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72076, Tübingen, Germany

bs@tuebingen.mpg.de

Abstract
This paper is concerned with the problem of domain
adaptation with multiple sources from a causal point of
view. In particular, we use causal models to represent
the relationship between the features X and class la-
bel Y , and consider possible situations where different
modules of the causal model change with the domain.
In each situation, we investigate what knowledge is ap-
propriate to transfer and find the optimal target-domain
hypothesis. This gives an intuitive interpretation of the
assumptions underlying certain previous methods and
motivates new ones. We finally focus on the case where
Y is the cause for X with changing PY and PX|Y , that
is, PY and PX|Y change independently across domains.
Under appropriate assumptions, the availability of mul-
tiple source domains allows a natural way to reconstruct
the conditional distribution on the target domain; we
propose to model PX|Y (the process to generate effect
X from cause Y ) on the target domain as a linear mix-
ture of those on source domains, and estimate all in-
volved parameters by matching the target-domain fea-
ture distribution. Experimental results on both synthetic
and real-world data verify our theoretical results.

Traditional machine learning relies on the assumption that
both training and test data are from the same distribution. In
practice, however, training and test data are probably sam-
pled under different conditions, thus violating this assump-
tion, and the problem of domain adaptation (DA) arises.
Consider remote sensing image classification as an exam-
ple. Suppose we already have several data sets on which the
class labels are known; they are called source domains here.
For a new data set, or a target domain, it is usually diffi-
cult to find the ground truth reference labels, and we aim
to determine the labels by making use of the information
from the source domains. Note that those domains are usu-
ally obtained in different areas and time periods, and that the
corresponding data distribution various due to the change in
illumination conditions, physical factors related to ground
(e.g., different soil moisture or composition), vegetation,
and atmospheric conditions. Other well-known instances
of this situation include sentiment data analysis (Blitzer,
Dredze, and Pereira 2007) and flow cytometry data analy-
sis (Blanchard, Lee, and Scott 2011). DA approaches have
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many applications in varies areas including natural lan-
guage processing, computer vision, and biology. For sur-
veys on DA, see, e.g., (Jiang 2008; Pan and Yang 2010;
Candela et al. 2009).

In this paper, we consider the situation with n source
domains on which both the features X and label Y are
given, i.e., we are given (x(i),y(i)) = (x

(i)
k , y

(i)
k )mi

k=1, where
i = 1, ..., n, and mi is the sample size of the ith source
domain. Our goal is to find the classifier for the target do-
main, on which only the features xt = (xtk)mk=1 are avail-
able. Here we are concerned with a difficult scenario where
no labeled point is available in the target domain, known as
unsupervised domain adaptation. Since PXY changes across
domains, we have to find what knowledge in the source
domains should be transferred to the target one. Previous
work in domain adaptation has usually assumed that PX
changes but PY |X remain the same, i.e., the covariate shift
situation; see, e.g., (Shimodaira 2000; Huang et al. 2007;
Sugiyama et al. 2008; Ben-David, Shalev-Shwartz, and
Urner 2012). It is also known as sample selection bias (par-
ticularly on the features X) in (Zadrozny 2004).

In practice it is very often that both PX and PY |X change
simultaneously across domains. For instance, both of them
are likely to change over time and location for a satellite im-
age classification system. If the data distribution changes ar-
bitrarily across domains, clearly knowledge from the sources
may not help in predicting Y on the target domain (Rosen-
stein et al. 2005). One has to find what type of infor-
mation should be transferred from sources to the target.
One possibility is to assume the change in both PX and
PY |X is due to the change in PY , while PX|Y remains the
same, as known as prior probability shift (Storkey 2009;
Plessis and Sugiyama 2012) or target shift (Zhang et al.
2013). The latter further models the change in PX|Y caused
by a location-scale (LS) transformation of the features for
each class. The constraint of the LS transformation renders
PX|Y on the target domain, denoted by P tX|Y , identifiable;
however, it might be too restrictive.

Fortunately, the availability of multiple source domains
provides more hints as to find P tX|Y , as well as P tY |X .
Several algorithms have been proposed to combine knowl-
edge from multiple source domains. For instance, (Mansour,
Mohri, and Rostamizadeh 2008) proposed to form the target
hypothesis by combining source hypotheses with a distribu-



tion weighted rule. (Gao et al. 2008), (Duan et al. 2009),
and (Chattopadhyay et al. 2011) combine the predictions
made by the source hypotheses, with the weights determined
in different ways.

An intuitive interpretation of the assumptions underly-
ing those algorithms would facilitate choosing or develop-
ing DA methods for the problem at hand. To the best of our
knowledge, however, it is still missing in the literature. One
of our contributions in this paper is to provide such an inter-
pretation. This paper studies the multi-source DA problem
from a causal point of view where we consider the under-
lying data generating process behind the observed domains.
We are particularly interested in what types of information
stay the same, what types of information change, and how
they change across domains. This enables us to construct
the optimal hypothesis for the target domain in various situa-
tions. To this end, we use causal models to represent the rela-
tionship between X and Y , because they provide a compact
description of the properties of the change in the data dis-
tribution.1 They, for instance, help characterize transporta-
bility of experimental findings (Pearl and Bareinboim 2011)
or recoverability from selection bias (Bareinboim, Tian, and
Pearl 2014).

As another contribution, we further focus on a typical DA
scenario where both PY and PX|Y (or the causal mecha-
nism to generate effect X from cause Y ) change across do-
mains, but their changes are independent from each other,
as implied by the causal model Y → X . We assume that
the source domains contains rich information such that for
each class, P tX|Y can be approximated by a linear mixture
of PX|Y on source domains. Together with other mild con-
ditions on PX|Y , we then show that P tX|Y , as well as P tY ,
is identifiable (or can be uniquely recovered). We present
a computationally efficient method to estimate the involved
parameters based on kernel mean distribution embedding
(Smola et al. 2007; Gretton et al. 2007), followed by several
approaches to constructing the target classifier using those
parameters.

One might wonder how to find the causal information un-
derlying the data to facilitate domain adaptation. We note
that in practice, background causal knowledge is usually
available, helping formulating how to transfer the knowl-
edge from source domains to the target. Even if this is not
the case, multiple source domains with different data distri-
butions may allow one to identify the causal structure, since
the causal knowledge can be seen from the change in data
distributions; see e.g., (Tian and Pearl 2001).

1 Possible DA Situations and Their Solutions
DA can be considered as a learning problem in nonstationary
environments (Sugiyama and Kawanabe 2012). It is help-
ful to find how the data distribution changes; it provides the
clues as to find the learning machine for the target domain.

1The causal model also describes how the components of the
joint distribution are related to each other, which, for instance,
gives a causal explanation of the behavior of semi-supervised learn-
ing (Schölkopf et al. 2012).

Table 1: Notation used in this paper.
X , Y random variables
X , Y domains
P

(i)
XY distribution in the ith source domain
P t
XY distribution in the target domain

(x(i),y(i)) =

(x
(i)
k , y

(i)
k )mi

k=1

sample in the ith source domain

x
(i)
j = (x

(i)
jk )

mij

k=1 X values with Y = cj in the ith source
domain

xt = (xtk)
m
k=1 X values in the target domain

Kt kernel matrix on xt

Kit “cross” kernel matrix between x(i) and xt

ψ(X) feature map of X

We focus on how causality, which provides a compact and
intuitive description about distribution changes, helps us in
DA. Generally speaking, in the unconfounded case, the pro-
cess that generates the effect from the cause does not de-
pend on that generating the cause (Pearl 2000). We can rep-
resent such knowledge with graphical models, or selection
diagrams defined in (Pearl and Bareinboim 2011). In partic-
ular, let us consider four situations which are often the case
in practice; see Fig. 1. HereWs and Vs are represent domain-
specific selection variables, and they are hidden variables.2

Below we discuss what knowledge to transfer from source
domains to target, and how to construct the optimal target-
domain hypothesis in each situation. For clarity and sim-
plicity of the presentation, the causal models in the figure
are simplified—we do not consider the existence of possi-
ble confounders underlying X and Y or the relationship be-
tween the components of X . We would like to remark that
in many supervised tasks, Y is the cause of X , e.g., in clinic
diagnosis and handwritten digit recognition problems. The
analysis in this section applies to both classification and re-
gression.

Situation 1 (Fig. 1.a): X → Y with changing PX and
fixed PY |X (covariate shift). Theoretically speaking, in
this case PX is irrelevant for modeling PY |X ; however, if
one uses a simple model to predict Y , which is usually
the case, under-fit of the conditional model causes the pre-
dicted Y to depend on the input distribution PX ; importance
reweighting according to the difference in PX between the
source and target domains is widely used to correct covariate
shift (Shimodaira 2000; Sugiyama et al. 2008).

2Such variable are graphically depicted as square nodes
in (Pearl and Bareinboim 2011). We would like to distinguish be-
tween the domain-specific selection diagram and the sample selec-
tion bias procedure used in (Bareinboim, Tian, and Pearl 2014). In
the former, the selection variablesWs and Vs are root variables and
encode the information that they change the corresponding data-
generating process across domains. In the latter, the selection vari-
able is a sink node and encodes the property of the final sampling
procedure.
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Figure 1: Possible situations of DA. X denote the feature
vector, and Y is the target to be predicted. Ws and Vs are
domain-specific selection variables assumed to be indepen-
dent, leading to changing PXY across domains. (a) Covari-
ate shift: PX is changed by Ws, but PY |X does not change.
(b) Ws and Vs change PX and PY |X , respectively. (c) Tar-
get shift: Ws changes PY , with PX|Y unchanged. (d) Ws

and Vs change PY and PX|Y , respectively. In the first two
situations, we consider X as a cause for Y , whilst in the last
two situations, Y is a cause of X .

Situation 2 (Fig. 1.b): X → Y with changing PY |X (and
possibly changing PX ). Below we derive the optimal hy-
pothesis for the target domain. Let P t∗Y |X be the underly-
ing optimal posterior of Y on the target domain; see Ta-
ble 1 for the notation used in this paper. Since Vs is un-
known, we can estimate the optimal hypothesis by mini-
mizing the expected Kullback-Leibler divergence between
P tXY |Ws,Vs

= P tX|Ws
P tY |X,Vs

= P tXP
t
Y |X,Vs

and P tXP
t∗
Y |X

(or maximizing the expected likelihood), which is given be-
low, and the following position gives the solution.

EVsKL(P
t
XY |Ws,Vs

∣∣∣∣P t
XP

t∗
Y |X)

=EX,Y,Vs log
(P t

XP
t
Y |X,Vs

P t
XP

t∗
Y |X

)
= EX,Y,Vs log

(P t
Y |X,Vs

P t∗
Y |X

)
. (1)

Proposition 1. Minimizing (1) w.r.t. a valid conditional dis-
tribution P t∗Y |X has the solution P t∗Y |X =

∫
PY |X,Vs

dPVs
=

EVs
[PY |X,Vs

]

In practice, the constructed optimal hypothesis would be
P̂ t∗Y |X = 1

n

∑n
i=1 P

(i)
Y |X . That is, the learned target hypoth-

esis is a convex combination (or more specifically, the av-
erage) of the source hypotheses. In (Mansour, Mohri, and
Rostamizadeh 2008) this is known as the convex combina-
tion rule.

Situation 3 (Fig. 1.c): Y → X , with changing PY and
fixed PX|Y . This is called prior probability shift (Storkey
2009) or target shift (Zhang et al. 2013). (Plessis and
Sugiyama 2012) and (Zhang et al. 2013) studied how to es-
timate the change in PY in this situation, and the latter also
applies for regression problems (i.e., with continuous Y ).

Here we consider multiple source domains. Suppose P tY
can be represented as P tY =

∑n
i=1 α̃iP

(i)
Y ; we can derive the

posterior of Y on the target domain:

P tY |X =
PX|Y P

t
Y

P tX
=
PX|Y

∑n
i=1 α̃iP

(i)
Y

P tX

=

∑n
i=1 α̃iP

(i)
XY∑n

i=1 α̃iP
(i)
X

=

n∑
i=1

α̃iP
(i)
X∑n

q=1 α̃qP
(q)
X

P
(i)
Y |X . (2)

The hypothesis for the target domain is then a distribu-
tion weighted combination of the individual hypotheses on
source domains. This combination rule has been discussed
in (Mansour, Mohri, and Rostamizadeh 2008), and here we
have shown that in Situation 3 it is actually optimal. (Man-
sour, Mohri, and Rostamizadeh 2008) also compared this
combination rule against the convex combination rule (see
Situation 2), and the former was shown to be superior. This
is consistent with the fact that in most classification prob-
lems Y is the cause for X; one can think of handwritten
digit recognition and medical diagnosis as typical examples.

Situation 4 (Fig. 1.d): Y → X with changing PX|Y (and
possibly changing PY ). This is known as generalized tar-
get shift in (Zhang et al. 2013), where only a single source
domain was considered. In Situation 4 we have to make cer-
tain assumptions on how PX|Y changes; with them, fortu-
nately, P tX might provide additional knowledge to find the
optimal classifier. This case will be further discussed in de-
tail in the next section.

2 DA with Independently Changing PY &
PX|Y

Here we consider Situation 4, where PY and PX|Y both
change across domains, as shown in Fig. 1.d. According
to the graphical model or the causal explanation Y → X ,
we know that PY and PX|Y change independent from each
other. In this section we restrict our attention to classification
problems. Generally speaking, without further conditions on
the data generating process, it is not possible to recover
P tX|Y , the conditional distribution on the target domain. It
is possible to solve the problem under rather restrictive as-
sumptions. For instance, (Zhang et al. 2013) considers DA
with a single source domain, and assumes that the change in
PX|Y follows the location-scale (LS) transformation; P tX|Y
is then generally identifiable. They have reported that LS
generalized target shift produces a much better performance
on remote sensing image classification then all alternatives,
which demonstrates that Situation 4 is practically relevant
for some rather complex DA problems.

Compared to a single source domain, multiple source do-
mains contain much richer information as to how to deter-
mine PX|Y on the target domain, and we can avoid the con-
straint of the LS transformation.

2.1 Model: Target Conditional as a Linear
Mixture of Source Conditionals

Motivation One can consider PX|Y,Vs
(which is the con-

ditional PX|Y in the domain associated with Vs; see Fig. 1.d)



as the mechanism to generate features from the class la-
bel given the domain. Imagine that there exist L elemen-
tary “sub-mechanisms”, or class conditional feature distri-
butions, P̃ (l)

X|Y , l = 1, ..., L, so that the mechanism in each
domain, PX|Y,Vs

, is a mixture of those sub-mechanisms, i.e.,
PX|Y=cj ,Vs

=
∑L
l=1 α̃Vs,j,lP̃

(l)
X|Y=cj

, where α̊Vs,j,l depend

on both Vs and j, α̊Vs,l ≥ 0, and
∑L
l=1 α̊Vs,l = 1. Conse-

quently, in the multi-source DA scenario, if for each j, the
rank of {P (i)

X|Y=cj
| i = 1, ..., n} is equal to L, P tX|Y=cj

can

always be represented as a linear mixture of P (i)
X|Y=cj

.
More generally speaking, the proposed approach was also

inspired by latent variable modeling. According to Fig. 1.d,
we know that PX|Y=cj , or computationally more easily, its
kernel embedding (Smola et al. 2007; Gretton et al. 2007),
is actually a function of Vs:

µ[PX|Y=cj ,Vs
] =

∫
ψ(x)PX|Y=cj ,Vs

dx = Fj(Vs), (3)

where Fj are infinite-dimensional vector functions, which
might vary for different values of j. Here Vs contains
domain-specific conditions. For instance, for object recog-
nition, it may contain the illumination condition, the angle
from which the image was taken, etc.

One can see that the intrinsic dimensionality of
{µ[P

(i)
X|Y=cj

] | i = 1, ..., n}, is upper bounded by the intrin-
sic dimensionality of Vs, denoted by df . They are equal if Fj
is non-degenerate, i.e., if there is no loss of degree of free-
dom in the transformation (3). We define df as the degree-
of-freedom in the conditional distribution change. Generally
speaking, the higher df , the more complex the change in
PX|Y=cj across domains. Since on source domains we only
know that Vs might change across domains but cannot ac-
cess its values, we cannot directly find df .

For simplicity, let us assume that Fj in (3) can be approx-
imated by a linear function,3 i.e., µ[PX|Y=cj ,Vs

] = LFj
Vs,

where LFj
has an infinite number of rows and df columns.

That is,(
µ[P

(1)

X|Y =cj
], · · · , µ[P (n)

X|Y =cj
]
)
= LFj ·

(
V

(1)
s , · · · , V (n)

s

)
.

If we further assume that V ts can be constructed as a
linear mixture of Vs on source domains, then P tX|Y=cj

is a linear mixture of PX|Y=cj on source domains. This
tends to be the case if df is small: in this case, the rank
of Vs is small, and then the class conditional feature dis-
tributions are likely to be linearly dependent, that is, the
target-domain conditional distribution is likely to be rep-
resented as a linear mixture of those on source domains.
If needed, in such situations we can directly estimate df
from source domains by finding the rank of the estimated
µ[P

(i)
X|Y=cj

], i = 1, ..., n, under the condition that we have
enough source domains which are diverse enough. More

3This holds if Fj is essentially linear, or if Vs does not change
too much so that one can use linear approximation for Fj on all
observed domains.

specifically, let −̂→µ j =
(
µ̂[P

(1)
X|Y=cj

], ..., µ̂[P
(n)
X|Y=cj

]
)

=(
1
m1j

ψ(x
(1)
j )1, ..., 1

m1j
ψ(x

(n)
j )1

)
, where 1 denotes the vec-

tor of all 1’s of an appropriate size; under this condition, df
can be estimated as the maximum of the following quantity
for all j:

rank(−̂→µ j) = rank(−̂→µ
ᵀ

j
−̂→µ j) = rank(Qj), (4)

where the (i, i′)th entry of Qj is
1

mijmi′j
1ᵀK(x

(i)
j ),x

(i′)
j ))1. In practice, an appropri-

ately chosen threshold is needed to determine the rank, due
to the estimation error in the kernel mean embedding.

Formulation Motivated by this, we make the following
assumption on PX|Y on the target domain.

A1. For each y, P tX|Y=y is a mixture of PX|Y=y on the source
domains, i.e., there exist αij , which satisfy the constraint∑n
i=1 αij = 1 for all j, such that

PnewX|Y=cj
=

n∑
i=1

αijP
(i)
X|Y=cj

(5)

is equal to P tX|Y=cj
, where cj is the jth possible value of

Y .4

Denote by PnewY a marginal distribution of Y , and use
PnewY (cj) as shorthand for PnewY (Y = cj). The correspond-
ing joint distribution is

PnewX,Y=cj = PnewY (cj)P
new
X|Y=cj

, (6)

and the marginal distribution of X is then

PnewX =

C∑
j=1

PnewY (cj)

n∑
i=1

αijP
(i)
X|Y=cj

. (7)

We aim to match PnewX with P tX by tuning the param-
eters αij and PnewY (cj). Here we have the constraints
PnewY (cj) ≥ 0, and

∑C
j=1 P

new
Y (cj) = 1. Let βij ,

PnewY (cj)αij , which satisfy the condition

C∑
j=1

n∑
i=1

βij = 1. (8)

Once we find the values of βij , we can reconstruct pnewY and
αij by PnewY (cj) =

∑n
i=1 βij , and αij =

βij

Pnew
Y (cj)

. The
following theorem states that under mild conditions, P tX|Y
can be uniquely recovered.

4We have two remarks here. First, for the domains with
P

(i)
Y (cj) = 0, P (i)

X|Y =cj
is undefined, and one can simply set

αij = 0. Second, usually the weights αij in a distribution mix-
ture model are assumed to be nonnegative; however, this is not
necessary to guarantee that the constructed P t

X|Y =cj
is a valid dis-

tribution. For flexibility of the mixture model, we allow αij to be
negative, as long as Pnew

X|Y =cj
is a valid distribution, which, under

appropriate assumptions, is achieved by matching Pnew
X with P t

X ,
as implied by Theorem 1.



Theorem 1. Let Assumption A1 hold. Further make the fol-
lowing assumption:

A2. For any constants dij that satisfy
∑n
i=1 d

2
ij 6= 0, it holds

that
∑n
i=1 dijP

(i)
X|Y=cj

, j = 1, ..., C, are always linearly
independent, if they are not zero.

Then if PnewX = P tX , we have PnewY = P tY and PnewX|Y =

P tX|Y , i.e, PnewXY is identical to P tXY .

To get an idea how strong (or weak) Assumption A2 is,
note that it is an assumption of linear independence of prob-
ability measures, or of densities (as functions of x). For con-
tinuous x, those are objects in infinite-dimensional spaces,
and linear independence is the generic case rather than a spe-
cial situation.

A sufficient condition for Assumption A2 is that
P

(i)
X|Y=cj

, i = 1, ..., n, j = 1, ..., C, are linearly indepen-
dent. Note that this conditional is much stronger: Assump-
tion A2 allows P (i)

X|Y=cj
, i = 1, ..., n, to be linear dependent

for the same j. In fact, here we do not care about the the
identifiability of the parameters βij (or αij and PY ), but the
identifiability of PnewX|Y .

2.2 Parameter Estimation by Reproducing the
Target Feature Distribution

We can estimate the parameters βij , and hence αij and
PnewY , by minimizing the maximum mean discrepancy
(MMD; see (Gretton et al. 2007)):∣∣∣∣∣∣µ[Pnew

X ]− µ[P t
X ]]
∣∣∣∣∣∣ = ∣∣∣∣∣∣EPnew

X
[ψ(X)]− µ[P t

X ]
∣∣∣∣∣∣

=
∣∣∣∣∣∣ C∑

j=1

Pnew
Y (cj)

n∑
i=1

αijµ[P
(i)

X|Y =cj
]− µ[P t

X ]
∣∣∣∣∣∣. (9)

Let x(i)jk , k = 1, ...,mij denote the data points of X in
the ith source domain for which Y = cj , where mij is the
total number of points in the ith source domain for which
Y = cj . Similarly, xtk denotes the kth point of X in the
target domain. In practice, we minimize the square of the
empirical version of (9):

J0 =
∣∣∣∣∣∣ C∑

j=1

Pnew
Y (cj)

n∑
i=1

αij

mij

mij∑
k=1

ψ(x
(i)
jk )−

1

m

m∑
k=1

ψ(xtk)
∣∣∣∣∣∣2

=

C∑
j=1

n∑
i=1

C∑
j′=1

n∑
i′=1

βijβi′j′

mijmi′j′

mij∑
k=1

mi′j′∑
k′=1

k(x
(i)
jk , x

(i′)
j′k′)−

2

C∑
j=1

n∑
i=1

βij
mmij

mij∑
k=1

m∑
k′=1

k(x
(i)
jk , x

t
k′) + const. (10)

Let ~β , (β11, ..., β1C , β21, ..., β2C , ..., βn1, ..., βnC)ᵀ,
A be a nC × nC matrix with
A(i−1)C+j,(i′−1)C+j′ = 1

mijmi′j′

∑
k

∑
k k(x

(i)
jk , x

(i′)
j′k′) =

1
mijmi′j′

1ᵀK(x
(i)
j ,x

(i′)
j′ )1 for i ∈ {1, 2, ..., n},

i′ ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., C}, and j′ ∈ {1, 2, ..., C},
and b be a nC-dimensional vector with its entries
b(i−1)C+j = − 1

mmij

∑mij

k=1

∑m
k′=1 k(x

(i)
jk , x

t
k′) =

− 1
mmij

1ᵀK(x
(i)
j ,xtk′) for i ∈ {1, 2, ..., n},

i′ ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., C}. ~β can then be
estimated by minimizing J0:

J0 = ~βᵀA~β + 2bᵀ~β + const, (11)

subject to the constraint (8).5 This is a quadratic program-
ming (QP) problem. After finding the values of ~β, we can
then construct αij and PnewY (cj). For some practical issues
in this optimization procedure, including enforcing the spar-
sity constraint on αij ; see Supplementary Material.

In our experiments, we use the Gauss kernel, which is
known to be characteristic; unless specified otherwise, we
adopt the median heuristic to set the kernel width.

2.3 Construction of Target Classifiers
Given the estimated parameters βij (or αij), we then present
several natural ways to construct the target-domain classifier
or directly determine the class labels on the target domain.

By importance reweighting on source samples (denoted
weigh sample) The first approach is to train the classi-
fier on the original data points in source domains with appro-
priate importance weights. Once we find αij and PnewY (cj),
we can construct PnewXY , which mimics P tXY . According
to (5), since an empirical estimator of P (i)

X|Y (x|y = cj) is

P̂
(i)
X|Y (x|y = cj) = 1

mij

∑mij

k=1 δ
(
x−x(i)jk

)
, where δ(·) is the

Dirac delta function, an empirical estimator of PnewXY (x, y =

cj) is P̂newXY = PnewY (cj)
∑n
i=1

αij

mij

∑mij

k=1 δ
(
x − x

(i)
jk

)
.

We aim to find the function f(x) which minimizes the
expected loss on the target domain. Denoted by l(x, y; θ)
the loss function, where θ denotes the involved pa-
rameters, the expected loss is R[P tXY , θ, l(x, y; θ)] =
EP t

XY
[l(x, y; θ)]. Its empirical estimator is

Remp[P̂
new
XY , θ, l(x, y; θ)] =

∫
P̂newXY l(x, y; θ)dxdy =∑C

j=1

∑n
i=1

∑mij

k=1
αijP

new
Y (cj)
mij

l(x
(i)
jk , cj ; θ). We can then

train the classifier on all source data points with the
reweighting coefficients αijP

new
Y (cj)
mij

.

By generative modeling (denoted genar model) The
second approach is purely generative. Let ηj(x) ,

P tY=cj |X(x) =
P t

Y (cj)P
t
X|Y =cj

P t
X

. For any value of x, if ηj(x)

is known, one can directly find the class label for x by com-
paring ηj(x), j = 1, ..., C. We propose a method to estimate
ηj(x) without explicitly estimating those involved distribu-
tions. Again, we make use of the kernel mean embedding of
distributions. For details see Supplementary Material.

By weighted combination of source classifiers (denoted
combn classf) Alternatively, we can combine the indi-
vidual source classifiers to form the one for the target do-

5Here we use a hard constraint on βij . Note that in (Huang et al.
2007; Gretton et al. 2008), a slightly different constraint was used
for importance weights to correct for covariate shift.



main:

P t
Y |X(y = cj |x) =

P t
Y (cj)

∑n
i=1 αijP

(i)

X|Y (x|y = cj)

P t
X

=

n∑
i=1

γ
(i)
j (x)P

(i)

Y |X(y = cj |x), (12)

where γ
(i)
j (x) , αijP

t
Y (cj)P

(i)
X (x)

P
(i)
Y (cj)P t

X(x)
. Note that under As-

sumption A1, we have
∑n
i=1 γ

(i)
j (x) = 1. The weights

γ
(i)
j (x) can be estimated in a similar way to ηj in approach
genar model. This method involves construction of n
classifiers and combines them with weights γ(i)j (x), which
depend on all of the test point x, domain i, and class j.

Comparisons of those approaches involve theoretical
studies of discriminative and generative classifiers and the
behavior of importance reweighting and weighted combina-
tion of classifiers. Generally speaking, as a generative ap-
proach, genar model might not work well when X is
high-dimensional. We will next compare them empirically.

2.4 Special Case: Distribution Weighted
Hypothesis Combination

The distribution weighted hypothesis combination
rule (Mansour, Mohri, and Rostamizadeh 2008) is ac-
tually a special case of the proposed combn classf under
additional constraints; as stated in the following theorem.
Theorem 2. Suppose the conditions in Theorem 1 hold.
The source hypothesis combination rule (12) reduces to the
distribution weighted combination rule in the form of (2)
under any of the following conditions:

1. PX|Y does not change across domains, and P tY is a
linear mixture of PY on source domains, or

2. PY does not change, and αij in (5) are the same for all
classes j = 1, ..., C, or

3. both PX|Y and PY change, but αijP
(i)
Y (cj)/P

t
Y (cj) are

the same for all j.
The three conditions in the above theorem all constrain

how PY or PX|Y change. For the distribution weighted rule,
the same coefficient, 1/n, was used in (Mansour, Mohri,
and Rostamizadeh 2008) for all sources; here we denote
this method by simple adapt. We propose to use kernel
mean matching (KMM; see (Huang et al. 2007)) to estimate
α̃i in the distribution weighted rule (2) from data such that∑
i α̃iP

(i)
X is as close to P tX as possible, and the resulting

hybrid method is denoted by dstr wgh (H). Moreover,
note that in our dstr wgh (H), the weights can be nega-
tive, while in (Mansour, Mohri, and Rostamizadeh 2008) all
coefficients have to be nonnegative.

3 Experiments
3.1 Simulations
We first test the performance of the multi-source DA meth-
ods proposed in Section 2.3 for classification on simulated

data. We generated the data according to Assumption A1 in
Sec. 2.1: on each domain, we generated the data points be-
longing to each class as a mixture of three fixed Gaussians,
which have different means or variances, with random coef-
ficients, and PY was also randomly chosen on each domain.
We used three source domains, and in each domain the num-
ber of points in each class is a random number between 50
and 600. Fig. 2 shows the simulated data in one replication.

We compare the three classification approaches proposed
in Section 2.3 against a number of alternatives. We include
the following representative hypothesis combination meth-
ods for comparison: LWE (Gao et al. 2008), convex hy-
pothesis combination (Mansour, Mohri, and Rostamizadeh
2008), denoted convex, simple adapt (Mansour,
Mohri, and Rostamizadeh 2008), and dstr wgh (H),
which adopts the distribution weighted combination rule
(2) with the weights α̃i estimated from data. KMM for
correcting covariate shift (Huang et al. 2007), the pool-
ing SVM (denoted pool SVM), which merge all source
data to train the SVM, domain-invariant component anal-
ysis (DICA) (Muandet, Balduzzi, and Schölkopf 2013), and
Learning marginal predictors (LMP) proposed by (Blan-
chard, Lee, and Scott 2011) are also included.

In our methods, we simply set the kernel width to 0.5,
and the SVM parameters were selected by 5-fold cross val-
idation on the parameter grids. Fig. 3 gives the boxplot
of the misclassification rate of each method over 50 repli-
cations. We use both the Wilcoxon signed ranks test and
Friedman test, recommended by (Dems̆ar 2006), for perfor-
mance comparison. With both tests, we found that on sim-
ulated data, the proposed approaches weigh sample and
combn classf outperform all alternatives with p values
smaller than 0.01, and that genar model outperforms all
the remaining methods with the p values smaller than 0.05.
dstr wgh (H) and simple adapt are closely behind,
verifying the finding that distribution weighted rule outper-
forms the convex combination of the source hypotheses re-
ported in (Mansour, Mohri, and Rostamizadeh 2008).

Since the data points from each class were drawn from
the mixture of three Gaussians with random coefficients, for
each class, df , the degree-of-freedom in the conditional dis-
tribution change, as defined in Section 2.1, is 3. Recall that
it indicates how many non-redundant source domains are
needed to reconstruct P tX|Y . On the simulated data we found
that rank(Qj) = 3. We also varied the number of source do-
mains from 3 to 5, and the rank of Qj is still 3, as confirmed
by the test of the rank of Hermitian positive semidefinite ma-
trices (Camba-Mendez and Kapetanios 2005).

3.2 Real data: Sentiment analysis & Object
recognition

The sentiment data (Blitzer, Dredze, and Pereira 2007) con-
sist of review text and labels for four categories of goods
(domains): book, dvd, electronics, and kitchen; each domain
contains 2000 data points (or reviews) with four labels (or
classes). We repeated the experiments on this dataset by
(Mansour, Mohri, and Rostamizadeh 2008), but with a more
general setting. (Mansour, Mohri, and Rostamizadeh 2008)
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Figure 2: Simulated data in one replication.
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Figure 3: Boxplot of misclassification rate of each method on simulated data (50 replications).

constructed the target domain as a uniform mixture of data
points randomly sampled from the four domains; the rest of
the data were used as source-domain data. For each class,
we sampled w% (w is a random number between 20 and 50)
of the points from each source domain as the target-domain
data. Our sampling scheme is more general: in our case P tXY
is not necessary a uniform mixture of P (i)

XY . We use the the
frequency of the unigrams that appear 50 times or more in
every domain as the features (in total there are 308 features).
Each method was repeated 10 times by randomly sampling
the data. The mean and standard deviation of the accuracies
on target domains by each method are given in the upper part
of Table 2. combn classf and weigh sample give the
best accuracies.

We also compared our approaches with alternatives on the
object recognition data (Griffin, Holub, and Perona 2007), as
done by (Gong et al. 2012). We evaluated different methods
on four object recognition datasets (domains): Amazon (im-
ages downloaded from Amazon), Webcam (low-resolution
images by a web camera), DSLR (high-resolution images by
a SLR camera), and Caltech-256 (Griffin, Holub, and Per-
ona 2007). We extracted 10 common categories among all
domains. There are 8 to 151 samples per category per do-
main, and 2533 images in total. We used three domains as
sources and the rest one as the target. We followed the fea-
ture extraction scheme in (Gong et al. 2012). We used SVM
for all the DA methods, and the SVM hyper parameters were
selected by 5-fold cross validation on a grid. The results are
shown in table 2. The Friedman test gives the p value 0.02,
indicating that those approaches give different performances
at the significance level 0.05; furthermore, combn classf
performs best, closely followed by dstr wgh (H).

4 Conclusion and discussions
We provided a causal view to domain adaptation with mul-
tiple source domains and noted that the background causal
knowledge—the data-generating process—helps greatly in
domain adaptation. Under different causal assumptions, the
knowledge to be transferred from source domains to the tar-

get may be different, leading to different algorithms for do-
main adaptation. We considered several simplified causal
models for this task, and accordingly gave the optimal hy-
pothesis for the target domain. In particular, we have focused
on a multi-source domain adaptation problem in which PY
and PX|Y change independently across domains, where X
denotes features and Y the target. The proposed methods
consist of two steps. One first recovers PX|Y and PY on
the test domain, by tuning involved parameters to reproduce
the corresponding observed feature distribution. The second
step constructs the classifier for the target domain or directly
determines the target-domain class labels; to this end we pre-
sented three natural approaches for target-domain classifica-
tion, which exploit importance reweighting, use generative
learning, or resort to a weighted combination of source hy-
potheses.

The proposed methods rely on the assumption that for
each class, the target-domain conditional distribution PX|Y
can be represented as a mixture of those on source domains.
We remark that for some real problems, certain features
could be highly noisy, and it is worth noting that this as-
sumption might not hold for some features or components
of features; therefore it would be beneficial to find appro-
priate feature representations, as in (Ben-David et al. 2007).
Furthermore, another future line of research is to derive con-
vergence bounds and learning guarantees for the proposed
domain adaptation approaches, following (Cortes, Mansour,
and Mohri 2010; Iyer, Nath, and Sarawagi 2014).
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