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Abstract

Temporal clustering of human motion into semantically meaningful behaviors is a
challenging task. While unsupervised methods do well to some extent, the obtained clus-
ters often lack a semantic interpretation. In this paper, we propose to learn what makes a
sequence of human poses different from others such that it should be annotated as an ac-
tion. To this end, we formulate the problem as weakly supervised temporal clustering for
an unknown number of clusters. Weak supervision is attained by learning a metric from
the implicit semantic distances derived from already annotated databases. Such a metric
contains some low-level semantic information that can be used to effectively segment a
human motion sequence into distinct actions or behaviors. The main advantage of our
approach is that metrics can be successfully used across datasets, making our method
a compelling alternative to unsupervised methods. Experiments on publicly available
mocap datasets show the effectiveness of our approach.

1 Introduction
The automated segmentation of a human motion sequence into plausible and semantically
meaningful human behaviors is a central problem in computer vision and in computer graph-
ics. Addressing this problem from the perspective of human poses obtained by motion cap-
ture systems is becoming more relevant due to the proliferation of motion capture databases
and recent advances in markerless motion capture [1, 15]. Such an approach is not only
interesting because of the potential availability of data, but also because human poses have
potential for learning motion patterns that can be robustly employed across datasets and do-
mains.

Segmenting human motion into distinct actions is a highly challenging problem. From
the motion analysis perspective, segmentation is difficult due to large stylistic variations,
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Distance Metric

Actions

Figure 1: System Overview: Human motion sequences are clustered into different actions
using a learned distance metric. We use annotations available in a mocap dataset to learn a
distance metric that captures the semantic similarity between skeleton motion.

temporal scaling, changes in physical appearance, irregularity in the periodicity of human
motions and the huge number of actions and their combinations. From a semantic viewpoint,
segmentation is inherently elusive and difficult because in the vast majority of cases it is not
clear when a set of poses describes an action. For instance, punching with the left hand and
punching with right hand can be different actions, but it might be also regarded as punching
or even more general as boxing.

In this paper, we propose to learn what makes a sequence of poses different from others
such that it should be annotated as an action, as illustrated in Fig. 1. To this end, we make
use of already annotated motion capture datasets and formulate action segmentation as a
weakly supervised temporal clustering problem for an unknown number of clusters. Since
publicly available datasets might contain different motions and action labels than the test
sequences, we can not use the annotation directly for action segmentation. Instead, we use
the annotations to learn a distance metric for skeleton motion using relative comparisons in
the form of samples of the same action are more similar than they are to a different action.
This is very intuitive since the sequences of a single database are usually labeled based on
a semantic similarity. The learned distance metric is then used to cluster the test sequences.
To this end, we employ a hierarchical Dirichlet process that also estimates the number of
clusters.

The main advantage of our method is that it can be used for unseen actions and across
datasets as we will show in our experiments.

2 Related Work
Metric learning from pose data has been mainly proposed in the computer graphics com-
munity in order to learn human-like perceptual similarities between poses [16]. The learned
distance metric is then applied to the task of finding suitable transitions and content-based
pose retrieval [4, 5, 19]. Metric learning has proven to be also useful in recognizing actions
from video. Tran and Sorokin [18] extract silhouette and optical flow features from videos
and they use them in conjunction with Large Margin Nearest Neighbors (LMNN) [21] to
learn a metric that properly separates different action classes. More recently, Kliper-Gross et
al. [10] have proposed a metric learning approach for one-shot learning of actions in videos.
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In order to efficiently annotate actions in large collections of video or mocap data, some
researchers have focused on unsupervised segmentation and clustering of human actions.
Barbic et al. [2] propose a change detection algorithm for mocap data. They provide accu-
rate results, but their method is not able to cluster the temporal segments into the different
behaviors. Ozay et al. [12] overcome the clustering problem by modeling the first three
principal components of the data as an autoregressive model. The coefficients of the model
are then clustered with k-means. Similarly, the Aligned Cluster Analysis (ACA) proposed
by Zhou et al. [22] extends the k-means concept to cluster time series. They show that ACA
can accurately find different behaviors in sequences of mocap data. However, [12] [22] are
limited by having to manually set the number of clusters (actions) k. In [13], this limitation is
tackled by using a spike-train driven dynamical model that can detect motion transitions and
clusters them into different behaviors, without having to manually set the number of clusters
k. As far as video data is concerned, approaches such as [9][11] have proposed variants and
extensions of hierarchical Dirichlet processes (HDP) [17] in order to find activities using
optical flow features mainly. In [7], HDPs are used as a prior for HMM parameters in order
to cluster time series data into distinct behaviors. This latter approach is applied to synthetic
data, stock indices and dancing honeybee data.

3 Our approach
We aim at a temporal clustering of human actions in which one can provide some knowledge
learned from data. The training data might be from a different database containing actions
that are not relevant for the testing data. To meet these requirements, we learn a distance
metric from pose-based features, and we use this metric to cluster pose feature vectors (Sec-
tion 3.2) as illustrated in Fig. 2a. The outcome of such a clustering is then provided to a
hierarchical Dirichlet process (HDP) in order to obtain the different activities of a motion
capture sequence (Section 3.3). This strategy allows us to cluster motion sequences into dif-
ferent behaviors without knowing the exact number and types of actions in a test sequence.

3.1 Pose-based Features
The features employed in this paper are a rather simple yet efficient way of exploiting the
pose information. We start by removing the orientation and translation of the input poses,
in order to set them in a reference system that will allow an invariant comparison between
action sequences. From these rotation and translation invariant poses, we obtain a set of 14
relevant joint positions {q1, . . . ,q14} that can be easily obtained in different datasets [2]; see
Fig. 2a. These joint positions are used to compute the following feature vector:

x = {q1, . . . ,q14, q̇1, . . . , q̇14, q̈1, . . . , q̈14} (1)

where q̇ and q̈ denote joint velocity and acceleration respectively (derivatives are computed
by time differences). In practice, we subsample mocap data (recorded at 120Hz) at 30 Hz.

3.2 Learning a metric for pose-based features
Given a set of feature vectors {x1, . . . ,xN} in RD, we aim at learning a positive semi-definite
matrix A such that the distance

dA(xi,x j) = (xi−x j)
T A(xi−x j) (2)
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Figure 2: (a) Detailed overview of our approach. A set of pose-based features are extracted
using 14 relevant joints (marked with red spheres). These features are subsequently clustered
into primitives using a metric (A) learned on related action sequences. In order to infer the
different actions in a sequence, we first group the primitives using a sliding window. Then,
we provide the resulting sets of primitives to a hierarchical Dirichlet process. (b) Detail of
the hierarchical Dirichlet process.

satisfies a set of constraints defined in terms of relative comparisons of the form “xi is closer
to x j than to xk”. Using action labels, we can formulate these constraints in terms of simi-
larity and dissimilarity between triplets of feature vectors. Under such constraints, we learn
the matrix A by employing Information-Theoretic Metric Learning (ITML) [6]. ITML finds
a suitable matrix A by formulating the problem in terms of how similar is A to a given dis-
tance parameterized by A0 (typically, the identity or the sample covariance). Provided that
(2) is a Mahalanobis distance, one can treat the problem as the similarity of two Gaussian
distributions parameterized by A and A0 respectively. That leads to an information theoretic
objective in terms of the Kullback-Leibler divergence between both Gaussians. This diver-
gence can be expressed as a LogDet divergence [6], thus yielding the following optimization
problem:

minimize
A,ξ

Dld(A,A0)+λDld(diag(ξ ),diag(c)) (3)

s. t. δ(i, j)(ξ(i, j)− tr(A(xi−x j)(xi−x j)
T )≥ 0

A� 0,ξ ≥ 0

where Dld is the LogDet divergence, c is the vector of constraints, ξ is a vector of slack vari-
ables (initialized to c and constrained to be component-wise non-negative) that guarantees
the existence of a solution and λ is a parameter controlling the tradeoff between satisfying
the constraints and minimizing the similarity between distances.

In order to learn the metric (2) for the pose features (1), we have to define the constraints
dA(xi,x j) ≤ c(i, j) or dA(xi,x j) ≥ c(i, j) for a pair of feature vectors xi and x j. Since for each
feature xi we have only an action label yi, we define the constraints based on triplets of points
(xi,x j,xk) with class labels (yi,y j,yk), where feature vectors with the same label should be
closer to each other than to feature vectors with different labels. Using δ(i, j) ∈ {−1,1} as
similarity indicator (3), i.e., dA(xi,x j) ≤ c(i, j) if δ(i, j) = 1 and dA(xi,x j) ≥ c(i, j) otherwise,
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we formulate the following constraints:

yi = y j = yk δ(i, j) = 1 dA(xi,x j)≤max(d(xi,x j),d(xi,xk),d(x j,xk))

yi = y j ∧ y j 6= yk δ(i, j) = 1 dA(xi,x j)≤min(d(xi,xk),d(x j,xk))

yi 6= y j ∧ yi = yk δ(i, j) =−1 dA(xi,x j)≥ d(xi,xk)

y j 6= yi∧ y j = yk δ(i, j) =−1 dA(xi,x j)≥ d(x j,xk)

yi 6= y j 6= yk δ(i, j) =−1 dA(xi,x j)≥min(d(xi,x j),d(xi,xk),d(x j,xk))

The values on the right hand side of the inequalities, c(i, j), are defined on the Euclidean
distances d( ) between the features xi, x j, and xk. When the features have the same or com-
pletely different labels, the distance is constrained to be less or greater than the Euclidean
distances, respectively. When only two features have the same label, the distance is con-
strained to be less than the Euclidean distances of the feature vector pairs with different
labels.

For learning the metric, we randomly draw the triplets for generating the constraints
from the training set. Furthermore, we estimate the tradeoff parameter λ by means of cross-
validation, where our goal is to cluster pose-based features into a set of K primitives. To this
end, we rely on a hierarchical clustering algorithm [20] to overcome the dependency on the
initial point. We set a sufficiently high K (typically ranging from 16 to 64 clusters) and we
find λ by minimizing the purity of the clusters obtained in cross-validation:

C(λ ) = 1− 1
K

K

∑
k=1

1
nk

maxy(n
y
k) (4)

where nk is the number of feature vectors in the cluster k, and maxy(n
y
k) denotes the number

of feature vectors of the class y appearing most frequently. Note that the dependence on λ

comes from the fact that such parameter influences the resulting clusters.
Learning a metric from the proposed pose-based features can be seen as a data-driven

transferring of implicit semantic distances derived from the class labels. In order to reduce
the bias towards certain performance styles and to keep some temporal constraints, we in-
vestigate two additional variants of the pose-based metric learning framework.

Symmetry Unbiasing In order to reduce the bias towards action examples performed ex-
clusively with right or left limbs, we mirror the poses. For instance, if we learn the metric
with examples of raising right hand, we mirror the pose-based feature vectors in order to
represent raising left hand and we assign the same action label (raising hand) to all these
examples.

Temporal Alignment Two motion sequences of the same action class can be aligned by
dynamic time warping [14]. Then, if under such alignment, a feature vector xi from one
sequence matches another feature vector x j from the other sequence, we say that they are
aligned. If two feature vectors xi and x j belonging to the same action class are aligned, they
should be more similar than a third feature vector xk of the same class that is not aligned
with xi and x j. Therefore, for any randomly drawn triplet xi,x j,xk such that yi = y j = yk, we
define the following inequalities:
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i, j,k aligned δ(i, j) = 1 dA(xi,x j)≤max(d(xi,x j),d(xi,xk),d(x j,xk))

i, j aligned δ(i, j) = 1 dA(xi,x j)≤min(d(xi,xk),d(x j,xk))

i,k aligned δ(i, j) =−1 dA(xi,x j)≥ d(xi,xk)

j,k aligned δ(i, j) =−1 dA(xi,x j)≥ d(x j,xk)

i, j !aligned δ(i, j) =−1 dA(xi,x j)≥max(d(xi,xk),d(x j,xk))

i, j,k !aligned δ(i, j) =−1 dA(xi,x j)≥min(d(xi,x j),d(xi,xk),d(x j,xk))

where a pair of indices followed by aligned denotes a unique aligned pair within the triplet
(!aligned expresses the contrary, the unique unaligned pair in the triplet) and three indices
followed by aligned indicate that all the samples are aligned (a !aligned triplet means that
any sample is aligned). These constraints replace the initial constraint for the case yi = y j =
yk, which was fulfilled from the beginning.

3.3 Discovering Actions
Given a sequence of pose-based feature vectors X = {x0, . . . ,xt , . . . ,xT} , we address the
problem of inferring the performed actions as a temporal clustering problem in which we
rely on weak supervision to learn semantic similarity in the form of a metric. Contrarily to
other approaches [22], we want to address the temporal clustering problem for an unknown
number of clusters or actions. For that matter, we rely on a hierarchical Dirichlet process
(HDP) [17].

In our approach, two clustering levels are considered. The low-level clustering aims at
quantizing the feature vectors into K primitives, such that discrete data can be provided to the
HDP. The low-level clustering is performed by combining a hierarchical clustering algorithm
(see Section 3.2) with the learned metric A. In contrast, the high-level clustering is the
temporal clustering of the different actions. Using a topic modeling metaphor (see Fig. 2b),
low-level clustering is the step of computing words while the high-level clustering consists in
finding the topics within a sequence. Actions are hence understood as co-occurring words in
specific segments (Gt ) of the sequence (G0). The implications of such a model are two-fold.
First, we assume that quantized feature vectors follow a multinomial probability distribution
within each action and, consequently, temporal ordering is ignored. Second, the low-level
clustering step is crucial, since producing better words will produce better clustering results.
To compute temporal segments, we employ a sliding window of a given length and overlap.
Using validation sets of mocap data, we found that a window of 7-15 frames and 1/2 of
overlap worked well. Similarly, we found that values for concentration parameters in the
range of 0.5 to 1.0 for γ and between 1 to 2 for α0 (see Fig. 2b) provided good results. The
base probability measure H (see Fig. 2b) is a symmetric Dirichlet distribution of parameter
0.5 [17].

4 Experimental results
We conduct several experiments on two publicly available mocap datasets to show the effec-
tiveness of our method. The first dataset is the CMU mocap dataset [3]. This dataset contains
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a huge collection of motions performed by 144 subjects. Sequences include examples of one
action as well as complex activities involving a combination of simple actions. One of the
main drawbacks of this dataset is that the labeling of sequences is rather imprecise and the
availability of action examples is biased towards locomotion mainly. The second dataset is
the HDM05 dataset [8]. The HDM05 dataset contains more than three hours of motion cap-
ture data, involving more than 70 motion classes in 10 to 50 realizations executed by various
actors.

In our experiments, we employ the following training sets:
CMU Sequences from several subjects containing examples of walk, jump, run, boxing,
drinking, lean forward to reach, bend and kicking a ball actions. Examples of actions such
as boxing and jump present a number of punching and jumping styles and variations.
HDM05 Sequences from the 4 available subjects containing examples of walk, run, grab,
kick, clap, jog, punch, hop actions. These examples are taken from the cut sequences, and
contain a huge variation of styles. For instance, action clap involves clapping in front of the
torso and above head.

The testing sets are the following:
CMU Sequences 1 to 14 of subject 86 as in [22].
HDM05 We generate 10 long sequences by concatenating cut sequences not included in
the training set.

4.1 Evaluation Metrics
Manually annotating different actions in a human motion sequence is a difficult task. An-
notators have to precisely determine motion transitions and action labels. Without a specific
guidance, the annotation variability for a dataset would make action labels useless. This also
renders the evaluation a challenging task, since it is difficult to objectively determine the
goodness of an approach given some labels with a potential annotation bias. We therefore
employ several evaluation metrics to measure the accuracy of our approach.

Firstly, we use the same metric as [13], that does not penalize oversegmentation as far as
the estimated labels consistently match different actions. Since in [13] the transitions are not
evaluated, we use two versions of this evaluation metric. The first version (M1) evaluates all
the frames, whereas the second version (M2) does not take into account the frames around
ground truth transitions (we simply remove 0.2 seconds around the transition). The third
evaluation metric (M3) is that of [22] applied to the case where the number of found clusters
may differ from the ground truth. We compute the best label assignments for the number
of clusters provided by the ground truth, hence under- and oversegmentation are strongly
penalized. Finally, we provide the average error in the estimated number of clusters (Error
k).

4.2 Experiments and Discussion
We learn different metrics employing the two training sets described in the previous section.
Specifically, we learn metrics on the CMU and HDM05 training sets and we cross-test each
of them on both the HDM05 and CMU test sets. Note that in learning a metric with CMU
data, we use less labels than in the CMU test data (actions such as stretching, basketball
dribble or climbing a ladder are not present in the training examples). Additionally, we
investigate the impact of mirroring and alignment. In all the experiments, we employ a
sliding window of 15 frames with 1/2 overlap and 21 primitives or words. We test with two
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M1 M2 M3 Error k
A CMU HDM05 I CMU HDM05 I CMU HDM05 I CMU HDM05 I

Normal 82.7 88.1 78.4 84.3 89.9 79.8 61.6 70.2 66.1 3.3 2.5 1.4
Mirror 88.0 90.3 78.4 89.7 92.2 79.8 67.4 70.5 66.1 2.9 2.8 1.4

Mirror+Align 86.9 89.5 78.4 88.5 91.3 79.8 67.2 69.4 66.1 3 2.8 1.4

Table 1: Clustering results for the HDM05 concatenated sequences. For each one of the
4 proposed metrics, we show the results when learning a metric on the CMU and HDM05
datasets and when using the Euclidean distance (I). See Section 4.1 for the definition of the
evaluation metrics.

M1 M2 M3 Error k
A CMU HDM05 I CMU HDM05 I CMU HDM05 I CMU HDM05 I

Normal 87.3 89.5 88.5 88.2 90.5 89.4 73.9 82.2 80.6 3.1 2.5 2.5
Mirror 88.8 90.9 88.5 90.0 91.9 89.4 77.0 80.4 80.6 2.8 3.1 2.5

Mirror+Align 89.5 90.5 88.5 90.5 91.5 89.4 78.2 81.2 80.6 3.1 3.1 2.5

Table 2: Clustering results for the CMU sequences (14 sequences of subject 86). For each
one of the 4 proposed metrics, we show the results when learning a metric on the CMU
and HDM05 datasets and when using the Euclidean distance (I). See Section 4.1 for the
definition of the evaluation metrics.

sets of HDP concentration parameters, γ = 0.7,α0 = 1 and γ = 1,α0 = 2. We provide the
average performance over these two sets of parameters. Results are shown in Tables 1 and 2.

The performance on the HDM05 cut sequences (Table 1) shows that using a metric to
cluster the feature vectors boosts the performance of the HDP temporal clustering. Best per-
formance is achieved when using a metric learned on the HDM05 dataset. Such an outcome
was expected, since action labels are the same as in the test data. Interestingly, using a metric
learned with CMU data outperforms the Euclidean distance on the HDM05 test sequences.
In both cases, we observe that, although the rest of metrics show a superior performance,
the error in the estimated number of clusters is higher when using a learned metric. How-
ever, the clusters provided by using the Euclidean distance also imply a higher number of
mismatches between cluster labels and ground truth labels. When using the Euclidean clus-
tering, actions such as walk and jog often get merged together into the same cluster. These
errors cause the number of estimated clusters to be closer to the ground truth, but several
of the obtained clusters are lacking semantic meaning, as rather different labels get merged.
On the contrary, although oversegmenting some actions into different stylistic performances,
using the learned metric generally provides semantically meaningful clustering of motion
into different behaviors.

Method Known k? Accuracy Notes
ACA [22] Yes 92.1% Computed using the software provided by [23]
SAR [12] No 72.3% As reported in [13]
STS [13] No 90.9% As reported in [13]

Our HDP-E No 89.4%
Our HDP-ACMU No 90.5%

Our HDP-AHDM05 No 91.9%

Table 3: Comparison to state-of-the-art approaches on the CMU dataset. HDP-E stands for
hierarchical Dirichlet process using Euclidean distance for feature-vector clustering while
HDP-AZ means that feature-vector clustering is performed with the metric learned with Z
data. Note that methods are not directly comparable since they rely on different assumptions.
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Results on the CMU sequences of subject 86 confirm that using a metric provides better
temporal clustering results. Interestingly, the best performance is achieved by learning a
metric on the HDM05 dataset (see Table 2). This result yields two conclusions. First, the
learned metric provides a good performance across datasets. Second, the benefits of learning
a metric for temporal clustering of actions not only depend on the extent to which the training
data could potentially explain the test data, but also on the labeling precision of the training
examples.

Clustering results for the CMU test sequences are provided in Fig. 3. Using a learned
distance metric for clustering the pose-based feature vectors involves a more semantically
meaningful clustering of motion into actions. This can be clearly observed in sequences 1
to 9 and 11, where a number of noisy transitions are clustered as distinct behaviors when
using the Euclidean distance. The exception to this performance is found in sequences 12
and 13. In these sequences, the metric learned from the HDM05 dataset helps in clustering
action walk (red label in sequence 12 and 13 of Fig. 3) from the rest of the actions, but the
examples employed in learning the metric do not help in achieving a semantically correct
clustering of classes such as sweeping and dragging, and hence transitions between such
actions, or even phases of the same action, are clustered as different behaviors.

When comparing the performance using mirroring and alignment constraints in Tables 1
and 2, we see that mirroring the poses improves the performance. The alignment improves
the results only for training and testing on CMU; otherwise the performance degrades. This
indicates that the alignment is only beneficial when the training sequences are not precisely
segmented and labeled as it is the case for the CMU sequences.

In Table 3 we provide a comparison between state-of-the-art approaches for temporal
clustering of human actions. In this comparison, we report the results using metric M2,
since is the most similar to that employed to evaluate [12] and [13]. Note that the results
provided by [13] are computed on a subset of sequences (1-3 and 5-6) for subject 86, which
are easier to segment than the other sequences (see Fig. 3). In spite of that, we report a better
overall performance. We also show that our approach is a compelling alternative to ACA,
since we can obtain accurate clustering results by resorting to action examples from other
datasets instead of requiring the exact number of clusters.

5 Conclusions

We have presented an approach for temporal clustering of human behaviors. The method
is based on learning a metric from pose-based features, such that the semantics of action
labeling are learned in the form of a distance. Our experimental results have shown that the
learned metrics improve the clustering results even across datasets and do not require that
the actions of the test sequences are present in the training data. The benefit of the learned
metric, however, depends on the similarity of the poses in the training and test set, but also
on the labeling precision of the training examples. While this needs to be addressed in the
future, the proposed approach, which exploits publicly available mocap datasets for temporal
clustering, is a compelling alternative to unsupervised methods.
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Figure 3: Temporal clustering of the 14 subject’s 86 CMU sequences (best viewed in color).
In each caption (top row) Ground Truth Labels (obtained from [23]), (mid row) temporal
clustering with HDP and (bottom row) temporal clustering with HDP + metric learned with
HDM05 data. The mocap sequences can be viewed at http://mocap.cs.cmu.edu/
search.php?subjectnumber=86.
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