Back
PoTion: Pose MoTion Representation for Action Recognition
Most state-of-the-art methods for action recognition rely on a two-stream architecture that processes appearance and motion independently. In this paper, we claim that consider- ing them jointly offers rich information for action recogni- tion. We introduce a novel representation that gracefully en- codes the movement of some semantic keypoints. We use the human joints as these keypoints and term our Pose moTion representation PoTion. Specifically, we first run a state- of-the-art human pose estimator [4] and extract heatmaps for the human joints in each frame. We obtain our PoTion representation by temporally aggregating these probability maps. This is achieved by ‘colorizing’ each of them de- pending on the relative time of the frames in the video clip and summing them. This fixed-size representation for an en- tire video clip is suitable to classify actions using a shallow convolutional neural network. Our experimental evaluation shows that PoTion outper- forms other state-of-the-art pose representations [6, 48]. Furthermore, it is complementary to standard appearance and motion streams. When combining PoTion with the recent two-stream I3D approach [5], we obtain state-of- the-art performance on the JHMDB, HMDB and UCF101 datasets.
@inproceedings{POTION:CVPR:2018, title = {PoTion: Pose MoTion Representation for Action Recognition}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, abstract = {Most state-of-the-art methods for action recognition rely on a two-stream architecture that processes appearance and motion independently. In this paper, we claim that consider- ing them jointly offers rich information for action recogni- tion. We introduce a novel representation that gracefully en- codes the movement of some semantic keypoints. We use the human joints as these keypoints and term our Pose moTion representation PoTion. Specifically, we first run a state- of-the-art human pose estimator [4] and extract heatmaps for the human joints in each frame. We obtain our PoTion representation by temporally aggregating these probability maps. This is achieved by ‘colorizing’ each of them de- pending on the relative time of the frames in the video clip and summing them. This fixed-size representation for an en- tire video clip is suitable to classify actions using a shallow convolutional neural network. Our experimental evaluation shows that PoTion outper- forms other state-of-the-art pose representations [6, 48]. Furthermore, it is complementary to standard appearance and motion streams. When combining PoTion with the recent two-stream I3D approach [5], we obtain state-of- the-art performance on the JHMDB, HMDB and UCF101 datasets.}, publisher = {IEEE Computer Society}, year = {2018}, slug = {potion-cvpr-2018}, author = {Choutas, Vasileios and Weinzaepfel, Philippe and Revaud, Jérôme and Schmid, Cordelia} }
More information