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1. Introduction

When fitting statistical models to data, often the main goal is to estimate a set of
parameters that allows a description of the reality as faithful as possible. Thanks
to the increasing computational power of modern computers, as well as availabil-
ity of large amounts of data, increasingly complex statistical and machine learning
algorithms are trying to extract as much information as possible for myriads of
applications.
Probabilistic models are part of these. Generally speaking, probabilistic models
are abstractions of reality that try to find patterns in the data at hand. When
building these models, one often relies on incorporating some structure that is
believed to be rich and descriptive of some underlying phenomena. Usually this
structure depends on some parameters or on some latent variables.
Broadly speaking, a classic distinction for modelling uncertainty is given by the
choice between frequentist and bayesian approaches. In the latter case, the infer-
ence procedure boils down to transforming some prior beliefs, that the modeller
has on reality, into posterior ones, interpolating between prior knowledge and ob-
served data. Believes are in this case encoded by probability distributions over the
world, both observable and not. In other words:

"Bayesian inference is the process of fitting a probability model to a set of data
and summarizing the result by a probability distribution on the parameters of the
model and on unobserved quantities such as predictions for new observations" [1].

However, posterior inference is not always easy, and in many, not necessarily com-
plex scenarios, retrieving an analytical solution is impossible. For this reason, the
classical solution is to resort to approximate inference techniques, where we aban-
don the search for an exact distribution and turn instead to finding some "good"
approximations. In this framework many algorithms have been created, many of
which stemming from classical statistical physics solutions to similar problems.
Nowadays, this is a very active branch of research, due to the importance and
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increasing applicability of bayesian models/probabilistic machine learning.
Among the available approximate inference techniques, a lot of interest has been
given to variational inference [2, 3], due to its relative light computational weight
and to some recent advances that make the approach quite flexible to address a
wide range of applications.
For this thesis we set two goals. Firstly, contextualize variational inference in a
broader inference perspective. Then, dive into the most recent advances in the
field, thus giving a presentation as complete as possible of the research ques-
tions still open. Secondly, we present an original approach to dynamic ranking on
graphs, which uses some recent techniques of variational inference to improve the
state of the art in this particular setting.

Structure

The thesis will be divided as follows. Section 2 gives a brief introduction about in-
ference, starting from the differences between frequentist and bayesian inference.
We then proceed by presenting some of the classic approximate inference tech-
niques. Notice that this short section does not aim at providing an exhaustive
presentation about these themes, each of which would require an entire book on
its own. Rather, we aim at giving a broader context to have a better idea of why
variational inference is useful, and to compare with different more classical solu-
tions.
In section 3 we present variational inference (VI), starting from the basics and then
moving to the most recent advances. To provide a complete digression, different
techniques for richer and more effective VI are presented, along with some relevant
applications.
Finally, in section 4 we present VariationalDynamicRanking (VDR), a novel ap-
proach to dynamic ranking on graphs based on bayesian modelling techniques and
variational inference approximations.



2. Inference, a general framework

We begin our introduction with a classic example, comparing the linear regression
model in a frequentist and bayesian setting. This is needed to set the first nota-
tions, as well as presenting some cases where explicit analytical calculations are
possible, before proceeding with more complex cases.

2.1 Frequentist and Bayesian inference

The difference between the frequentist and bayesian approach boils down to the
very definition of probability. This discussion lead to profound differences in treat-
ment of data, and many times to ideal divergences between statisticians [4, 5]. For
the sake of our discussion, the main difference between frequentist and bayesian
statistic is relative to modelling. The frequentist approach assumes that there
are some "true" parameters underlying the phenomena under study, and tries to
discover them using inference. Under this view, uncertainty is due to the data.
The bayesian approach, in turn, is to think of the observed phenomena as due to
some underlying distribution of parameters, and tries to model and extrapolate
the distribution of this parameters using the data at disposal. Under this view
then, uncertainty comes from the parameters themselves, while data are given [1].

Before diving into some practical examples, it is useful to set some notations and
definitions. We will use them extensively throughout the following chapters.

Definition 2.1. Given a set of observations (xi, yi)i=1,...,m, we define as covari-
ates xi ∈ Rn and as dependent (or response) variables the yi ∈ R. Aggregating
the data we obtain an observation matrix X ∈ Rm,n, containing as rows the
covariates xTi , and outcome vector y = (y1, . . . , ym)T ∈ Rm.

Definition 2.2. Given a set of data (xi, yi)i=1,...,m and a vector of parameters
θ, we define the likelihood of the data given the parameters as the probability
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p(y|X; θ)1.

2.1.1 Example: linear regression

Frequentist linear regression

The classic frequentist setting for linear regression is the following:

y = Xβ + ε (2.1)

ε ∼ N (0, σ2
1) (2.2)

Usually, one wants to determine the best regression parameters β given the data.
This implies specifying what we mean by "best" coefficients. One standard solution
to this problem is the maximum likelihood approach [6]. This means finding the
coefficients β given by

argmax
β

p(y|X; β) ,

i.e. the coefficient that maximize the likelihood of the data.
Under the assumption of gaussian distributed error (2.2), the maximization of the
likehood is achieved in closed form:

β̂ = (XXT )−1XTy (2.3)

For explicit calculations, see [7].

Bayesian Linear Regression

The formulation of the classic bayesian linear regression is similar to the frequentist
one, but with a different formulation of uncertainty. We mainly base our presen-
tation on [8], but several other textbooks can be found in the literature.
As we described above, in a bayesian setting one tries to capture uncertainty in
the model itself, rather than in the data observed. The technical way to represent
this is to think of the parameters of a model as random variables themselves, and
assign a prior distribution to them as well. In the following we introduce some
common building blocks needed to better characterize this framework.

1Notice that here we are not interested in modeling the probability of the covariates X ex-
plicitly, but rather the probability of the outcome y given some covariates. For this reason we
condition on X rather than considering p(y,X|β). Also, covariates may not always be available
in settings different from regression; in those cases we can drop altogether the conditioning on
X.
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Definition 2.3. Consider some model parameters θ and assume that they follow
a certain probability distribution p(θ). Given these model parameters, we assume
that the observations follow a certain distribution p(y|x, θ). We now give a name
to the following distributions:

p(θ) prior distribution

p(y|X, θ) likelihood

p(θ|X, y) posterior distribution

p(y|X) evidence or marginal likelihood

Performing inference in this context means to find the posterior distribution, i.e.
characterizing the source of uncertainty in a quantitative way, given the observed
data.

Given these definitions, we can now describe the standard bayesian linear regres-
sion model. From now on, we assume that the noise variance σ2 is known.

• Likelihood: similarly to the frequentist formulation, p(y|X, β) = N (Xβ, σ2
1),

where N (µ,Σ) is the gaussian density with mean µ and covariance Σ. Notice
however that, differently from the frequentist case, here we condition on the
parameters β, as they are considered random variables in this framework,
rather than fixed parameters. We highlight this distinction using two dif-
ferent notations: p(y|X, β) if we condition on β and p(y|X; β) when β is a
deterministic parameter.

• Prior: we assign a gaussian prior p(β) = N (β0,Σ0).

Our goal now is to find the posterior distribution. We can do so by using Bayes
theorem [1] and noticing that p(β|X) = p(β):

p(β|X, y) =
p(y|X, β)p(β)

p(y|X)

=
N (Xβ, σ2

1)N (β0,Σ0)

p(y|X)
.

Typically, one does not need to compute the normalizing factor p(y|X): if we are
able to find a known distribution in the nominator p(y|X, β)p(β), then we can
automatically find it as p(y|X) =

∫
p(y|X, β)p(β)dβ. For this reason we usually
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write the calculations above as:

p(β|X, y) ∝ p(y|X, β) p(β)

= N (Xβ, σ2
1)N (β0,Σ0) .

Notice that the product of two gaussian densities is also a (unnormalized) gaussian
density, so that

p(β|X, y) = N (βp,Σp) ,

with

βp = Σ−1p Σ0β0 +
1

σ2
ΣpX

Ty

Σp = σ2(σ2Σ−10 +XTX)−1 ,

where the inverse Σ−1p can be explicitly found via matrix inversion lemma [9]. No-
tice that this computation involving gaussians were easy due to the nice properties
of these distributions, but this is often not the case.
For example, assuming that the noise variance σ2 is not known things become
more complicated. In this case, assuming also a normal prior on σ2 would not lead
to a tractable posterior form; in general, one would need to consider less common
distributions. However, a tractable posterior is obtained by using a prior follow-
ing a normal-inverse-gaussian distribution. In fact, considering again a gaussian
likelihood, it can be proven [8] that the corresponding posterior is a normal-inverse-
gaussian.

2.1.2 Bayesian inference: conjugate priors and exact infer-

ence

In the second example of section 2.1 we saw a situation where, given a certain
combination of prior and likelihood, the posterior could be determined in closed
form. In general, we can use Bayes rule to express the posterior as:

posterior = (likelihood) x (prior)
evidence ∝ (likelihood) x (prior) (2.4)

In general, starting from an arbitrary combination of likelihood and prior would not
lead to a tractable expression for the posterior. For a concrete example where this
actually happens see section 2.2.1. However, in the previous example we saw that,
with the particular choice of gaussian likelihood and prior, we were able to obtain
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a gaussian posterior distribution. This is an example of a tractable posterior. To
characterize these types of scenarios we introduce the following definition:

Definition 2.4. Given a family of likelihood distributions p(y|θ) ∈ H, we say that
the family of priors p(θ) ∈ P is conjugate with respect to the family H if the
resulting posterior still belongs to P .

Given this definition, we saw that the gaussian family is conjugate with itself,
but more complex conjugacy relationships exist. For example bernoulli likelihoods
have a conjugate beta prior and uniform distributions have conjugate pareto pri-
ors. A complete table of conjugate distributions is available at [10].
While performing exact inference using conjugate priors requires only the com-
putation of the posterior parameters from the models’ ones, in many relevant
applications conjugacy does not hold. In this cases, approximate inference
methods need to be used. In the following chapters we focus on presenting some
of these.

2.2 Approximate inference

To motivate our interest towards approximate inference, and to show that conju-
gacy could not hold in fairly basic models, we start with a simple example. The
following presentation is based mainly on [8, 11].

2.2.1 Example: bayesian logistic regression

We introduce here a standard logistic regression model in a bayesian setting. As
for the frequentist case, we can think of logistic regression as a linear model with a
sigmoid activation applied over the regressed values. Formally, using the notation
from the previous sections, we consider binary observations y ∈ {0, 1}. We model
this as:

y ∼ Be (σ(Xβ))

β ∼ N (β0,Σ0) ,

where σ is the sigmoid function and Be(·) denotes the Bernoulli distribution.
By proceeding using Bayes rule we notice that equation 2.4 is analytically

intractable, due to the integral given by

evidence = p(y) =

∫
p(y|θ)p(θ)dθ .
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We are therefore forced to find alternative ways to restore the posterior distri-
bution of the model’s parameters.

2.2.2 Laplace approximation

The first method that we present is the Laplace approximation method. This
technique tries to find a gaussian approximation of the posterior in the following
way. Consider the posterior distribution of the parameters p(θ|y). In analogy with
statistical physics methods and the Boltzmann distribution with a given energy
function [12], we define the energy function

E(θ) := − log p(θ|y) + const ,

and we can rewrite the posterior as

p(θ|y) =
1

Z
e−E(θ) (2.5)

for some normalization factor Z. In general, deriving a tractable expression for Z
is a highly non trivial problem, as it depends on the integral of the energy, which
in turn depends on the unknown posterior.

In developing our approximation, we center it on the maximum a priori esti-
mator θ∗, i.e. the minimum of E(θ). This choice is due to two considerations.
First, we expect that most of the mass of p(θ|y) in 2.5 will be centered around θ∗,
as it has the lowest energy. Second, the analytic property that ∇E|θ∗ = 0, being
the minimum a stationary point. We therefore perform a Taylor expansion of E
around θ∗ to find:

E(θ) ≈ E(θ∗) +
1

2
(θ − θ∗)2∇2E|θ∗ (θ − θ

∗)

and we retrieve the approximate posterior [8] as:

p(θ|y) ∝ e−[E(θ∗)+ 1
2
(θ−θ∗)2∇2E|θ∗

(θ−θ∗)] = N (θ; θ∗, (∇2E|θ∗ )
−1) .

Due to the central limit theorem, asymptotic distributions tend to be approxi-
mately gaussian, making this method more reliable.
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2.2.3 Markov chain Monte Carlo approximation

The classical way of approximating and sampling from complex distributions is
given by Markov chain Monte Carlo (MCMC) methods. At their core these meth-
ods rely on trying to find a Markov chain whose invariant distribution is the
one that we want to sample from. While the two reference algorithms are the
Metropolis-Hastings and Gibbs sampling, the world of MCMC is broad and cov-
ering it is out of the scope of this thesis. For an introduction we refer to [11] and
for a thorough presentation, with applications to bayesian inference, to [13].
For our scopes two features of MCMC methods are especially relevant. Impor-
tantly, they have asymptotic convergence guarantees, making them the gold stan-
dard for sampling from complex distributions. However, the major drawback is
given by their very slow convergence. In typically high-dimensional applications,
such as the ones from modern machine learning, these methods become unfeasible
also with great computational power. This is one of the main reasons why the
methods that we are going to present are gaining increasingly more popularity in
the Machine Learning community.





3. Variational Inference

In the previous chapter we introduced some of the classical methods for approx-
imate inference in cases where the exact posterior is not available. Here instead
we focus on a new methodology, Variational Inference [2], that has received a wide
recognition in the statistics and machine learning communities.
In the following sections, we will present the theory underpinning the algorithmic
developments. We then present some recent results in this actively investigated
field. Finally, we will show some applications and open lines of research.
We start by presenting what we call the fundamental theorem of variational
inference, following the proof from [14].

Theorem 3.1. Consider a model with observed variables x ∈ X and latent vari-
ables z ∈ Z. Then for any probability distribution q the following formula holds:

log p(x) = KL(q(z) || p(z|x)) + L(x, p, q) (3.1)

where KL(q(z|x)||p(z|x)) is the Kullback-Leibler divergence between the two distri-
butions and

L(x, p, q) := E
z∼q(z)

[
log

p(x, z)

q(z)

]
(3.2)

Proof.

log p(x) = E
z∼q(z)

log p(x)

= E
z∼q(z)

log

(
p(x, z)

p(z|x)

)
= E

z∼q(z)
log

(
p(x, z)

q(z)

q(z)

p(z|x)

)
= E

z∼q(z)
log

p(x, z)

q(z)
+ E

z∼q(z)
log

q(z)

p(z|x)

= L(x, p, q) + KL(q(z) || p(z|x))
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Definition 3.2. The term L(x, p, q) in (3.1) is called Evidence LOwer Bound,
in short ELBO. The name comes from the fact that, since the KL-divergence is
always non-negative, L(x, p, q) is a lower bound of the log-evidence log p(x).

This theorem, and the consequent definition of ELBO, are very important due to
the following observation:

argmin
q

KL(q(z) || p(z|x)) = argmax
q
L(x, p, q) , (3.3)

as the term log p(x) does not depend on q.
This means that choosing the distribution q within a given family such that it
minimizes the KL distance with the real posterior, is equivalent to minimizing the
ELBO. This is useful because, while we do not know the real posterior p(z|x), and
therefore the value of KL(q(z) || p(z|x)), we are nonetheless, in principle, able to
compute the ELBO, as this only depends on the joint distribution p(z, x) and q,
which we know analytically.
In the Variational Inference (VI) terminology, the distribution q is called varia-
tional approximation, and is usually parametrized by some parameters θ ∈ Rd.
Therefore "variational inference turns the inference problem into an optimization
problem" [3]

argmax
θ
L(x, p, qθ) . (3.4)

After the explicit computation of the ELBO (3.2), which entails the computation
of expected values with respect to the variational distribution, one just needs to
run any arbitrary optimization method, typically (conjugate) gradient descent over
the parameters θ governing q. Notice, however, that the explicit computation of
the ELBO is not always straightforward; alternative methods have been developed
when this is not analytically available, see section 3.2.

Example 3.3. A nice example where the ELBO is analytically available is given
by the logistic regression presented in section 2.1.2. Complete and generalized
computations can be found in [15].

3.1 Mean field variational inference

One of the main issues faced when using variational methods, is the choice of the
variational approximation q. Ideally, the variational approximation family should
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belong to a family F rich enough that the KL divergence

KL(F || p(z|x)) = min
q∈F

KL(q(z) || p(z|x))

is low enough, while still allowing tractable computations of the ELBO.
One traditional choice is the so called mean field approximation. This means
choosing a factorized variational approximation

qθ(z) =
∏
i

qθi(zi) ,

where every qθi belongs to a distributions family of choice. While at first sight this
may look like an oversimplification, it works in practice as it is the predominant
choice in many applications, see section 3.4.3. Further ideas for structured mean
field and more involved distributions are still under investigation. We will cover
some of the recent advances in section 3.3.
Notice that using a factorized distribution means neglecting, at least in first ap-
proximation, all the possible correlations in the posterior distribution. While this
is similar to other machine learning scenarios, for example naïve bayes classifiers
[6], we can see that, in mean field variational inference, correlations still play a
role in determining the optimal θ∗. This is because, even if in the variational ap-
proximation variables are decorrelated, the KL is minimized to approximate the
posterior, where correlations can in principle be present.

3.1.1 Mean field, exponential families and coordinate ascent

Some optimization procedures for mean field involving the so called conditionally
conjugate exponential families have been developed in the past years. A great
review on this topic is represented by [3]. These procedures use tools from calculus
of variations and is at the origin of the variational inference’s name. However, these
procedures, based on closed from updates for coordinate ascent, are restricted to a
small class of families, leaving optimization in the more general case an open issue.
We present the most modern and general algorithm in section 3.2. The interested
reader can find in [3] a relevant example of a mixture of gaussians where the
variational framework is implemented via the coordinate ascent "CAVI" algorithm.
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3.1.2 Amortized inference

Amortized variational inference tries to reduce the number of parameters in the
variational approximation by specifically introducing the observable data (i.e. the
covariates) into the approximation itself. Formally, the form of the variational
approximation is

qθ(x)(z) ,

where now θ(x) is a function depending on some parameters to optimize. As we
can see here the problem of optimizing the parameters is a regression one. The
term amortized comes from the fact that, given z and x, we can model them as
above instead of being forced to run an iterative algorithm to optimize a different
set of parameters for qi(zi|xi). The idea of amortized inference is at the base of the
connection between deep learning and variational inference, which we will briefly
introduce in section 3.4.2.

3.2 Black Box Variational Inference

The mean field approximation, in general, may not be enough to derive analytically
all the terms involving expectations inside the expression for the ELBO (3.2).
In these cases, one possibility is to optimize using (stochastic) gradient descent
methods [16, 17, 18]. However, it is often prohibitive to compute terms like

∇θEq[L(x, p, q)] , (3.5)

as the parameters θ are not only inside the argument of the expectation, but also
in the distribution with respect to which the expectation is taken, since q = qθ.
Therefore

∇θEq[L(x, p, q)] 6= Eq[∇θL(x, p, q)] .

This is unfortunate as the right-hand-side of this expression is usually easier to
exploit algorithmically. One option would be to find a stochastic approximation
of the gradient and then calculate its expectation, for instance, by sampling from
q.
One easy way to overcome this problem is the so called "reparametrization trick"
[19], which is at the base of deep learning applications of variational inference
3.4.2. In short, this trick allows to backpropagate gradients also on the expectation
Eq. We show how this works for obtaining a stochastic approximation ∇̃θL of the
gradient of the ELBO with an example. Consider q = N (µ, σ), and thus θ = (µ, σ).
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We then sample si ∼ N (0, 1) , i = 1, . . . , n and use the expression zi = σsi + µ to
compute

∇̃θL =
1

n

n∑
i=1

∇(µ,σ)(log p(x, zi)− log q(µ,σ)(zi))

=
1

n

n∑
i=1

∇(µ,σ)(log p(x, σsi + µ)− log q(µ,σ)(σsi + µ)) .

As we can see, here we approximate the real, in general non analytic gradient from
3.5, with a monte carlo estimation given by an average of n explicitly computable
gradients. Automatic differentiation softwares, e.g. Pytorch [20], provide ready-
to-use implementations of this trick. Even though there have been recent advances
to generalize this approach [21], it is still not applicable in general. In particular,
this does not work for discrete distributions.

A more general solution has been proposed in [22]. They develop a “black-box”
methodology that, for any q and p, only requires estimating ∇θ log qθ. With these
ingredients, one can obtain a stochastic gradient approximation that can be then
passed as input into any gradient descent algorithm. We report here only the main
result, and refer the reader to the original paper for the full proof.

Theorem 3.4. Assuming that qθ(z) is differenciable in θ, the following relationship
holds:

∇θL(x, p, q) = ∇θEq[log p(x, z)− log q(z)]

= Eq[∇θ log qθ(z)(log p(x, z)− log qθ(z))] . (3.6)

Using this result allows for simple optimization, presented in algorithm 1

Algorithm 1 Black-Box Variational Inference
1: Choose model p, variational approximation q, n batch size, ρt (dynamic)step

size for optimization
2: while ELBO has not converged do
3: sample n latent variables from q: {zi}i=1,...,n ∼ qθ(z)
4: compute stochastic approximation

∇̃θL = 1
n

∑n
i=1∇θ log qθ(zi)(log p(x, zi)− log qθ(zi))

5: update variational parameters θ = θ + ρt∇̃θL

This approach is not immune to problems though. In fact if one would be
able to compute the ELBO in closed form, the derivatives would be free from any
type of noise and optimization could proceed smoothly. In black-box variational
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inference instead, we are just able to recover a stochastic, unbiased approximation
of the gradient. This is typically affected by a very large variance, making the
search for good local optima very hard in many applications. The problem is
so severe that in the original paper itself two methods for variance reduction are
proposed: Rao-Blackwellization of the gradient and the use of control variates. We
refer to [22] for further details.

3.3 Beyond mean field

While the use of mean-field VI is predominant due to its computational conve-
nience, as well as ease of implementation, many efforts have recently been made
towards using techniques allowing for more refined variational approximations. In
a series of recent papers several results proved the benefits of better approximating
the exact posterior. Here we briefly present some of these advances.

3.3.1 Structured mean field

The first idea towards moving away from vanilla mean-filed approximations is to
use variational distributions that capture some structure, while still preserving a
factorized form. One can then view the parameters θi and variables zi as divided
in blocks, where the structure allows to still perform inference [8]. This framework
is quite general but still imposes strong assumptions, limiting the approximation
abilities of the distribution q. We present an example in our work from section
4.2.3.

3.3.2 Normalizing flows

The idea of using normalizing flows has been introduced in [23, 24, 25]. When
dealing with variational approximation one always has to pay some attention to-
wards building scalable methods. This is in fact the main strength of variational
inference, that bear no convergence guarantee, with respect to the asymptotically
exact MCMC.
The idea of normalizing flows is to then try and start from a simple and cheap
mean field family, making it more complex and expressive using some specific
invertible transformations. Following the notation from [23], the technical frame-
work is given by considering a sequence of invertible and differenciable transfor-
mations f1, . . . , fK . Starting from an initial mean field approximation z0 ∼ q0 =∏

i q0,i(zi|θi) one considers the "flow" of transformations zi = fi(zi−1) that grow
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Figure 3.1: starting from simple distributions (unit gaussian and uniform) one can
see that applying an increasing number K of normalizing flows leads to very rich
and multimodal distribution. Figure taken from [23].

more and more complicated till the final approximation zK ∼ qK .

While it is clear that considering complicated and non uncorrelated distribu-
tions qK should ideally lead to better approximation, see figure 3.1, one also has to
prove that inference stays cheap, ideally linear in the number of parameters. This
is achieved by considering the pdf of the transformed variables, which depends on
the original via the Jacobian ∂fk

∂zk−1

log qK(zK) = log q0(z0)−
K∑
k=1

log

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ .
Given this formula we can sample and optimize without even knowing the final
distribution qK explicitly. One just needs to sample from the (cheap and factorized)
initial distribution q0 and then follow the flow fK ◦ . . . ◦ f1 to find a realization of
zK . For optimization we can use simple black box methods, as from section 3.2.
To find the ELBO we use the law of the unconscious statistician

EqK [h(zK)] = Eq0 [h(fK ◦ . . . ◦ f1(z0))]

and find

L = Ez0∼q0 [log qK(zK)− log p(x, zk)]

= Ez0∼q0

[
log q0(z0)−

K∑
k=1

log

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣− log p(x, zk)

]
.

As we can see this procedure keeps the efficiency of the usual black box methods,
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Figure 3.2: left the vanilla mean field approximation q. There is no correlation
between the latent variables z. right: the new hierarchical model, where correla-
tions are introduced by means of the new variational parameters θ. Picture taken
from [28]

.

and requires linear time sampling and optimization in the length of the flow K.
Some care has to be given to the form of the transformations fi, as computing
the Jacobian must be very cheap or ideally not needed. For example considering
transformations with triangular Jacobians allows to compute the determinants by
just multiplying the diagonal terms. A literature about proper and rich choices of
these transformations has developed lately in response of the utility of this method.
Examples are given by [26, 27].

3.3.3 Hierarchical models

Another scalable solution towards inserting correlation in variational methods is to
insert hierarchical structures in the bayesian modelling itself [28]. While we usually
model the posterior using a q(z;λ) depending on some variational parameters λ,
now we introduce an extra layer, assigning a prior to the λ, obtaining

q(z, λ; θ) = q(z|λ) q(λ; θ)

depending on the new variational parameters θ. While to preserve scalability we
need to keep on using a factorized distribution on the z, given by

q(z, λ; θ) = q(λ; θ)
∏
i

q(zi|λi)

we can still introduce a level of correlation given by the new layer of the variational
approximation (figure 3.2).
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The new ELBO has the following form

L(p, q, θ) = E(z,λ)∼qθ [log(p(x, z)) + log r(λ|z; θ)−
d∑
i=1

log q(zi|λi)− log q(λ; θ)]

where r(λ|z; θ) is a recursive approximation term for the unknown q(λ|z; θ). Stochas-
tic estimators of the gradient can be found via reparametrization trick (see section
3.2). Many families are proposed in the original paper as candidate variational pri-
ors q(λ; θ), such as mixtures of gaussians or normalizing flows (see section 3.3.2).

3.4 Variational Inference: applications

In this section we will focus on presenting some recent applications that arose from
or are related to variational inference. We will then present an original application
to dynamic ranking on graphs and the relative inference solution in section 4.

3.4.1 Variational EM

Expectation Maximization (EM) is an algorithm for finding maximum likelihood
(ML) or maximum a posteriori (MAP) solutions in models involving latent vari-
ables z. The review of the EM algorithm falls outside the scope of this thesis, we
refer to [11, 8] for a great introduction.
The EM procedure is divided in two steps, called E-step (expectation step) and
M-step (maximization step). During the former, one needs to find the posterior
distribution of the latent variables p(z|x) and during the M-step a maximization
with respect to the hyperparameters governing p is performed. EM in based on
theorem 3.1 and, in its exact original form, requires a closed form E-step. However,
this is not possible in many scenarios, forcing the use of approximate versions of
the E-step.
Variational EM falls within this approximate EM class in a bayesian setting, where
we substitute the real posterior p(z|x) with the variational approximation q(z).
The optimization loop is then iterated alternating a variational E-step, where we
find an optimal q given the current hyperparameters, and an M-step, where q is
kept fixed and one tries to optimize the ELBO as a function of the hyperparame-
ters.
As a final remark about variational EM, or EM in a general bayesian context,
notice that the hyperparameters defining the model can be divided in two cate-
gories: the parameters related to the prior and the ones determining the shape of
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the likelihood. While it is in principle possible to perform the M-step optimizing
both of them, as is done in some cases, a pure bayesian approach would just allow
optimization over the likelihood parameters. This is due to the so called likelihood
principle, that states that all the information about the data should be contained
in the likelihood. Therefore the prior distribution should be left untouched, as it
doesn’t need to be related to the data [29]. We will present an example of this
procedure during the optimization of our original model for dynamic ranking in
section 4.2.3.

3.4.2 Variational Autoencoders

Variational autoencoders (VAEs) [19, 30, 31, 14] exploit the ideas from sections
3.1.2 and 3.2 to connect deep learning and variational inference. At their essence,
VAEs try to simultaneously optimize the likelihood and the variational approxi-
mation at the same time, where they both assume an amortized form

p(x|z) = pφ(z)(x)

q(z|x) = qθ(x)(z)

where the functions φ(x), θ(z) contains some parameters to optimize. In typical
VAEs the prior is assumed to be a standard normal distribution, even if some
generalizations have been recently introduced [21]. The way these functions are
actually implemented is using neural networks: qθ(x)(z) will play the role of an
encoder that, when given some data in input, will try to model the posterior dis-
tribution of the latent variables. pφ(z)(x) instead, will play the role of a decoder
that, given some z extracted from the prior, can produce some new data in a gen-
erative fashion. Practically, the whole model is optimized in one run as a typical
encoder-decoder deep learning architecture, with the addition of a random draw
from the prior N(0, 1) for every data point. The final result is in principle a model
able to generate new unseen data exploiting the structure learnt from the decoder,
by simply drawing from the prior whenever a new realization is needed. Moreover,
given the simple structure of the prior, one is able to explore the latent space
actively to qualitatively check how different features of the data are learnt and
embedded into the space.
VAEs are one of the major variational inference applications and have become a
very research intensive topic in recent years. We limit to highlight a very sim-
ple fact that is currently at the heart of many questions in VAEs research. In
traditional variational inference, no mention is given to the parameters governing
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the prior and likelihood of the model. This because they are kept fixed, and the
approximation q is modified so as to be as close as possible, in KL divergence,
to the posterior p. In VAEs however, also the parameters of the likelihood itself
are modified for every pass of backpropagation through the neural network. This
doesn’t comply with the usual optimization procedure, as it produces an ever mov-
ing posterior p, which makes an unclear objective for the optimization of q. While
this fact is often left unmentioned, it is very important as it totally changes the
interpretation of the performed optimization. A very recent and interesting line of
research is the one trying to merge the idea of normalizing flows, building towards
richer approximations, see section 3.3.2, with VAEs. Some examples are given by
[32, 33, 34].

3.4.3 Other applications

In principle the variational methods can be useful whenever the posterior distri-
bution in a bayesian context is not available explicitly. For this reasons many
recent works leverage this feature for performing inference in complex scenarios.
Some examples relate to community detection in networks [35], static [36] and dy-
namic [37] topic models, document classification [38], recommender systems [39],
reinforcement learning [40] and many others.





4. Variational Dynamic Ranking

4.1 Tools and notations

After having introduced the variational inference framework, we present here an
application to an original field, namely, dynamic ranking on graphs. First, we
formally define each of these three terms separately.

Definition 4.1. A graph G is a tuple G = (V,E) composed of a vertex (or node)
set V = {1, . . . , n} and an edge set E ⊆ V xV . A graph is said to be undirected if

(i, j) ∈ E ⇐⇒ (j, i) ∈ E

i.e. if an edge (i j) is present, also (j, i) is. A non undirected graph is called
directed.
Moreover, a graph can be weighted, meaning that we attach a numerical value to
every e ∈ E. In this case a graph can be seen as a triple G = (V,E,W ) where W
is a function

W : E → R

Notice that a non weighted graph, sometimes called binary graph, can simple seen
as a weighted graph where the weights are all 1. In general we expand W to a
function over V xV where any (k, l) /∈ E has weight 0.
Generally, a graph can be represented by an adjacency matrix A ∈ Rn,n where
Aij = W (i, j)

Definition 4.2. A ranking or centrality measure S on a graph is any function
assigning a numerical score to every node in V

S : G→ Rn

Some classical examples of ranking on graphs are degree, eigenvector, PageR-
ank and betweenness centrality, even though a wide variety is available. Broadly
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speaking, the aim of centrality measures is to assign a higher score to nodes that
are more important, or central, according to a given criterion.
Despite the large availability of ranking algorithms, apt to a variety of different
scenarios and applications, relatively low attention has been brought to dynamic
scenarios where, instead of a single graph G, we observe a sequence (Gt)t=1,...,T

with, for our applications, a fixed vertex set Gt = (V,Et,Wt). It is natural to
assume then, that also the nodes’ ranks evolve in time, forming a sequence st.
To take into account the evolution of these ranks it is generally not enough to
assume that st = S(Gt). Consider for example a sports championship, where the
time stamps are the single days where games are observed and the nodes, with
relative ranks, the single teams. If we were to estimate a team’s rank by just look-
ing at single day, we could be offset by atypical events, that are not in line with
the general trend of the previous matches observed, leading to peaky or incorrect
rankings. Moreover, one could simply not be able to observe one or enough edges
for every node at a given time t, being forced to appeal to the time dynamic for
rank retrieval.

4.2 The probabilistic approch

Our proposed algorithm relies on a probabilistic approach and tries to smooth the
rankings’ changes using a time series connection. On a single time level, we rely
on SpringRank [41], a novel ranking algorithm with a physically based principle.
This choice is mainly motivated by the specific form of the algorithm, that allows
a probabilistic interpretation and well adapts to our aims. In the following section
we briefly introduce the static standard SpringRank, then moving to the dynamic
version.

4.2.1 The static model

The SpringRank model has been presented in [41] as a physical metaphor, later
turning into a pure optimization problem. Afterwards, the authors present a proof
of how the solution can be interpreted also under a probabilistic bayesian view,
which we summarize as follows

• prior
p(s) ∝

∏
i∈V

exp
(
−α

2
(si − 1)2

)
(4.1)

product of uncorrelated normals
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• likelihood
p(A|s) =

∏
i,j

Pois(Aij;λij = ce−
β
2
Hij) (4.2)

where Hij := (si − sj − 1)2

where, as from section 4.1, s are the rankings of the nodes in the network and
A is the adjacency matrix. Notice that for now Rn,n 3 A = (Aij)i,j=1,...,n and
Rn 3 s = (sk)k=1,...,n are independent on time.
We make two remarks before presenting our dynamic version. First of all, notice
that the likelihood has a mean dependent on the rankings through the value Hij =

(si − sj − 1)2. This specific shape was intended for two reasons in the original
paper. First of all, the physical comparison was intended to reduce a total energy

E =
∑
i,j

(si − sj − 1)2

In this case it would have been impossible to remove the −1 term, as an energy of
type

∑
i,j(si − sj)2 is clearly minimized by setting all ranks equal. Secondly, the

spring comparison was useful as an explanation of the fact that the bare observation
of an edge between two nodes was, in the specific application, an hint towards the
closeness of the two nodes’ ranks. We will get rid of some of these assumptions in
the next sections, giving detailed explanations for these modelling choices.

4.2.2 A first dynamic formulation

This dynamic version is an adaptation of the methods from [37] which, similarly,
was trying to insert a time dependency in LDA (Latent Dirichlet Allocation [38],
see section 3.4.3). This approach has also been adapted, for example, to recom-
mender systems [39].
The main idea here is to introduce a time dynamic using an autoregressive process
involving some latent variables. Formally, we define the model as follows:

• prior

p(s, µ) = p(s0, µ0)
T∏
t=1

p(st, µt|st−1, µt−1)

= p(s0, µ0)
T∏
t=1

p(st|µt)p(µt|µt−1) (4.3)
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. . . µt µt+1 . . .

st st+1
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At+1

Figure 4.1: Graphical representation of the dynamic model

where the conditional distributions are:

st|µt ∼ N(µt, ρ
2
1) (4.4)

µt+1|µt ∼ N(µt, σ
2
1) (4.5)

i.e. the underlying variables µt assume an autoregressive process form, and
the st are generated like in the static model, but with means µt

• likelihood
p(A|s, µ) =

∏
t,i,j

Pois(Atij;λtij = ce−
β
2
Htij) (4.6)

where Htij := (sti − stj)

The generative model is represented in figure 4.1.
Notice that now all the terms have an extra index t, making the matrix of

observations a tensor with dimensions T, N, N and the ranks a sequence of ranks,
st ∈ Rn ∀t = 1, . . . , T .
As pointed out above, the autoregressive process is not on the ranks themselves,
but rather on their means, allowing for another layer of stochasticity. Moreover,
notice the modification of the likelihood with respect to the static form: here we
consider a term (sti − stj). This is intended to actually remove the assumption
that observing an edge between two nodes is a suggestion that they are close in
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rank. In this way we can observe nodes with ranks at arbitrary distance. This
is needed for the dataset under study in section 4.3. For an intuition of why this
may be reasonable take for example two teams in the NBA league, where every
teams plays against every other, or social networks, where a "follow" relationship
can be shared between very important and very non central nodes.
Finally notice that the modelling flexibility of this method is very useful for a range
of situations, and one should be able to pick the best assumptions and distributions
that, in principle, allow the best fit to the data. In the next section we will instead
turn to studying the inference for this model.

4.2.3 Choosing the method: generative model and inference

In the previous section we presented a possible form for the dynamic generative
model, but many possible choices are available. For getting an idea on how to
possibly tune one’s choices in this context, as well as presenting two different
types of inference, in the following sections we introduce some example variations
on the main model proposed above. Finally, in section 4.2.4 we present the best
performing model used for the experiments in section 4.3.

Inference for the dynamic model

The complicated form of the likelihood, together with the autoregressive form of
the µ variables, doesn’t allow for simple derivation of the posterior. Therefore
we turn to using variational inference to retrieve an approximate posterior of the
latent terms. In this section we present a possible choice for the inference. Here,
the variational approximation q follows the ideas from [37] and falls under the
structured mean field framework:

q(s, µ) =
∏
t,i

q(sti|θti, η2ti) ·
∏
i

q(µ:i|µ̂:i) (4.7)

where µ:i = (µ1i . . . µT i) ∈ RT . The specific shape we use is q(sti|θti, ηti) ∼
N (θti, η

2
ti). For q(µ:i|µ̂:i) =

∏
t q(µti|µ̂:i) we consider a gaussian with mean and

variance given by running a Kalman filter and smoother [42] on µ, µ̂. Here ν̂2t is
an extra variational parameter that regulates the variance in the Kalman filter
structure µ̂t|µt ∼ N (µt, ν̂

2
t 1).
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Filtering mt, Vt

mt ≡ E(µt|µ̂1:t) =

(
ν̂2t

Vt−1 + σ2 + ν̂2t

)
mt−1 +

(
1− ν̂2t

Vt−1 + σ2 + ν̂2t

)
µ̂t

Vt ≡ E((µt −mt)
2|µ̂1:t) =

(
ν̂2t

Vt−1 + σ2 + ν̂2t

)
(Vt−1 + σ2) (4.8)

Smoothing m̃t, Ṽt

m̃t−1 ≡ E(µt−1|µ̂1:T ) =

(
σ2

Vt−1 + σ2

)
mt−1 +

(
1− σ2

Vt−1 + σ2

)
m̃t

Ṽt−1 ≡ E((µt−1 − m̃t−1)
2|µ̂1:T ) = Vt−1 +

(
Vt−1

Vt−1 + σ2

)2

(Ṽt − (Vt−1 + σ2)) (4.9)

Using this model one can compute the ELBO and obtain

ELBO(q) = − 1

2ρ2

∑
t,i

(η2ti + Ṽti + (θti − m̃ti)
2)− 1

2σ2

∑
t,i

(Ṽti + Ṽt−1i + (m̃ti − m̃t−1,i)
2)

+
β

2

∑
t,i,j

Atij(θti − θtj)− c
∑
t,i,j

exp

(
β

2
(θti − θtj) +

β2

8
(η2ti + η2tj)

)
+

1

2

∑
t,i

log(2πeη2ti) + log(2πeṼti)

− 1

2
TN log(4π2σ2ρ2) + log c

∑
t,i,j

Atij + const (4.10)

extended computations are presented in section A of the appendix. Notice that
this is one special case where the ELBO is actually available in closed form, making
optimization easy via gradient descent techniques. Details on implementations will
be presented in section 4.2.5.
While one may decide to stop here on the inference perspective, we actually decided
to perform an extra optimization step. In fact, no action has been performed
to infer the optimal hyperparameters of the model, such as β, c, σ2 and ρ2. As
explained in section 3.4.1, we decided run a variational EM optimization loop,
by alternating inference on q and optimization of the hyperparameters. Not only
for the bayesian reasoning present in section 3.4.1, but also due to intermediate
exploratory results, we just optimized with respect to the likelihood related terms
β, c (when applicable, see next sections’ models), leaving the prior’s ones fixed.
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Figure 4.2: Graphical representation of the reduced form dynamic model

Playing with the likelihood: binomial distribution

In the adaptation from static to dynamic modelling, we tried to keep the common
parts of the models unchanged. This includes a similar form for the prior of the
ranks in 4.3 and the likelihood 4.6. However, upon knowledge of the number of
observations Atij +Atji at every time step t for a fixed pair i, j of nodes, the most
appropriate likelihood to use would be binomial. In this case we would obtain

p(A|sµ) =
∏
t,i,j

Bin(ptij, ntij) (4.11)

where ntij = ntji = Atij + Atji and ptij = 1

1+e−2β(sti−stj)
. Notice that choosing this

form for ptij we actually obtain ptij + ptji = 1 as it should be from the model. As
we point out in the next paragraph, as well as in section 4.3, inference for this
model is especially difficult, due to the use of a stochastic gradient affected by
high variance. In order to reduce the number of parameters, as well as speeding
calculations up, we refactor the model by removing a middle layer, see image 4.2.

Inference for the dynamic binomial model

We keep the same form for the variational approximation q as from the Poisson
likelihood model 4.7, just taking into account the fact that we are dealing with a
different number of variables, yielding

q(s|A) =
∏
t,i

q(s:i|ŝ:i)

where now the Kalman recursions are computed directly on the ranks sti with
"variational observations" ŝti. In this case the form of the ELBO is very similar.
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In particular, the only different term to compute in

ELBO(q) = Eq[log p(s)] + Eq[log p(A|s)]− Eq[log q(s)]

is the so called reconstruction error Eq[log p(A|s)]. It turns out, however, that
this integral is impossible to express in closed form, due to the binomial likelihood
shape, not allowing to write the ELBO explicitly. Despite this one only change
then, the inference becomes a lot different. Here we are faced with two choices.
Notice that the ELBO can be divided in three terms as above. In cases like ours,
where two are explicitly computable, one may decide to optimize by computing
the exact gradient over them, and find a stochastic approximation of the non com-
putable term’s gradient using the black box variational inference methods from
section 3.2. On the other hand, one may simply consider an entirely stochastic
estimate of the complete gradient, without using the explicit parts of the ELBO.
During pilot trials we experimented with both methods.
We make one only remark here. While for the Poisson model there was no variance
in the gradients used, and optimization proceeded smoothly, the use of stochastic
estimates notably reduces the performances. This problem is made even worse by
the use of a non mean field form for q, since we pass from the Kalman equations,
that have the effect of entangling the variational parameters. This makes the usual
variance reduction techniques less effective, as they depend on the number of pa-
rameters governing every part of the factorized q.
The likelihood (4.11) is invariant under multiplicative rescaling of β: by consider-
ing β′ = λβ for some λ ∈ R, the same likelihood is obtained rescaling the ranks
s′ = s/λ. While the ELBO itself is not invariant under rescaling of β, we decided
not to use a variational EM routine while optimizing this specific model, therefore
fixing β in advance and optimizing via grid search together with the prior’s pa-
rameters.

Mean field variational inference

While the structured approximation q presented in the previous sections can in
principle yield good results, due to its similarity with the generative model, in prac-
tice one observes better results with a mean field formulation. While for brevity we
don’t present all the intermediate results for all the possible combinations of q ap-
proximation and inference choice, we try to motivate the final performances with
a a posteriori analysis. As explained above, stochasticity in the gradient plays
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an important role in the optimization and therefore in the final performances.
Nonetheless, thanks to a likelihood that is supposedly closer to the real data, the
binomial model yields improvements with respect to the Poisson likelihood one.
Similarly, one can play with the form of the variational approximation q. Before,
we presented a structured choice that tries to restore a time dynamic introducing
some "variational observations" to then estimate mean and variance of the ranks
after the Kalman recursions. One could argue though, that after having found
the first and second moment, the variables actually become independent and we
end up with a form very similar to the mean field formulation. Moreover, with a
mean field choice we can at least approximate the marginal moments of the ranks.
Also, optimization is supposed to be cheaper, thanks to the reduced number of
parameters and avoiding the passage through the Kalman filter and smoother, and
thanks to the decreased variance of the gradient.
For all these reasons, and for the relative ease of implementation, we also experi-
mented with a mean field approximation q, which is formulated as

q(s) =
∏
t i

q(sti|mi, V
2
i ) =

∏
t i

N(sti;mi, V
2
i )

In the end, supposedly due to the reasons above, we find that this formulation
yields the best performances for the binomial model, and therefore stick to this
choice for the results presented in the next section.

4.2.4 The final model: choosing the likelihood

In the previous section we presented a detour of various choices that one could make
while developing a generative model of this type, as well as two different possibil-
ities for the variational approximation q. While we implemented and tested all of
these, as well as other combinations of them, we present here what we found to
be the best performing model, achieving results similar to the state of the art, as
from section 4.3.
This model is a simple modification of the binomial formulation presented above,
and starts from an intuition borrowed from [43]. A way of introducing a higher level
of flexibility in the model, in fact, is to introduce the idea of performances. Ideally,
when two players interact, the outcome can also be affected by some stochasticity
independent of one’s rank. For this reason we decide to make a small, but sig-
nificant, change in the probability ptij in the binomial likelihood 4.11 by choosing

ptij = F (0; sti − stj, 2 β2) (4.12)
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where F (x;µ, σ2) is the cdf of a gaussian distribution with mean µ and variance
σ2. This choice is justified by thinking about the outcome Atij as due to some
performances ξti, ξtj distributed according to independent gaussians centered on
the relative ranks

ξti ∼ N (sti, β
2)

Therefore, one models the probability of getting ptij as the probability of ξti−ξtj >
0, i.e. one performance is higher than the other. Since ξti− ξtj ∼ N (sti− stj, 2 β2)

one obtains formula 4.12.
Notice that we don’t insert the performances directly into the formulation of the
generative model, as they are just needed for obtaining the new ptij. This means
that they won’t be estimated at inference time, and are not modelled by q. Ex-
plicit calculations for the posterior predictive distribution of q(A|s) are included in
appendix B. For the ELBO gradient calculation instead, one just needs to notice
that the chain rule requires to compute, when using the reparametrization trick,
the gradient of

log p(A|s) =
∑
t,i,j

Atij log ptij + Atji log ptji

with respect to stij. This is turn, requires to compute ∂ log ptij
∂stij

=
∂F (0;sti−stj ,2β2)

∂stij
,

as well as ∂ log ptij
∂stji

. While it is not straightforward to show, one is able to express
the derivative of F (0;µ, σ2) with respect to µ in closed form using the cdf and
pdf of a gaussian, yielding closed form computations of the gradient. We refer to
Autograd’s implementation for the backpropagation of the gradient through the
log-cdf 1

4.2.5 Implementation details

All the models have been implemented in Python. Notice that, while the explicit
form of the ELBO 4.10 and the iterative form of the Kalman filter and smoother
allow for explicit (iterative) computations of the derivatives for the optimization,
here we restored to the use of an automatic differenciation library. Among the
many ones available for Python, for example Tensorflow [44], PyTorch [20], Caffe
and Theano [45], we decided to use Autograd [46] for its convenient interface and
easy integration with Numpy [47], which allows seamless implementation of the
Kalman equations.
During the implementation of the model we were challenged with some issues.
Among the notable ones there are the following:

1https://github.com/HIPS/autograd/blob/master/autograd/scipy/stats/norm.py
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• some variables in the model are constrained to be strictly positive. While
in principle some methods for constrained optimization are available, like
projected gradient methods, to the best of our knowledge these haven’t re-
ally been used in a variational inference framework. For our variables it’s
way easier to optimize some free variational parameters that are then cast,
through a reversible and differenciable transformation, into the positive ones.
For example when we needed to optimize the variational variances η2ti ∈ R>0,
we actually optimized some free variables η̃ti ∈ R then using

η2ti = f(η̃ti)

where f is the soft-plus activation function

f : R→ R>0

x 7→ log(1 + ex)

this doesn’t have any effect on the model, and requires only one extra step
of automatic derivation via backpropagation. This trick has also been used
for keeping β, c positive when performing the M-step during the variational
EM optimization

• using the soft-plus activation is convenient on an optimization perspective,
but comes with a caveat. In fact the function log(1 + ex) is highly unstable
on a numerical level, often leading to under or overflow impeding the conver-
gence of the model. While for sums of type log(

∑
i e
xi) one usually resorts to

the log-sum-exp trick [8], in our case we just had two summands, making the
trick less effective. This specific instability is so well recognized that many
programming languages have a specific function build for avoiding numerical
errors. In our case we substituted the naïve implementation, which would
impede convergence, with the function logaddexp included in (the Autograd
wrapper of) Numpy. Indeed, this type of computations occurred often in the
code, and we made extensive use of this optimized function, which turns out
to be a staple of statistical/scientific programming

• as is the case for many Numpy dependent scenarios, the use of vectorized
algebra sped the calculations up by a huge multiplicative factor. This is
especially important due to the numerous multiplications and sums in the
Kalman equations, which are not of trivial implementations in their tensor
form
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4.3 Experimental setting and results

4.3.1 From static to dynamic: related work

Before introducing natively dynamic algorithms, notice that it is relatively easy
to turn any static ranking algorithm S into dynamic by just considering a rolling
window of length k and st = S(Gt−k,t−k+1,...,t) where Gt−k,t−k+1,...,t is a weighted
graph with

Wt−k,t−k+1,...,t =
t∑

i=t−k

Wi

For example, if we stick to the teams and games example, the entry (i, j) in
Gt−k,t−k+1,...,t can be though as the sum of all the games won by j against i in the
time window [t − k, t]. Notice, however, that this type of approach doesn’t take
into account a proper time dynamic, and relies on assuming a relative stability of
the ranks in restricted time windows. Other drawbacks are given by the need of
tuning the window length k, as well as an explicit rendering of the time dynamic,
making interpretation difficult.
In the literature however, it is already possible to find attempts to model time
evolving rankings. Notably, TrueSkill [48] and Whole History Rating (WHR) [49],
both adopting a bayesian approach, albeit without recurring to any variational
method. We therefore compare with these two algorithms in the following sections.

4.3.2 Evaluation method

We evaluate the ranks through their predictive ability, i.e. how accurate the fore-
casting of future games is given the most recent estimated ranks. In particular,
given a training set until time t, we are provided with an estimated final rank st.
We evaluate this ranks by assessing the predictions on the games for a certain time
window [t+ 1, t+m]. Given the adjacency matrices At+1, . . . , At+m we build a cu-
mulative one At+mt+1 for the entire testing period, given by

(
At+mt+1

)
ij

:=
∑t+m

τ=t+1Aτij.
Moreover, while TrueSkill and WHR come provided with a way of extracting vic-
tory probabilities from the ranks, for VDR we find them as follows. Given a ranks
vector s, typically the latest rank available st, and the relative variational means
mt and variances V 2

t , we compute the winning probability of i against j as

pij = Φ

 mti −mtj√
2β2 + V 2

ti + V 2
tj
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where Φ(x) is the cdf of a standard gaussian computed in x. Explicit calculations
can be found in appendix B.
The error measures that we use are the following:

• accuracy: fraction of correctly predicted outcomes. Precisely, if one has two
different ranks sti, stj, a outcome A = +1 is correctly predicted if sti > stj.
In case of integer values A > 1, we count the prediction as many times as
the value of A is.

• log-likelihood: the value of the log-likelihood according to a Bernoulli distri-
bution. Formally, we have

log-lik =
∑
tij

Atij
(
δAtij>0 log(ptij) + δAtij<0 log(1− ptij)

)
where δAtij>0 is equal to 1 if Atij > 0, else 0.

4.3.3 Experimental results

We evaluate our algorithms on the NBA dataset. The dataset consists of 218
aggregated time stamps and describing the games among 30 teams in the NBA
league. In this context the adjacency matrix contains in Atij the number of games
won by i agains j during the time period t.
As from section 4.3.1, we compare against the TrueSkill and WHR algorithms,
evaluating on accuracy and lok-likelihood of the models, as these are two classic
measures for classification tasks. Notice that our interest still relies on retrieving
reliable ranks, and this is only measured through the classification error measures,
which are not the final goal.
All the models are trained on a moving window of length train_size and are evalu-
ated through their predictions on an adjacent testing window of length test_length.
For all algorithms we present the results obtained on the best training size found
among 10, 20 and 40 periods, evaluating on different testing sizes. Regarding the
best choice of the hyperparameters of VDR, we performed a grid search selecting
the best performing model. Results are presented in table 4.1.

As we can see, our model is most of the time performing within one standard
deviation from the alternative best one, outperforming the other. As a second
comment, we can see that the standard error of our results is generally higher
than the others’. This is an indication of the variability of the results due to the
stochastic nature of the optimization. This is also an indication that, upon a more
accurate selection of the best iteration attained during gradient descent, or using
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Figure 4.3: Posterior means of the ranks in time for some teams of the NBA
dataset. The x axis indicates the time period, and the y axis the value of the
estimated mean

alternative optimization methods, performances can be ameliorated. A plot of the
estimated ranks in time for some of the teams in the dataset is presented in figure
4.3.





5. Future work and conclusions

In this thesis we gave a broad introduction to Variational Inference (VI), a method
for posterior approximation in bayesian modelling. Specifically, we located VI in a
broader inference context, and presented the latest innovations in the field, along
with some of the major applications of this methodology.
Later, we introduced Variational Dynamic Ranking (VDR), a bayesian probabilis-
tic model for dynamic ranking on graphs, and exploited these variational methods
for performing inference in this context. Apart from our final chosen one, we de-
cided to present some other options that we explored during the development of
the algorithms, both on a modelling and on an inference perspective.
We showed that our method achieves state of the art comparable performances on
different error measures.

Many lines of work are possible in this context. As we explained in the results
section, scores seem to be affected by a great variability, due to the stochasticity
of the gradient during the ELBO optimization. For the future we are willing to
implement a more accurate optimization loop, taking into account the best score
attained as opposed to the last iteration. We also propose the use of modern en-
tropy based optimization techniques for the localization of better local optima, as
well as natural gradient optimization routines. Another interesting extension is
allowed by the exploitation of the generative nature of our model. In the future
we will try to incorporate covariates used for the prediction of the results. Exter-
nal works suggest that this could bring to major improvements in the predictive
capabilities, and in our case inference could be performed jointly for ranks and
other covariates related parameters, allowing for better accuracy and log-loss.
On a more theoretical level, we will try to answer some open questions in the field,
which is still actively investigated for more and more expressive variational approx-
imations, such as kernel based distributions. Other interesting lines of research
have recently opened due to the usage of statistical physics tools in variational
inference. We will try to also move in this direction for future research.
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A. Appendix

A ELBO computations for section 4.2.2

We start from equations 3.2, 4.3, 4.6 and 4.7 to compute

ELBO(q) = Eq[log p(s, µ)] + Eq[log p(A|s, µ)]− Eq[log q(s, µ)] (A.1)

and split this calculation in three parts

An useful lemma consider the random variable stij := sti − stj. Since for the
variational distribution q the variables sti are uncorrelated normals, the variable
stij also is, with

stij ∼ N(θti − θtj, η2ti + η2tj) =: N(θtij, η
2
tij)

Moreover, q is factorized over the sti so that∫
(sti − stj)2q(s)ds =

∫
(sti − stj)2q(sti, stj)dstidstj

=

∫
s2tijq(stij)dstij

= V arq(stij) + Eq[stij]2

= η2ti + η2tj + (θti − θtj)2 (A.2)

similar results hold for the random variables sti − µti and µti − µt−1,i, since all
variables are independent for the variational distribution q.
Similarly, using the moment generating function of a gaussian X ∼ N(µ, σ2), that
is

E[etX ] = exp

(
µt+

σ2t2

2

)
we obtain

Eq[e
β
2
stij ] = exp

(
β

2
(θti − θtj) +

β2

8
(η2ti + η2tj)

)
(A.3)
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First addend the first addend of A.1 is

Eq[log p(s, µ)] =

∫ ∑
t,i

log[p(sti|µti)p(µti|µt−1i)]q(s, µ)dsdµ

=

∫ ∑
t,i

log[
1√
2πρ2

e
−(sti−µti)

2

2ρ2 ]q(s, µ)dsdµ

+

∫ ∑
t,i

log[
1√

2πσ2
e
−(µti−µt−1,i)

2

2σ2 ]q(µ)dµ

= − 1

2ρ2

∫ ∑
t,i

[(sti − µti)2]q(s, µ)dsdµ

− 1

2σ2

∫ ∑
t,i

[(µti − µt−1,i)2]q(µ)dµ− 1

2
TN log(4π2σ2ρ2)

= − 1

2ρ2

∑
t,i

(η2ti + Ṽti + (θti − m̃ti)
2)

− 1

2σ2

∑
t,i

(Ṽti + Ṽt−1i + (m̃ti − m̃t−1,i)
2)− 1

2
TN log(4π2σ2ρ2)

(A.4)

Second addend using equations A.2, A.3 from the lemma above it is easy to
compute the second addend of A.1:

Eq[log p(A|s, µ)] = Eq

[∑
t,i,j

log(
λ
Atij
tij

Atij!
e−λtij)

]

=
∑
t,i,j

Eq
[
Atij(log c+

β

2
stij)− logAtij!− ce

β
2
stij

]
=
∑
t,i,j

Eq
[
βAtij

2
stij − ce

β
2
stij

]
+ Atij log c+ const

=
∑
t,i,j

At,i,j(log c+
β

2
(θti − θtj))− c exp

(
β

2
(θti − θtj) +

β2

8
(η2ti + η2tj)

)
(A.5)

Third addend the third addend is just the entropy of a factorized gaussian. In
fact in the variational distribution, given the "variational observations" µ̂ti, the
single latent variables µti are independent gaussian with mean, variance µ̃ti, Ṽti.
Therefore from the formula for the entropy of a gaussian we obtain:

−Eq[log q(s, µ)] = H(q) =
1

2

∑
t,i

log(2πeη2ti) + log(2πeṼti) (A.6)

https://en.wikipedia.org/wiki/Normal_distribution
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B Predictive distribution for the final model in

section 4.2.4

In this section we present the explicit calculations for the predictive distribution
of the observations in section 4.2.4. While the posterior distribution of the ranks
according to the mean field approximation q is given by sti ∼ N (mti, V

2
ti ), the

observations depend on the ranks through the "performances" drawn from the
ranks. In this section we show how to obtain the explicit distribution of the
observations A given the posterior ranks sti.
We use the following lemma

Lemma A.1. Consider the cdf of a standard gaussian Φ(x). If X ∼ N (µ, σ2)

then
E[Φ(X)] = Φ(

µ√
1 + σ2

) (A.7)

Proof. If Y is a standard normal by definition we have Φ(x) := P(Y < x) ∀x ∈ R
Consider then that, if X and Y are independent random variables

Φ(X) = P(Y < X|X)

and therefore

E[Φ(X)] = E[P(Y < X|X)]

= P(Y < X)

= P(Y −X < 0)

= P
(
Y −X + µ√

1 + σ2
<

µ√
1 + σ2

)
= Φ

(
µ√

1 + σ2

)
since Y −X ∼ N (−µ, 1 + σ2)

To model the probability of an observation, we just need to compute the prob-
abilities ptij. As these are defined by the probability of the performance ξti being
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higher than ξtj we have

ptij = Esti,stj∼q[P(ξti > ξtj)]

= Esti,stj∼q[P(ξtj − ξti < 0)]

= Esti,stj∼q

[
P

(
ξtj − ξti − stj + sti√

2 β2
<
−stj + sti√

2 β2

)]

= Esti,stj∼q

[
Φ

(
sti − stj√

2 β2

)]

= Estj∼q

[
Esti∼q

[
Φ

(
sti − stj√

2 β2

)
|sti

]]

= Estj∼q

[
Φ

(
mti − stj√
2 β2 + V 2

ti

)]

= Φ

 mti −mtj√
2 β2 + V 2

ti + +V 2
tj

 (A.8)

where the last two passages are justified by the lemma above. As we can see the
final prediction still depends on the difference between the posterior means, but
the gaussian bell is wider due to the additional variance given by the usage of the
performances, as well as from the posterior variances.
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