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Abstract. Statistical 3D shape models of the head, hands, and full body
are widely used in computer vision and graphics. Despite their wide use,
we show that existing models of the head and hands fail to capture the
full range of motion for these parts. Moreover, existing work largely ig-
nores the feet, which are crucial for modeling human movement and have
applications in biomechanics, animation, and the footwear industry. The
problem is that previous body part models are trained using 3D scans
that are isolated to the individual parts. Such data does not capture the
full range of motion for such parts, e.g. the motion of head relative to
the neck. Our observation is that full-body scans provide important in-
formation about the motion of the body parts. Consequently, we propose
a new learning scheme that jointly trains a full-body model and specific
part models using a federated dataset of full-body and body-part scans.
Specifically, we train an expressive human body model called SUPR
(Sparse Unified Part-Based Representation), where each joint strictly
influences a sparse set of model vertices. The factorized representation
enables separating SUPR into an entire suite of body part models: an
expressive head (SUPR-Head), an articulated hand (SUPR-Hand), and
a novel foot (SUPR-Foot). Note that feet have received little attention
and existing 3D body models have highly under-actuated feet. Using
novel 4D scans of feet, we train a model with an extended kinematic
tree that captures the range of motion of the toes. Additionally, feet de-
form due to ground contact. To model this, we include a novel non-linear
deformation function that predicts foot deformation conditioned on the
foot pose, shape, and ground contact. We train SUPR on an unprece-
dented number of scans: 1.2 million body, head, hand and foot scans. We
quantitatively compare SUPR and the separate body parts to existing
expressive human body models and body-part models and find that our
suite of models generalizes better and captures the body parts’ full range
of motion. SUPR is publicly available for research purposes.

1 Introduction

Generative 3D models of the human body and its parts play an important role
in understanding human behaviour. Over the past two decades, numerous 3D
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Fig. 1: Expressive part-based human body model. SUPR is a factorized
representation of the human body that can be separated into a full suite of body
part models.

models of the body [1,2,3,4,5,6,7,8,9], face [10,11,12,13,14,15,16,17] and hands
[18,19,20,21,22,23] have been proposed. Such models enabled a myriad of appli-
cations ranging from reconstructing bodies [24,25,26], faces [27,28,29], and hands
[30,31] from images and videos, modeling human interactions [32], generating 3D
clothed humans [33,34,35,36,37,38,39], or generating humans in scenes [40,41,42].
They are also used as priors for fitting models to a wide range of sensory input
measurements like motion capture markers [43,44] or IMUs [45,46,47].

Hand [21,48,22,49], head [12,13,49] and body [6,7] models are typically built
independently. Heads and hands are captured with a 3D scanner in which a
subject remains static, while the face and hands are articulated. This data is un-
natural as it does not capture how the body parts move together with the body.
As a consequence, the construction of head/hand models implicitly assumes a
static body, and use a simple kinematic tree that fails to model the head/hand
full degrees of freedom. For example, in Fig. 2a we fit the FLAME head model
[13] to a pose where the subject is looking right and find that FLAME exhibits a
significant error in the neck region. Similarly, we fit the MANO [21] hand model
to a hand pose where the the wrist is fully bent downwards. MANO fails to cap-
ture the wrist deformation that results from the bent wrist. This is a systematic
limitation of existing head/hand models, which can not be addressed by simply
training on more data.

Another significant limitation of existing body-part models is the lack of
an articulated foot model in the literature. This is surprising given the many
applications of a 3D foot model in the design, sale, and animation of footwear.
Feet are also critical for human locomotion. Any biomechanical or physics-based
model must have realistic feet to be faithful. The feet on existing full body
models like SMPL are overly simplistic, have limited articulation, and do not
deform with contact as shown in Fig. 2b.
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Fig. 2: Body part models failure cases. Left: Existing body part models such
as the FLAME [13] head model and the MANO [21] hand model fail to capture
the corresponding body part’s shape through the full range of motion. Fitting
FLAME to a subject looking left results in significant error in the neck region.
Similarly, fitting MANO to hands with a bent wrist, results in significant error
at the wrist region. Right: The foot of SMPL [6] fails to model deformations due
to ground contact, hence penetrating the ground. Additionally, it has a limited
number of joints to model the toes articulation.

In contrast to the existing approaches, we propose to jointly train the full
human body and body part models together. We first train a new full-body model
called SUPR, with articulated hands and an expressive head using a federated
dataset of body, hand, head and foot scans. This joint learning captures the
full range of motion of the body parts along with the associated deformation.
Then, given the learned deformations, we separate the body model into body
part models. To enable separating SUPR into compact individual body parts we
learn a sparse factorization of the pose-corrective blend shape function as shown
in the teaser Fig. 1. The factored representation of SUPR enables separating
SUPR into an entire suite of models: SUPR-Head, SUPR-Hand and SUPR-Foot.
A body part model is separated by considering all the joints that influence the set
of vertices defined by the body part template mesh. We show that the learned
kinematic tree structure for the head/hand contains significantly more joints
than commonly used by head/hand models. In contrast to the existing body
part models that are learned in isolation of the body, our training algorithm
unifies many disparate prior efforts and results in a suite of models that can
capture the full range of motion of the head, hands, and feet.

SUPR goes beyond existing statistical body models to include a novel foot
model. To do so, we extend the standard kinematic tree for the foot to allow more
degrees of freedom. To train the model, we capture foot scans using a custom 4D
foot scanner (see Sup. Mat.), where the foot is visible from all views, including
the sole of the foot which is imaged through a glass plate. This uniquely allows
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us to capture how the foot is deformed by contact with the ground. We then
model this deformation as a function of body pose and contact.

We train SUPR on 1.2 million hand, head, foot, and body scans, which is an
order of magnitude more data than the largest training dataset reported in the
literature (60K GHUM [49]). The training data contains extreme body shapes
such as anorexia patients and body builders. All subjects gave informed written
consent for participation and the use of their data in statistical models. Capture
protocols were reviewed by the local university ethics board.

We quantitatively compare SUPR and the individual body-part models to
existing models including SMPL-X, GHUM, MANO, and FLAME. We find that
SUPR is more expressive, is more accurate, and generalizes better. In summary
our main contributions are: (1) A unified framework for learning both expressive
body models and a suite of high-fidelity body part models. (2) A novel 3D
articulated foot model that captures compression due to contact. (3) SUPR, a
sparse expressive and compact body model that generalizes better than existing
expressive human body models. (4) An entire suite of body part models for
the head, hand and feet, where the model kinematic tree and pose deformation
are learned instead of being artist defined. (5) The Tensorflow and a PyTorch
implementations of all the models are publicly available for research purposes.

2 Related Work

Body Models: SCAPE [2] is the first 3D model to factor body shape into
separate pose and a shape spaces. SCAPE is based on triangle deformations
and is not compatible with existing graphics pipelines. In contrast, SMPL [6]
is the first learned statistical body model compatible with game engines SMPL
is a vertex-based model with linear blend skinning (LBS) and learned pose and
shape corrective blendshapes. A key drawback of SMPL is that it relates the pose
corrective blendshapes to the elements of the part rotations matrices of all the
model joints in the kinematic tree. Consequently, it learns spurious long-range
correlations in the training data. STAR [7] addresses many of the drawback of
SMPL by using a compact representation of the kinematic tree based on quater-
nions and learning sparse pose corrective blendshapes where each joint strictly
influences a sparse set of the model vertices. The pose corrective blendshape
formulation in SUPR is based on STAR. Also related to our work, the Stitched
Puppet [50] is a part-based model of the human body. The body is segmented
into 16 independent parts with learned pose and shape corrective blendshapes.
A pairwise stitching function fuses the parts, but leaves visible discontinuities.
While SUPR is also part-based model, we start with a unified model and learn
its segmentation into parts during training from a federated training dataset.

Expressive Body Models: The most related to SUPR are expressive body
models such as Frank [51], SMPL-X [52], and GHUM & GHUML [49,53]. Frank
[51] merges the body of SMPL [6] with the FaceWarehouse [12] face model and an
artist-defined hand rig. Due to the fusion of different models learned in isolation,
Frank looks unrealistic. SMPL-X [52] learns an expressive body model and fuses
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the MANO hand model [21] pose blendshapes and the FLAME head model [13]
expression space. However, since MANO and FLAME are learned in isolation of
the body, they do not capture the full degrees of freedom of the head and hands.
Thus, fusing the parameters results in artifacts at the boundaries. In contrast
to the construction of Frank and SMPL-X, for SUPR, we start with a coherent
full body model, trained on a federated dataset of body, hand, head and feet
scans, then separate the model into individual body parts. Xu et al. [49] propose
GHUM & GHUML, which are trained on a federated dataset of 60K head, hand
and body scans and use a fully connected neural network architecture to predict
the pose deformation. The GHUM model can not be separated into body parts
as a result of the dense fully connected formulation that relates all the vertices
to all the joints in the model kinematic tree. In contrast, the SUPR factorized
representation of the pose space deformations enables seamless separation of the
body into head/hand and foot models.

Head Models: There are many models of 3D head shape [54,55,56], shape
and expression [10,11,12,14,15,16,17] or shape, pose and expression [13]. We fo-
cus here on models with a full head template, including a neck. The FLAME
head model [13], like SMPL, uses a dense pose corrective blendshape formulation
that relates all vertices to all joints. Xu et al. [49] also propose GHUM-Head,
where the template is based on the GHUM head with a retrained pose depen-
dant corrector network (PSD). Both GHUM-Head and FLAME are trained in
isolation of the body and do not have sufficient joints to model the full head
degrees of freedom. In contrast to the previous methods, SUPR-Head is trained
jointly with the body on a federated dataset of head and body meshes, which
is critical to model the head full range of motion. It also has more joints than
GHUM-Head or FLAME, which we show is crucial to model the head full range
of motion.

Hand Models: MANO [21] is widely use and is based on the SMPL formu-
lation where the pose corrective blendshapes deformations are regularised to be
local. The kinematic tree of MANO is based on spherical joints allowing redun-
dant degrees of freedom for the fingers. Xu et al. [49] introduce the GHUM-Hand
model where they separate the hands from the template mesh of GHUM and
train a hand-specific pose-dependant corrector network (PSD). Both MANO and
GHUM-Hand are trained in isolation of the body and result in implausible de-
formation around the wrist area. SUPR-Hand is trained jointly with the body
and has a wrist joint which is critical to model the hands full range of motion.

Foot Models: Statistical shape models of the feet are less studied than those
of the body, head, and hands. Conard et al. [57] propose a statistical shape model
of the human foot, which is a PCA space learned from static foot scans. However,
the human feet deform with motion and models learned from static scans can
not capture the complexity of 3D foot deformations. To address the limitations
of static scans, Boppana et al. [58] propose the DynaMo system to capture scans
of the feet in motion and learn a PCA-based model from the scans. However,
the DynaMo setup fails to capture the sole of the foot in motion. In contrast, to
all prior work, SUPR-Foot contains a kinematic tree, a pose deformation space,
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and a PCA shape space. We use a specialized 4D foot scanner, where the entire
human foot is visible and accurately reconstructed, including the toes and the
sole. Furthermore, we go beyond previous work to model the foot deformations
resulting from ground contact, which was not possible before.

3 Model

We describe the formulation of SUPR in Section 3.1, followed by how we separate
SUPR into body parts models in Section 3.2. Since existing body corrective
deformation formulations fail to model foot deformations due to ground contact,
we discuss a novel foot deformation network in Section 3.3.

SMPL-X SUPR

(a) Body (b) Head/Hand (c) SUPR-Foot

Fig. 3: The kinematic tree of SUPR and the separated body part models.

3.1 SUPR

SUPR is a vertex-based 3D model with linear blend skinning (LBS) and learned
blend shapes. The blend shapes are decomposed into 3 types: Shape Blend Shapes
to capture the subject identity, Pose-Corrective Blend Shapes to correct for the
widely-known LBS artifacts, and Expression Blend Shapes to model facial ex-
pressions. The SUPR mesh topology and kinematic tree are based on the SMPL-
X topology. The template mesh contains N = 10, 475 vertices and K = 75 joints.
The SUPR kinematic tree is shown in Figure 3. In contrast to existing body
models, the SUPR kinematic tree contains significantly more joints in the foot,
ankle and toes as shown in Fig. 3a. Following the notation of SMPL, SUPR is
defined by a function M(θ⃗, β⃗, ψ⃗), where θ⃗ ∈ R75×3 are the pose parameters cor-

responding to the individual bone rotations, β⃗ ∈ R300 are the shape parameters
corresponding to the subject identity, ψ⃗ ∈ R100 are the expression parameters
controlling facial expressions. Formally, SUPR is defined as

M(θ⃗, β⃗, ψ⃗) =W (Tp(θ⃗, β⃗, ψ⃗), J(β⃗), θ⃗;W), (1)
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where the 3D body, Tp(θ⃗, β⃗, ψ⃗), is transformed around the joints J by the
linear-blend-skinning functionW (.), parameterized by the skinning weights W ∈
R10475×75. The cumulative corrective blend shapes term is defined as

Tp(θ⃗, β⃗, ψ⃗) = T +BS(β⃗;S) +BP (θ⃗;P) +BE(ψ⃗; E), (2)

where T ∈ R10475×3 is the template of the mean body shape, which is deformed
by: BS(β⃗;S), the shape blend shape function capturing a PCA space of body

shapes; BP (θ⃗;P), the pose-corrective blend shapes that address the LBS arti-

facts; and BE(ψ⃗; E), a PCA space of facial expressions.

Sparse Pose Blend Shapes In order to separate SUPR into body parts, each
joint should strictly influence a subset of the template vertices T . To this end,
we base the pose-corrective blend shapes Bp(.) in Eq. 2 on the STAR model [7].
The pose-corrective blend shape function is factored into per-joint pose corrective
blend shape functions

BP (q⃗,K,A) =

K−1∑
j=1

Bj
P (q⃗ne(j);Kj ;Aj), (3)

where the pose-corrective blend shapes are sum of K − 1 sparse spatially-local
pose-corrective blend-shape functions. Each joint-based corrective blend shape
Bj

P (.), predicts corrective offsets for a sparse set of the model vertices, defined
by the learned joint activation weights Aj ∈ R10475. Each Aj is a sparse vector
defining the sparse set of vertices influenced by the jth joint blend shape Bj

p(.).
The joint corrective blend shape function is conditioned on the normalized unit
quaternions q⃗ne(j) of the j

th joint’s direct neighbouring joints’ pose parameters.
We note that the SUPR pose blend-shape formulation in Eq. 3 is not conditioned
on body shape, unlike STAR, since the additional body-shape blend shape is
not sparse and, hence, can not be factorized into body parts. Since the skinning
weights in Eq. 1 and the pose-corrective blend-shape formulation in Eq. 3 are
sparse, each vertex in the model is related to a small subset of the model joints.
This sparse formulation of the pose space is key to separating the model into
compact body part models.

3.2 Body Part Models

In traditional body part models like FLAME and MANO, the kinematic tree
is designed by an artist and the models are learned in isolation of the body. In
contrast, here the pose-corrective blend shapes of the hand (SUPR-Hand), head
(SUPR-Head) and foot (SUPR-Foot) models are trained jointly with the body on
a federated dataset. The kinematic tree of each part model is inferred from SUPR
rather than being artist defined. To separate a body part, we first define the
subset of mesh vertices of the body part T bp from the SUPR template T bp ∈ T .
Since the learned SUPR skinning weights and pose-corrective blend shapes are
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strictly sparse, any subset of the model vertices T bp is strictly influenced by a

subset of the model joints. More formally, a joint j⃗ is deemed to influence a body
part defined by the template T bp if:

I
(
Tbp, j⃗

)
=

{
1 if

∑
W

(
T bp, j⃗

)
̸= 0 or

∑
Aj

(
T bp

)
̸= 0

0 othewise,
(4)

where I(., .) is an indicator function, W
(
T bp, j⃗

)
is a subset of the SUPR learned

skinning weights matrix, where the rows are defined by the vertices of T bp,

the columns correspond to the jth joint, j⃗, Aj(T bp) corresponds to the learned
activation for the jth joint and the rows defined by vertices T bp. The indicator

function I returns 1 if a joint j⃗ has non-zero skinning weights or a non-zero
activation for the vertices defined by T bp. Therefore the set of joints Jbp that
influences the template T bp is defined by:

Jbp =
{
I(T bp, j) = 1 ∀ j ∈ {1, . . . ,K}

}
. (5)

The kinematic tree defined for the body part models in Eq. 5 is implicitly defined
by the learned skinning weights W and the per joint activation weights Aj . The
resulting kinematic tree of the separated models is shown in Fig. 3b. Surprisingly,
the head is influenced by substantially more joints than in the artist-designed
kinematic tree used in FLAME. Similarly, SUPR-Hand has an additional wrist
joint compared to MANO. We note here that the additional joints in SUPR-Head
and SUPR-Hand are outside the head/hand mesh. The additional joints for the
head and the hand are beyond the scanning volume of a body part head/hand
scanner. This means that it is not possible to learn the influence of the shoulder
and spine joints on the neck from head scans alone.

The skinning weights for a separated body are defined byWbp = W
(
T bp, Jbp

)
,

where W
(
T bp, Jbp

)
is the subset of the SUPR skinning weights defined by the

rows corresponding to the vertices of T bp and the columns defined by Jbp. Sim-
ilarly, the pose corrective blendshapes are defined by Bbp = Bp

(
T bp, Jbp

)
where

Bp

(
T bp, Jbp

)
corresponds to a subset of SUPR pose blend shapes defined by the

vertices of T bp and the quaternion features for the set of joints Jbp. The skinning
weights Wbp and blendshapes Bbp are based on the SUPR learned blend shapes
and skinning weights, which are trained on a federated dataset that explores
each body part’s full range of motion relative to the body. We additionally train
a joint regressor Jbp, to regress the joints Jbp : T

bp
→ Jbp. We learn a local

body part shape space BS(β⃗bp;Sbp), where Sbp is the body part PCA shape
components. For the head, we use the SUPR learned expression space BE(ψ; E).

3.3 Foot deformation Network

The linear pose-corrective blend shapes in Eq. 2 and Eq. 3 relate the body defor-
mations to the body pose only. However, the human foot deforms as a function
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of pose, shape and ground contact. To model this, we add a foot deformation
network.

The foot body part model, separated from SUPR, is defined by the pose
parameters θ⃗bp ∈ θ⃗, corresponding to the ankle and toe pose parameters in

addition to β⃗bp, the PCA coefficients of the local foot shape space. We extend
the pose blend shapes in Eq. 2 to include a deep corrective deformation term for
the foot vertices defined by T foot ∈ T . With a slight abuse of notation, we will

refer to the deformation function Tp(θ⃗, β⃗, ψ⃗) in Eq. 2 as Tp for simplicity. The
foot deformation function is defined by:

T ′
p(θ⃗, β⃗, c⃗) = Tp + m⃗ ◦BF (θ⃗foot , β⃗foot , c⃗;F), (6)

where m⃗ ∈ {0, 1}10475 is a binary vector with ones corresponding to the foot
vertices and 0 elsewhere. BF (.) is a multilayer perceptron-based deformation

function parameterized by F , conditioned on the foot pose parameters θ⃗foot , foot

shape parameters β⃗foot and foot contact state c⃗. The foot contact state variable
is a binary vector c⃗ ∈ {0, 1}266 defining the contact state of each vertex in the
foot template mesh, a vertex is represented by a 1 if it is in contact with the
ground, and 0 otherwise. The Hadamard product between m⃗ and BF (.) ensures
the network BF (.) strictly predicts deformations for the foot vertices only.

Implementation details. The foot contact deformation network is based
on an encoder-decoder architecture. The input feature, f⃗ ∈ R320, to the encoder
is a concatenated feature of the foot pose, shape and contact vector. The foot
pose is represented with a normalised unit quaternion representation, shape is
encoded with the first two PCA coefficients of the local foot shape space. The
input feature f⃗ is encoded into a latent vector z⃗ ∈ R16 using fully connected
layers with a leaky LReLU as an activation function with a slope of 0.1 for
negative values. The latent embedding z⃗ is decoded to predict deformations
for each vertex using fully connected layers with LReLU activation. The full
architecture is described in detail in Supp. Mat. We train male, female and a
gender-neutral versions of SUPR and the separated body part models. Training
details are discussed in Supp. Mat.

4 Experiments

Our goal is to evaluate the generalization of SUPR and the separated head,
hand, and foot model to unseen test subjects. We first evaluate the full SUPR
body model against existing state of the art expressive human body models
SMPL-X and GHUM (Section 4.1), then we evaluate the separated SUPR-Head
model against existing head models FLAME and GHUM-Head (Section 4.2), and
compare the hand model to GHUM-Hand and MANO (Section 4.3). Finally, we
evaluate the SUPR-Foot (Section 4.4).

4.1 Full-Body Evaluation

We use the publicly available 3DBodyTex dataset [59], which includes 100 male
and 100 female subjects. We register the GHUM template and the SMPL-X tem-
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Fig. 4: Qualitative Evaluation: We evaluate SUPR and the separated body
part models against baselines. We use the 3DBodyTex dataset in Fig. 4a to
evaluate GHUM, SMPL-X and SUPR in Fig. 4b using 16 shape components.
We evaluate SUPR-Head against FLAME in Fig. 4c using 16 shape components
and SUPR-Hand against MANO in Fig. 4d using 8 shape components.
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Fig. 5: Quantitative Evaluation: Evaluating the generalization of the sepa-
rated head, hand and foot model from SUPR against existing body part models:
GHUM-HEAD and FLAME for the head (Fig. 5a), GHUM-HAND and MANO
(Fig. 5b). We report the vertex-to-vertex error (mm) as a function of the number
of the shape coefficients used when fitting each model to the test set.

plate to all the scans; note SMPL-X and SUPR share the same mesh topology.
We visually inspected all registered meshes for quality control. Given registered
meshes, we fit each model by minimizing the vertex-to-vertex loss (v2v) between
the model surface and the corresponding registration. The free optimization pa-
rameters for all models are the pose parameters θ⃗ and the shape parameters
β⃗. Note that, for fair comparison with GHUM, we only report errors for up to
16 shape components since this is the maximum in the GHUM release. SUPR
includes 300 shape components that would reduce the errors significantly.

We follow the 3DBodyTex evaluation protocol and exclude the face and the
hands when reporting the mean absolute error (mabs). We report the mean
absolute error of each model on both male and female registrations. For the
GHUM model, we use the PCA-based shape and expression space. We report
the model generalization error in Fig. 5d and show a qualitative sample of the
model fits in Fig. 4b. SUPR uniformly exhibits a lower error than SMPL-X and
GHUM.

4.2 Head Evaluation

The head evaluation test set contains a total of 3 male and 3 female subjects, with
sequences containing extreme facial expression, jaw movement and neck move-
ment. As for the full body, we register the GHUM-Head model and the FLAME
template to the test scans, and use these registered meshes for evaluation. For
the GHUM-Head model, we use the linear PCA expression and shape space.
We evaluate all models using a standard v2v objective, where the optimization
free variables are the model pose, shape parameters, and expression parameters.
We use 16 expression parameters when fitting all models. For GHUM-Head we
exclude the internal head geometry (corresponding to a tongue-like structure)
when reporting the v2v error. Fig. 5a shows the model generalization as a func-
tion of the number of shape components. We show a sample of the model fits in
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Fig. 4c. Both GHUM-Head and FLAME fail to capture head-to-neck rotations
plausibly, despite each featuring a full head mesh including a neck. This is clearly
highlighted by the systematic error around the neck region in Fig. 4c. In con-
trast, SUPR-Head captures the head deformations and the neck deformations
plausibly and uniformly generalizes better.

4.3 Hand Evaluation

We use the publicly available MANO test set [21]. Since both SUPR-Hand and
MANO share the same topology, we used the MANO test registrations provided
by the authors to evaluate both models. To evaluate GHUM-Hand, we register
the model to the MANO test set. However, the GHUM-Hand features a hand and
an entire forearm, therefore to register GHUM-Hand we selected vertices on the
model corresponding to the hand and only register that hand part of the model
to the MANO scans. We fit all models to the corresponding registrations using
a standard v2v loss. For GHUM-Hand, we fit the model only to the selected
hand vertices. The optimization free variables are the model pose and shape
parameters. Fig. 5b shows generalization as a function of the number of shape
parameters, where SUPR-Hand uniformly exhibits a lower error compared to
both MANO and GHUM-Hand. A sample qualitative evaluation of MANO and
SUPR-Hand is shown in Fig. 4d. In addition to a lower overall fitting error,
SUPR-Hand has a lower error around the wrist region than MANO.

4.4 Foot Evaluation

We evaluate SUPR-Foot generalization on a test set of held-out subjects. The
test set contains 120 registrations for 5 subjects that explore the foot’s full
range of motion, such as ankle and toe movements. We extract the foot from the
SMPL-X body model as a baseline and refer to it as SMPL-X-Foot. We register
the SUPR-Foot template to the test scans and fit the SUPR-Foot and SMPL-
X-Foot to the registrations using a standard v2v objective. For SUPR-Foot, the
optimization free variables are the model pose and shape parameters, while for
SMPL-X-Foot the optimization free variables are the foot joints and the SMPL-
X shape parameters. We report the models’ generalization as a function of the
number of shape components in Fig. 5c. A sample of the model fits are shown
in Fig. 6. SUPR-Foot better captures the degrees of freedom of the foot, such as
moving the ankle, curling the toes, and contact deformations.

Dynamic Evaluation We further evaluate the foot deformation network on a
dynamic sequence shown in Fig. 7. Fig. 7a shows raw scanner footage of a subject
performing a body rocking movement, where they lean forward then backward
effectively changing the body center of mass. We visualise the corresponding
SUPR-Foot fits and a heat map of the magnitude of predicted deformations in
Fig. 7b. When the subject is leaning backward and the center of mass is directly
above the ankle, the soft tissue at heel region of the foot deforms due to contact.
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(a) Registrations

(b) SMPL-X-Foot

1 cm

0

(c) SUPR-Foot

Fig. 6: Evaluating SUPR-Foot against SMPL-X-Foot.

The SUPR-Foot network predicts significant deformations localised around the
heel region compared to the rest of the foot. However, when the subject leans
forward the center of mass is above the toes, consequently the soft tissue at the
heel is less compressed. The SUPR-Foot predicted deformations shift from the
heel towards the front of the foot.

5 Conclusion

We present a novel training algorithm for jointly learning high-fidelity expressive
full-body and body parts models. We highlight a critical drawback in existing
body part models such as FLAME and MANO, which fail to model the full
range of motion of the head/hand. We identify that the issue stems from the
current practice in which body parts are modeled with a simplified kinematic
tree in isolation from the body. Alternatively, we propose a holistic approach
where the body and body parts are jointly trained on a federated dataset that
contains the body parts’ full range of motion relative to the body. Addition-
ally, we point out the lack of any articulated foot model in the literature and
show that the feet of existing full-body models do not have enough joints to
model the full range of motion of the foot. Using 4D scans, we learn a foot
model with a novel pose-corrective deformation formulation that is conditioned
on the foot pose, its shape, and ground contact information. We train SUPR
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(a) Raw Scanner Images

(b) SUPR-Foot predicted deformations

Fig. 7: Dynamic Evaluation: Evaluating the SUPR-Foot predicted deforma-
tions on a dynamic sequence where the subject leans backward and forward,
effectively shifting their center of mass.

with a federated dataset of 1.2 million scans of the body, hands, and feet. The
sparse formulation of SUPR enables separating the model into an entire suite of
body-part models. Surprisingly, we show that the head and hand models are in-
fluenced by significantly more joints than commonly used in existing models. We
thoroughly compare SUPR and the separated models against SMPL-X, GHUM,
MANO and FLAME and show that the models uniformly generalize better and
have a significantly lower error when fitting test data. The pose-corrective blend-
shapes of SUPR and the separated body part models are linearly related to the
kinematic tree pose parameters, therefore our new formulation is fully compat-
ible with the existing animation and gaming industry standards. A Tensorflow
and PyTorch implementation of SUPR and the separated head (SUPR-Head),
hand (SUPR-Hand) and the foot (SUPR-Foot) models is publicly available for
research purposes.
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