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Overview

• In RL tasks, there are typically many choices for the action representation
→ Robotics: torques, joint positions/velocities, activations of artificial muscles, . . .

• The choice of action representation has a significant impact on the performance of
reinforcement learning (RL) algorithms

• The reasons for these performance differences are generally not clear
→ We apply two analysis techniques to investigate the influence of the action rep-

resentation on the learning process
• Finally, we outline open challenges that need to be addressed to gain further insights

into the causes of the performance differences

Action representations

Torque control
• The RL agent directly chooses the torques τ applied on the robot

Policy
τ

q, q̇

→ Direct control over the system but very low-level (the agent e.g., needs to learn to
stabilize the system first)

High-level action representations
• Define an action representation a (e.g. desired joint positions)
• A low-level controller computes torques for the given the action

Policy Low-level
controller

a τ

q, q̇

q, q̇

→ These representations can have beneficial properties (e.g., open-loop stability or
robustness to perturbations)

• We compare torques, joint positions, and joint velocities as action representations for RL
• Position controller: τ = KPC

p (a − q) − KPC
d q̇

• Velocity controller: τ = KV C
d (a − q̇)

• Controller gains KPC
p , KPC

d , KV C
d are tuned to minimize the tracking error

Learning performance

• Benchmark tasks from OpenAI Gym [1] and the DeepMind Control Suite (DMCS) [2]
• Learning performance of PPO [3] with different action representations
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Gym: Pendulum
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Gym: Reacher
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DMCS: Cheetah-run
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DMCS: Finger-spin
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DMCS: Reacher-easy
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DMCS: Walker-walk

→ Action representations have a significant impact on learning performance
→ No representation is superior for all tasks

→ These performance differences warrant further investigation into the in-
fluences on different components of the RL algorithm

Analysis: Optimization landscape visualization

• Objective: Getting an intuition of the impact on the optimization difficulty
• Based on work of Li et al. [4]
• Due to the large number of parameters in neural networks, we cannot plot the optimiza-

tion landscape directly
→ Dimensionality reduction: Plot along two random directions in parameter space

• Plot the values of two criteria
– Cumulative reward (the true measure of policy performance)
– Surrogate loss (the criterion that the algorithm optimizes)
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→ Reacher, torque control: Rugged loss landscape explains poor learning performance
→ Other configurations: No clear intuition about the reasons for performance differences

Analysis: Gradient estimation accuracy

• Objective: Understanding the influence on the gradient estimation
• Based on work of Ilyas et al. [5]
• Approximate the true gradient with 107 samples (in comparison: 64 samples are used for

gradient estimation during training)
• Compare cosine similarity between gradients used during training and this “true” gradient
• The PPO loss is the sum of a policy and a value function term

→ Plot the gradient quality also for each term individually
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Reacher, total loss
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Reacher, policy loss
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Reacher, value function loss
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Walker-walk, total loss
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Walker-walk, policy loss
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Walker-walk, value function loss

→ No clear correlation between gradient quality and learning performance
→ Higher policy performance makes gradient estimation harder

→ The gradient quality is significantly worse for the policy than for the value function

Open challenges of the analysis methods

• Normalizing the analysis results with respect to the learning progress
• Disentangling different effects on the RL algorithm
• Taking into account the effect of hyperparameters and controller gains

References
[1] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint arXiv:1606.01540, 2016.
[2] S. Tunyasuvunakool, A. Muldal, Y. Doron, et al., “dm_control: Software and tasks for continuous control,” Software Impacts, vol. 6, p. 100 022, 2020, issn: 2665-9638. doi: https:

//doi.org/10.1016/j.simpa.2020.100022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2665963820300099.
[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
[4] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural nets,” Advances in Neural Information Processing Systems, vol. 31, 2018.
[5] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry, “A closer look at deep policy gradients,” in International Conference on Learning Representations, 2020.


