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Abstract— Causal inference could give future learning robots
strong generalization and scalability capabilities, which are
crucial for safety, fault diagnosis and error prevention. One
application area of interest consists of the haptic recognition
of surfaces. We seek to understand cause and effect during
physical surface interaction by examining surface and tool
identity, their interplay, and other contact-irrelevant factors. To
work toward elucidating the mechanism of surface encoding,
we attempt to recognize surfaces from haptic-auditory data
captured by previously unseen hemispherical steel tools that
differ from the recording tool in diameter and mass. In this
context, we leverage ideas from kernel methods to quantify
surface similarity through descriptive differences in signal
distributions. We find that the effect of the tool is signifi-
cantly present in higher-order statistical moments of contact
data: aligning the means of the distributions being compared
somewhat improves recognition but does not fully separate tool
identity from surface identity. Our findings shed light on salient
aspects of haptic-auditory data from tool-surface interaction
and highlight the challenges involved in generalizing artificial
surface discrimination capabilities.

I. MOTIVATION

Causality promises to help with current challenges in ma-
chine learning such as domain generalization, interpretability
and scalability [1]. However, it is not yet always clear how
to create causal algorithms that perform well in realistic
application domains. High-dimensional mappings such as
kernel mean embeddings are an active and promising thrust
of this research [2]. Baumann et al. [3] recently incorporated
the kernel two-sample test [4] in the non-i.i.d. setting [5] to
identify causal structures in dynamical systems. They used
the maximum mean discrepancy (MMD) to detect causal
changes and demonstrated the effectiveness of their approach
on a dual-arm manipulation robot. Another successful exten-
sion of Solowjow et al.’s work [5] was recently performed
for the task of multi-user surface recognition. Specifically,
Khojasteh et al. [6] demonstrated a sample-efficient approach
for learning to recognize 108 surface textures from multi-
modal (visual, auditory, and haptic) sensor readings obtained
from a public data set recorded by eleven different people.
Their data-driven method effectively mitigated speed-, force-,
and session-dependent effects during tool-surface interaction
by a simple distribution shift of time-series data in order to
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Fig. 1. (a) Design of the test bed and sample recording from each sensor
for a 6-mm-diameter steel tool dragging on the wood surface. (b) Test bed
being used to record from the 4-mm tool dragging on the laminate surface.
(c) Three steel tools with different diameters. (d) Set of ten diverse surfaces.

generalize across human users. This alignment of distribu-
tion means was sufficient to boost recognition performance
by 9%, presumably because it highlights the distributions’
higher-order statistical moments that convey important in-
formation about the surface properties. The success of this
compensation trick raises the question, whether such an
approach succeeds in generalization to unseen sensing tools.
Understanding the generalization capabilities of surface per-
ception to unseen sensing tools is of practical interest so that
a given pipeline could be deployed on different instruments
and different robot body parts (e.g., from the smallest to the
largest finger).

II. EXPERIMENTS AND RESULTS

Inspired by the recent success of kernel mean embeddings
and MMD in multi-user surface recognition, we sought to
ascertain whether surface identity can be separated from
tool-dependent effects. In other words, can an algorithm
recognize a known surface when it is explored using a
different tool? This question is the haptic equivalent to
asking whether a particular object could be recognized when
photographed in a new setting by a different camera.

A. Haptic-Auditory Sensing

Our haptic-auditory test bed (Fig. 1(a)) allows us to cap-
ture five information sources: contact forces (for) and torques
(tor) from a sub-surface force-torque sensor, tool (act) and



4 mm
B (4]
o O oo, OO
%A_I
N <
@ =N
(6, o OO0 =

w
o
I —
N
(o)

'
-

W
3 o0& oo
T

6 mm

'
N

Tool Acceleration (m/s?)
N
5o0& 3
-
1
N

w
o
a1
_l>< -
oo

8 mm
()] w =
ooU, oo
|
<
LN
OO0 =

’ -3.5 :
Time (s)

o

N

S o
UIDO?
N

o
og

Fig. 2. One second recording on the leather sample with the three tools:
(a) three-axis tool accelerations (act) and (b) three-axis contact forces (for).

finger (acf) accelerations sensed at two accelerometer loca-
tions (Fig. 1(b)), and contact sounds (mic) from a micro-
phone. Tactile vibrations, in particular, present a promising
source of information because they propagate widely [7], [8],
offer high temporal resolution for spatial touch-information
decoding [9], and make multimodal surface classification
robust [6], [9]. We do not consider the measurements from
the motion-capture system for this analysis. An experimenter
recorded these signals for three solid steel tools of the same
length with thermally hardened hemispherical tool tips of 4,
6, and 8 mm diameter (Fig. 1(c)) touching C' = 10 diverse
surface textures (Fig. 1(d)). The surface textures are a subset
of the Penn Haptic Texture Toolkit [10] with categories that
are representative of prior surface datasets [10], [11], [12].
Their masses are 11.6, 26.1, and 46.4 g, respectively. In
total, we have 300 five-second-long recordings of multimodal
surface data (3 steel tools x C' = 10 surfaces x 10 trials).

B. A Causal Lens on Tool-Surface Interactions

The choice of the sensing tool greatly affects the mechan-
ical signals generated during interactions with surfaces, even
with controlled surface topology [13], [14]. Both the tool
mass and the tool tip geometry contribute to this complexity.
For the case of the natural leather surface (Fig 2), we
illustrate how the three tools affect the tool accelerations
and contact forces. In particular, the mass of the tool has a
significant effect on the surface signals. Vibrations (tactile
or auditory) from surface contact will have higher signal
amplitudes for tools with smaller masses. In contrast, the
amplitudes of the contact forces are larger on average for
heavier tools. Regarding tool geometry, a smaller tool tip
will penetrate more between asperities on the surface than

a larger tool [13], thereby giving the haptic-auditory signals
higher frequency content and larger vibration magnitudes.
Given these observations, performing cross-tool surface clas-
sification with sensing tools that vary in both tool mass
and tip diameter is challenging. In addition to the choice
of the sensing tool, other important factors in tool-surface
interactions include the tool speed and applied tool force,
the geometry of the interfaces /; and I of the contact pair,
and the material properties of the surface. We believe that
these causal relationships must be taken into account for
a robust surface classifier that performs data manipulations
to compensate for tool effects. Here, we investigate how
distribution mean alignments mitigate these tool effects.

C. Problem Formulation

Our goal is to classify unseen multimodal sensor record-
ings from physical surface interactions with the same sensing
tool (termed ’in-domain’) or across sensing tools (termed
’out-of-domain’). From a mathematical perspective, we ad-
dress this surface-recognition task by focusing exclusively on
data distribution differences. We model surface interactions
as realizations of a dynamical system [5]. We assume that
a set of C' € N unique surfaces will induce different dis-
tributions Py, ..., Pc, respectively. The classifier compares
unlabeled surface trials to the known surface distributions
in the library to determine the surface class ¢ from which it
most likely came. To infer whether an unseen testing trial and
a training trial from a surface library come from identical or
non-identical surfaces, we quantify distribution differences
between the two trials.

D. Classification Setting

We adopt the setting from recent work with a multimodal
multi-user classifier [6]. Given its efficacy in surface recogni-
tion [6], we use the squared bias MMD estimator by Gretton
et al. [4],

1 n
MMD; [Py, Pz] = — > k(yi.y;)

o Y M)
+W¢jz—:1k(2i, zj) — o, ;;k(yi7zj),

where [y1, ..., ys] and [21, ..., 2] are i.i.d. random variables.
In our case, these are n = m = 100 samples from
Fourier-transformed surface data streams Y, and Z; with
unknown distributions Py, and Pz, . For our kernel, we
use the squared exponential function, for all statistical tests
due to its suitability for visual-haptic-auditory surface data
[6]. Instead of optimizing over o through a grid search, we
choose the well-established median heuristic [4]. For multi-
source classification, we use the geometric mean to unify the
MMD scores of multiple information sources to a overall dis-
crepancy score. This framework uses the arithmetic mean of
individual logarithm-transformed MMD values and therefore
improves MMD scale-invariance across information sources.
Our algorithm leverages the k-nearest neighbors principle to
make classification predictions with the global DS scores.



(@) Testing Set (b) Predicted Surface (c) Pr;edicted Surface
s & & & © & & &
4 mm 6 mm 8 mm Mear;OAgcuracy & & R o"’(\?} Gﬁ’@é’\@ & & 4\(,ct’ S &S
0000 0000
S
S 61.2% 5.3% | 50.0% * 3.0% 0 ORS00 0430
< 0 0 00O 00O00O
S (b) o 0 0000 0003
g £ 84.4% + 1.2% JCU 0 0000 0000
= g 56.0% + 5.0% () (?) 0 0000 0000
2 g 0 o ofgo 1 0§ o
E 84.8% +2.7% = 0 0 0 O 50 O
E 430%+49% 0 0 0 20 0
© 5 0 0 5 00
——mean alignment
Fig. 3. (a) Surface classification performance of all five information sources combined (for, tor, act, acf and mic) for in- and out-of-domain tool diameters

without (yellow) and with (green) the compensation trick; mean alignment facilitates recognition in almost all out-of-domain cases. (b) Exemplary confusion
matrix for the case of training on data from the 6 mm tool and testing on data from the 8 mm one without mean alignment. (c) The same confusion matrix
with alignment of the distribution means. A confusion matrix showing perfect surface recognition would have a solid black diagonal surrounded by white.

An unlabeled surface trial Z will be classified to the class ¢
in the library with C' surfaces according to
min DS[Y (¢), Z]; (2)
ceC
it predicts a surface class through the test-train trial pair
with smallest global discrepancy distance, i.e., the nearest
neighbor. In particular, we consider five trials of each surface
in our library (five-shot learning). To reduce the influence of
different data distributions on recognition performance, we
run our classification pipeline in R = 5 repeated iterations
for each surface trial of the testing sets.

E. Results

We observe perfect recognition rates for all three in-
domain tool settings (diagonal of Fig. 3(a)); the same perfor-
mance can be achieved with several individual information
sources (results not shown). Out-of-domain classification is
more challenging with accuracies less than 90% in all six
cases. We see relatively symmetric cross-tool performance
with the chosen train-test splits from different tools; in par-
ticular, generalizing from and to the smallest tool (d = 4 mm)
is most difficult, potentially because its smaller diameter
and mass amplify and diversify the contact signals in ways
that cannot be predicted from data recorded with larger
tools. More penetration between asperities for the smaller
tool causes these complex contact signals. This increased
unpredictability with smaller tools resembles the complexity
observed in cutaneous sliding contact on fine-scale textured
surfaces. At smaller spatial scales with multiple contact
points, intricate coupling between the contacting pairs re-
sulted in patterns that were challenging to encode, even
with higher-order nonlinear techniques [14]. Mean alignment
of the distributions improves performance in 5/6 cases by
between 2.2% and 17% mean accuracy. At the same time,
in 4/6 cases this compensation causes an increase in the
standard deviation of the accuracy by between 2.0% and
3.1% (Fig. 3(a)). This trend is exemplified by examining
the confusion matrices for the case where we train on the

6-mm tool and test on the 8-mm tool (Fig. 3(b) and (c)).
To conclude, changing the diameter of the tool with which a
surface is explored greatly alters the distribution of the audio-
haptic data generated during contact. Shifting the means to
align somewhat improves performance but still falls far short
of in-domain recognition accuracy. These findings suggest
that tool diameter and mass also considerably influence the
higher-order statistical moments.

III. FUTURE WORK

To increase the robustness and accuracy of haptic surface
classification in out-of-domain tool settings, we need to
further investigate into how tool geometry and mass causally
affect contact signals. A potential future direction could
include systematic analysis of the relationship between tool
speed, applied normal force, and the resulting contact signals
for each selected tool across diverse surfaces. In particular,
contact vibrations and forces may provide complementary
surface information from the tool interaction due to char-
acteristic signal properties in the low and high frequency
ranges. Alternative cross-tool compensation strategies that
provide more flexible data manipulation beyond just fitting
the distribution means are also worth exploring. Understand-
ing causal structural invariance in tool-surface interaction is
complex but would pave the way for both recognition and
synthesis of an arbitrary amount of data from physical tool-
surface interactions.
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