Institute Homepage
Institute Homepage
EN
Sign In
Forschung
Forschung
Forschung
Übersicht
Publikationen
Abteilungen
Empirische Inferenz
Haptische Intelligenz
Perzeptive Systeme
Physische Intelligenz
Robotik-Materialien
Soziale Grundlagen der Informatik
Forschungsgruppen
Algorithms and Society
Biomimetic Materials and Machines
Computational Applied Mathematics & AI Lab
Deep Models and Optimization
Human Aspects of Machine Learning
Learning and Dynamical Systems
Neuromechanics of Movement
Organizational Leadership and Diversity
Robotic Composites and Compositions
Robust Machine Learning
Safety- and Efficiency-Aligned Learning
Wild, Efficient, and Innovative AI
Über uns
Über uns
Personen
Wissenschaft
Personenverzeichnis
Alumni-Netzwerk
Kontakt
Management & Boards
Kontakt
Anreise
Our Institute
Unser Institut
Campus-Überblick
Campuseinrichtungen
Code of Conduct
Anlaufstellen für Institutsangehörige
Unsere Geschichte
100/10-jähriges Jubiläum
Karriere
Karriere
Karriere
Karriere
Offene Stellen
Überblick über Promotionsprogramme
Doctoral Programs Overview
International Max Planck Research School for Intelligent Systems
Max Planck ETH Center for Learning Systems
ELLIS PhD Program
Karriere
Praktika
Planck Academy
Service
Service
Service-Einrichtungen
Unsere Services
Verwaltung
Scientific Coordination Office
IT Services
Welcome Service
Zentrale Wissenschaftliche Einrichtungen
Überblick
Materials
Medical Systems
Optics and Sensing Laboratory
Robotics
Scientific Computing
Software Workshop
Werkstätten
Workshop Overview
Fine Mechanical Workshop
Glass Workshop
Central Mechanical Workshop
Mechatronics Workshop
Campus Services
Campuseinrichtungen
Bibliothek
Max Planck House Tübingen
Impact
Impact
Impact
Unser Impact
Diversität
Nachhaltigkeit
Entrepreneurship & Innovation
Kooperationen
Unsere Partner
Promotionsprogramme
Initiativen und Partner
Cyber Valley
European Laboratory for Learning and Intelligent Systems
ELLIS Institute Tübingen
Tübingen AI Center
Personen
Aktuelles
Events
Forschung
Forschung
Forschung
Übersicht
Publikationen
Abteilungen
Empirische Inferenz
Haptische Intelligenz
Perzeptive Systeme
Physische Intelligenz
Robotik-Materialien
Soziale Grundlagen der Informatik
Forschungsgruppen
Algorithms and Society
Biomimetic Materials and Machines
Computational Applied Mathematics & AI Lab
Deep Models and Optimization
Human Aspects of Machine Learning
Learning and Dynamical Systems
Neuromechanics of Movement
Organizational Leadership and Diversity
Robotic Composites and Compositions
Robust Machine Learning
Safety- and Efficiency-Aligned Learning
Wild, Efficient, and Innovative AI
Über uns
Über uns
Personen
Wissenschaft
Personenverzeichnis
Alumni-Netzwerk
Kontakt
Management & Boards
Kontakt
Anreise
Our Institute
Unser Institut
Campus-Überblick
Campuseinrichtungen
Code of Conduct
Anlaufstellen für Institutsangehörige
Unsere Geschichte
100/10-jähriges Jubiläum
Karriere
Karriere
Karriere
Karriere
Offene Stellen
Überblick über Promotionsprogramme
Doctoral Programs Overview
International Max Planck Research School for Intelligent Systems
Max Planck ETH Center for Learning Systems
ELLIS PhD Program
Karriere
Praktika
Planck Academy
Service
Service
Service-Einrichtungen
Unsere Services
Verwaltung
Scientific Coordination Office
IT Services
Welcome Service
Zentrale Wissenschaftliche Einrichtungen
Überblick
Materials
Medical Systems
Optics and Sensing Laboratory
Robotics
Scientific Computing
Software Workshop
Werkstätten
Workshop Overview
Fine Mechanical Workshop
Glass Workshop
Central Mechanical Workshop
Mechatronics Workshop
Campus Services
Campuseinrichtungen
Bibliothek
Max Planck House Tübingen
Impact
Impact
Impact
Unser Impact
Diversität
Nachhaltigkeit
Entrepreneurship & Innovation
Kooperationen
Unsere Partner
Promotionsprogramme
Initiativen und Partner
Cyber Valley
European Laboratory for Learning and Intelligent Systems
ELLIS Institute Tübingen
Tübingen AI Center
Personen
Aktuelles
Events
Back
Julius von Kügelgen
Note
: Julius von Kügelgen has transitioned from the institute (Alumni).
Empirische Inferenz
Doctoral Researcher
Alumni
More
Website
Google Scholar
GitHub
Linkedin
X
Overview
Publications
Empirical Inference
Robust Machine Learning
Conference Paper
Provably Learning Object-Centric Representations
Brady*, J., Zimmermann*, R. S., Sharma, Y., Schölkopf, B., von Kügelen, J., Brendel, W.
Proceedings of the 40th International Conference on Machine Learning (ICML)
, 202:3038-3062, Proceedings of Machine Learning Research,
(Editors: A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett)
, JMLR, Cambridge, MA, July 2023, *equal contribution
(Published)
URL
BibTeX
Empirical Inference
Article
Evaluating vaccine allocation strategies using simulation-assisted causal modeling
Kekić, A., Dehning, J., Gresele, L., von Kügelgen, J., Priesemann, V., Schölkopf, B.
Patterns
, 4(6), June 2023
(Published)
DOI
URL
BibTeX
Empirical Inference
Conference Paper
DCI-ES: An Extended Disentanglement Framework with Connections to Identifiability
Eastwood*, C., Nicolicioiu*, A. L., von Kügelgen*, J., Kekić, A., Träuble, F., Dittadi, A., Schölkopf, B.
The Eleventh International Conference on Learning Representations (ICLR)
, May 2023, *equal contribution
(Published)
URL
BibTeX
Empirical Inference
Conference Paper
Backtracking Counterfactuals
von Kügelgen, J., Mohamed, A., Beckers, S.
Proceedings of the Second Conference on Causal Learning and Reasoning (CLeaR)
, 213:177-196, Proceedings of Machine Learning Research,
(Editors: van der Schaar, Mihaela and Zhang, Cheng and Janzing, Dominik)
, PMLR, April 2023
(Published)
URL
BibTeX
Empirical Inference
Conference Paper
Unsupervised Object Learning via Common Fate
Tangemann, M., Schneider, S., von Kügelgen, J., Locatello, F., Gehler, P., Brox, T., Kümmerer, M., Bethge, M., Schölkopf, B.
Proceedings of the Second Conference on Causal Learning and Reasoning (CLeaR)
, 213:281-327, Proceedings of Machine Learning Research,
(Editors: van der Schaar, Mihaela and Zhang, Cheng and Janzing, Dominik)
, PMLR, April 2023
(Published)
arXiv
URL
BibTeX
Empirical Inference
Conference Paper
Active Bayesian Causal Inference
Toth, C., Lorch, L., Knoll, C., Krause, A., Pernkopf, F., Peharz*, R., von Kügelgen*, J.
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
, 35:16261-16275,
(Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh)
, Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022), December 2022, *shared last author
(Published)
arXiv
URL
BibTeX
Empirical Inference
Conference Paper
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Perry, R., von Kügelgen*, J., Schölkopf*, B.
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
, 10904-10917,
(Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh)
, Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022), December 2022, *shared last author
(Published)
arXiv
URL
BibTeX
Empirical Inference
Autonomous Learning
Robust Machine Learning
Conference Paper
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Reizinger*, P., Gresele*, L., Brady*, J., von Kügelgen, J., Zietlow, D., Schölkopf, B., Martius, G., Brendel, W., Besserve, M.
Advances in Neural Information Processing Systems (NeurIPS 2022)
, 35:12040-12057,
(Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh)
, Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems, December 2022, *equal first authorship
(Published)
Arxiv
PDF
URL
BibTeX
Empirical Inference
Conference Paper
Probable Domain Generalization via Quantile Risk Minimization
Eastwood, C., Robey, A., Singh, S., von Kügelgen, J., Hassani, H., Pappas, G. J., Schölkopf, B.
Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
, 35:17340-17358,
(Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh)
, Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems, December 2022
(Published)
arXiv
URL
BibTeX
Empirical Inference
Conference Paper
Causal Inference Through the Structural Causal Marginal Problem
Gresele*, L., von Kügelgen*, J., Kübler*, J. M., Kirschbaum, E., Schölkopf, B., Janzing, D.
Proceedings of the 39th International Conference on Machine Learning (ICML)
, 162:7793-7824,
(Editors: Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan)
, PMLR, July 2022, *equal contribution
(Published)
URL
BibTeX
«
1
2
3
4
»
Diese Website verwendet Cookies, um sicherzustellen, dass Sie die bestmögliche Nutzererfahrung erhalten.
Mehr erfahren
.
Accept