional data,
so we use the cluster variance as a surrogate for entropy.
While a crude assumption, variance provides a measure
of cluster compactness and works well in practice. Fig. 4
shows how the conditional pose distribution becomes more
concentrated as one travels down from the root to the leaves.

3.2.2 Reliability
A good posebit should also be inferred reliably from image
features, and provide as much information about pose as
possible. As a simple measure of the extent to which they
provide information about pose we consider a information
measure in which posebits constitute the only intermediate
information available from which one can infer pose.1

In more detail, let x ∈ XD be a target variable, such as
3D pose, let r ∈ Rd denote image features. Marginaliz-
ing over the posebytes a, and supposing that all information
about pose is mediated by the posebytes, we consider an
approximation to the posterior p(x|r), i.e.,

Q(x|r,m) =
∑

a∈Am

p(x|a) p(a|r) . (3)

Here, p(x|a) is the conditional pose distribution, and p(a|r)
is posterior posebyte distribution.

When posebits are reliably inferred from the image fea-
tures, we expect Q(x|r) to approach the ideal case in which
the ground truth posebyte is known, i.e., Qopt(x|r) =
p(x|agt). To this end, we express the reliability informa-
tion gain in terms of the average KL-divergence between
Q(x|r, j) and Qopt(x|r, j) at level j of the binary tree. The
reliability information gain for adding a posebit to the set
is defined as IC = Dj−1

KL − Dj
KL, where DKL the dis-

crete KL-divergence based on training pairs in the labeled
set L = {ri,ai,xi}Li=1

Dj
KL =

∑
i

Qopt(xi|ri, j) log

(
Qopt(xi|ri, j)
Q(xi|ri, j)

)
. (4)

Note that although Qopt(x|r) is harder to approximate as
we go down the tree, the information gain increases as
Qopt(x|r) carries much more information about the pose.

In what follows we consider simple ways to approximate
the two key elements ofQ that are required for this selection
criterion, namely, p(x|a) and p(a|r).

Modeling p(a|r): We model p(a|r) in terms of the score
functions for discriminative classifiers for each posebit in
PbDb2. To each posebit we train an SVM classifier with a

1Alternatively, we also found good results using a measure of classi-
fication performance but this ignores the effect a miss-classified posebyte
has on the final estimation of the hidden variable x.

2 Ideally we would use score functions for posebyte classifiers but there
are 2m posebytes, and hence we approximate these score functions by the

linear score function, e.g. Fj(r) for posebit j. The score
function for a given posebyte, denoted Ĝ(a, r), is then used
to define the density for p(a|r).

In particular, for computational convenience, avoiding
summations over 2m posebytes (e.g. in (3)), we consider
only the top N ranked posebytes 3, an, n = (1 . . . N),
thereby approximating p(a|r) as a multinomial distribution
p(a|r) =

∑N
n πan

δ(a−an) where πan
are computed from

the scores using soft-max

πan
=

exp
(
Ĝ(an, r)/τ

)
∑N
s=1 exp

(
Ĝ(as, r)/τ)

) , (5)

where τ is a temperature parameter set to 0.5. In this set-
ting, Eq. (3) becomes a class conditional mixture model
with weights proportional to the posebyte probabilities

Q(x|r) =
∑

a∈Am

p(x|a)p(a|r) ≈
N∑
n=1

πanp(x|an), (6)

And therefore the KL-divergence in Eq.(4) above becomes

Dj
KL ≈

∑
i

p(xi|ai) log

(
p(xi|ai)∑N

n=1 πan
p(xi|an)

)
. (7)

Modeling p(x|a): To model p(x|a) we bin the poses in a
MoCap database in 2m classes, one for each posebyte. Re-
call that, given a pose x its corresponding posebyte descrip-
tion is easily obtained with simple geometric computations.

We then represent each class distribution by comput-
ing k-medoids obtaining K representatives {xk,an

}Kk=1 for
class an. To avoid unwanted bias we assume the K poses
are equally probable, i.e., p(x|an) =

∑K
k=1

1
K δ(x−xk,an).

In this way, we always sample a fixed set of K codeposes
per class, see Fig. 7.

With this approximation to to p(x|a), and the multi-
nomial approximation to p(a|r) we obtain a model for Q
in terms of a weighted set of samples; i.e., Q(x|r) =
{wk,an ,xk,an}, with k ∈ {1 . . .K} and n ∈ {1 . . . N},
with weights wk,an = 1

Kπan .

3.2.3 Selection Experiments
To demonstrate the efficacy of our selection method we
compare the influence of the selected posebits on the per-
formance of our pose estimation algorithm (Sec. 4.1). Our
algorithm uses the general model in Eq. 3 to generate pose

sum of the m single-posebit score functions. This allow us to evaluate the
information gain without having to train a new structural SVM every time
a new posebit is added to the set.

3we use N = 4 in all experiments.
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Figure 5. Posebit selection. Results on Human-Eva data. (red)
3D error using 10 selected posebits; (green) average error of 20
different random subsets of 10 pose bits; (blue) accuracy obtained
using the ground truth for the 10 selected posebits (to indicate the
impact of posebyte classification errors).

proposals. For this experiment we run the algorithm on the
sequences in Human-Eva. We first use 20 different random
subsets of 10 posebits, picked from the pool of 30 in PbDb,
and report the average 3D pose error (green bars in Fig. 5).
We also show the top 10 posebits (red bars in Fig. 5). The
selected set improves performance significantly on average
which demonstrates that the selection provides a good set
of posebits for inference. The selected posebits are not nec-
essarily the ones with better classification scores as those
might be uninformative or redundant with others. This is
shown in the supplemental material where we report the ac-
curacy for each of the 30 posebit candidates.

3.3. Posebits Classifier

The set of m posebits generated and selected by our
method (Sec. 3.2) form the posebyte a = (a1, . . . .am) ∈
Am. We infer the posebyte directly from raw image fea-
tures r ∈ Rd using a model based on structural SVM [24].
For learning we only require an image dataset with posebit
labels I = {ri,ai}Mi=1.

With a structural SVM the discriminant function for a
single posebit F : Rd × A 7→ R provides a score for the
values the posebit can take. The i-th posebit would then be
estimated by maximizing this function

âj = arg max
aj∈A

F (r, aj ,waj ) = wT
ajφ(aj , r) (8)

where φ(r, aj) = aj r is the joint feature map of input r and
output aj , and wT

aj is the vector of weights to be learned.
While such score functions for a single posebit were used

above for selecting good posebytes, they do not exploit the
shared information among posebyte classes, i.e., classes
with similar posebit strings will be semantically more simi-
lar in pose space. To this end, we learn a discriminant func-
tion G : Rd×Am 7→ R over input output pairs from which
we can derive prediction by maximizing over the response
variable a for a given input r. The joint SVM scoring func-

tion is expressed as

â = arg max
a∈Am

G(r,a, βa) = aTB r + bTψ(a) (9)

where βa = [B(:) b] is the vector of all weights to be
learned, B ∈ Rd×m is a matrix the rows of which define
separating hyperplanes for the posebits, ψ(a) is a potential
that captures posebit co-occurrences. For efficiency and to
prevent over-fitting we factorize the prior ψ(a) in pair-wise
terms, so Eq. (9) becomes

G(r,a, βa) =

m∑
j

bTajφ(r, aj) +
∑
j

∑
k

baj ,akψ(aj , ak)

(10)
where bTaj is the i-th row of B providing the score of posebit
aj and ψ(aj , ak) is the pairwise potential capturing co-
occurrences. The pair-wise potentials consist of normalized
histograms learned from MoCap data. Since the prior only
depends on the output variable it can be precomputed re-
sulting in substantial computational savings.

Equation (10) can be written as a scalar product
G(r,a, βa) = 〈βa,Φ(r,a)〉 between the vector of weights
βa and the joint feature map Φ(r,a). Having zero training
error means that the model scores better the correct pose-
bytes than any other posebyte. Learning the weights βa in-
volves solving the quadratic optimization problem:

min
βa,ξ

1

2
‖βa‖2 +

C

M

M∑
i=1

ξi

s.t ∀i, ∀a ∈ Am\ai, ξi > 0

〈βa,Φ(ri,ai)− Φ(ri,a)〉 ≥ 1− ξi
∆(ai,a)

The above constraint states that the true output ai should
score at least a unit better (the margin) than the best runner-
up. The objective function penalizes violations of these
constraints using scaled slack variables ξi. Intuitively, vi-
olation of a margin constraint associated with a high loss
∆(ai,a) is penalized severely. We do this by scaling the
slack variables with the inverse loss ∆(ai,a). The loss is
simply the Hamming distance between posebytes ai and a.

3.3.1 Classification Experiments
To learn the model in Eq. (10), we used the training im-
ages of the annotated image set, I = {ri,ai}Mi=1. Assum-
ing a bounding box of the person, we construct the feature
vector r by computing spatial pyramid features [9], which
are spatially localized HOG (Histogram of Oriented Gradi-
ents) over increasing cells of sizes 8, 16, 32 and 64 pixels.
Histograming over larger windows adds robustness to miss-
alignments in the training data.
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Figure 6. Classification accuracies for top 10 posebits selected
by our algorithm, when applied to test images from each of the
four databases. Colored bars correspond to individual posebits.
For instance the left-most two bars (blue and red) correspond to
posebits Right hand above the hips? and Right foot in front of the
torso? respectively. The black right-most bar is the average accu-
racy over the 10 posebits. Performance is very good for Human-
Eva, HMODB and Fashion. On the Parse datasets some of the
posebits are not reliably detected due to the high variability in the
poses seen in the images. For example the posebit Left hand to the
left of the torso? is not reliably estimated for Parse. This might
be due to a bias in our dataset, i.e., we do not have enough posi-
tive examples for that posebit. Other posebits such as Right hand
above the neck ? (fifth bar from the left) is accurately classified
in all datasets. Note however, that it is selected fifth because other
posebits were deemed more informative, despite having lower test
accuracies.

Figure 6 depicts the classification accuracies in the test sets
of the four datasets, H-Eva, HMODB, Fashion and Parse,
i.e., the fraction of test images for which the classifier was
correct for a given posebit. Our model can predict posebits
from images with remarkably high accuracies (70-90). The
dataset where we perform more modestly is Parse. That is
probably due to the high variability in pose and appearance
and due to the fact that we only use 150 images for training
(one order than magnitude less than for the other datasets).
Since there is more redundancy in H-Eva and HMODB, bet-
ter accuracies can be obtained. Notably, we obtain good
accuracies across datasets even though a single model was
trained using a joint dataset as opposed to training separate
models.

4. Experiments
Here we report two more experiments with the use of

posebits, one with monocular 3D pose estimation and one
with pose-based image retrieval.

4.1. 3D Pose Estimation

We first consider the use of posebits for 3D pose estima-
tion. The goal is to demonstrate a reduction in pose ambi-
guity that stems from the use of posebits. To that end, we
use the Q(x|r) in Eq. (3) as a proposal distribution during

Figure 7. Poses sampled fromQ(x|r) are evaluated top-down. We
show the input image on the left, the pose proposals from Q(x|r)
in the center (blue poses), and the inferred 3D pose (in green pose)
on the right. In the center, each row corresponds to pose represen-
tatives xk,an for the top 2 ranked posebyte classes an. As it can
be seen in the poses in the middle uncertainty is reduced thanks to
the information about pose mediated by posebytes.

inference. However, unlike it’s construction in the posebit
selection algorithm, here we use the m-bit structural SVM,
rather than single posebit classifiers, to obtain the classifier
scores G(r,a) (see Sec.3.3).

To demonstrate a reduction in uncertainty we use a sim-
ple top-down generative model that uses ofQ(x|r) to gener-
ate pose hypotheses. Given some image features z for pose
estimation, we express the posterior as

p(x|z, r) ∝ p(z|x, r)p(x|r) ' p(z|x)Q(x|r) (11)

where z and r are assumed to be conditionally independent
given the pose x.

Image Likelihood: Many research papers have focused
on the design of high-fidelity likelihood models, such as
[6], but while the likelihood is a key ingredient in pose
estimation, it is not the primary focus of our work. In-
stead, here we assume that unlabeled 2D joint locations are
available, perhaps obtained from a 2D pose estimation algo-
rithm. Hence, the image features z = (m1 . . .mJ) consist
of a collection of 2D points mi ∈ R2.

Let F(x; j) : XD 7→ R3 be a function that maps a pose
x to the j-th 3D joint position. We model p(z|x) as a prod-
uct of isotropic 2D Gaussians centered at joint locations:

p(z|x) =
1

C
exp

(
−

P∑
i=1

e2(mi|x)

)
, (12)

where C is a normalization constant, and e(mi|x) is the
Euclidean distance between the 2D measurement and the
closest 3D joint projected into the image:

e(mi|x) = min
j
‖mi − Proj(F(x; j))‖ . (13)

Here, Proj projects 3D points to the image plane. We a
scaled orthographic projection, where the scale is set to
match the person’s height in the image plane.
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Figure 8. Pose estimation error: Left: bottom-up inferred
posebits are used to condition poses and reduce ambiguities in a
top-down method. Right: 3D pose error (mm) as a function of
the number of posebits. The vertical axis corresponds to the mean
pose error computed on the Human-Eva sequences. Notice the sig-
nificant improvement decreasing the error from 110 mm down to
almost 70 mm when using 12 posebits. This clearly demonstrates
the usefulness of using posebits during inference.

The pose estimate is given by the mode of the posterior
p(x|z, r), obtained by evaluating the K × N poses from
the proposal distribution Q(x|r) = {xk,an

, wk,an
}. Recall,

that Q(x|r) is represented by K poses for each of the N
classes of the top ranked posebytes. To build the model
for p(x|a), the poses in the Posebit MoCap set are scaled
to a unit pose, i.e., all bones are re-scaled by the size of
a template pose. In addition, all poses are centered at the
origin and the yaw angle4 is set to zero5.

The root orientation is estimated by uniformly sampling
rotations (θroot) about the vertical axis at 32 equi-spaced
angles. LetM(θ;x) be a function that rotates a pose x by θ
degrees. Then, the pose estimate is obtained by maximizing

x∗ = arg maxxk,an

(
max
θroot

(p (z|M(θroot;xk,an
))wk,an

)

)
where xk,an is the k-th pose of the class corresponding to
posebyte an, and wn,ak

∝ p(x|r) are the importance sam-
pling weights (see Sec. 3.2.2). In Fig. 7, we show an exam-
ple of how Q(x|r) is used to reduce uncertainty about pose.
A diagram of the approach is shown in Fig. 8 left.

Validation: We test the algorithm on the H-Eva se-
quences and report the mean pose error. Fig. 8 right shows
mean pose error as a function of the number of posebits.
As expected, with increasing numbers of posebits, the in-
ference becomes less ambiguous and estimator accuracy
thereby increases. The best results are obtained using 12
of the 30 random posebits currently in PbDb. That said, we
think that 10 is a good trade-off between accuracy and anno-
tation effort required to collect training data. Notice the big
drop in pose error as we increase the number of posebits.
We also show qualitative results in Fig. 9(a).

Our current unoptimized Matlab implementation runs at
an average of 22 frames per second using 10 posebits, 4

4The viewpoint w.r.t. the camera is arbitrary
5For more implementation details see the supplemental material

mixtures and 10 code-poses per class.

4.2. Image Retrieval

Posebits may be useful for many applications beyond
pose estimation. Here we consider image retrieval based on
pose attributes. That is, posebits inferred from an image are
used to retrieve other images in the DB with similar poses.
We use the top ranked posebytes by the classifier to retrieve
images with the similar posebyte strings. Qualitative results
are shown in Fig. 9.

5. Conclusions
We introduced posebit, a semantically powerful pose de-

scriptor. Experiments show that our selection method learns
a good set of posebits, i.e., retains the ones that can be re-
liably inferred from images and are informative about the
pose. We have also shown that using posebits as a mid-
layer representation can improve monocular pose estima-
tion. One of the advantages of the proposed method is that
annotation is easier and more intuitive for the human ob-
server. This enables easy collection of training data. Exper-
iments reveal that posebits can resolve many of the monoc-
ular ambiguities and can be useful as basis for many poten-
tial applications. In particular, we do not see posebits as a
competitor to existing approaches but rather as a powerful
complementary feature. For future work, we plan on anno-
tating more data, and to explore more posebit applications.
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