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Notation

Most of the notations used throughout this work are standard and defined on the spot.
However, for the sake of completeness, in Table (1) we provide a summary of some of
the most recurrent symbols together with their meaning.

symbol meaning

R (R+) (non-negative) real numbers
Rd space of d-dimensional real vectors

A ≡ (Aj
i )

j
i ∈ Rn,m n×m matrix with entries in R

Ai ∈ Rm i-th row of matrix A

Aj ∈ Rn j-th column of matrix A

|| • ||2 `2 norm (e.g. x ∈ Rn column vector, ||x||2 :=
√
xᵀx)

δij Kronecker delta
U(a, b) uniform distribution in the interval (a, b) with a < b ∈ R
U{S} discrete uniform distribution in the set S
diag[x] n× n diagonal matrix with x ∈ Rn as diagonal
G undirected graph
V (|V| = N) set of nodes/vertices of G (its cardinality)
E (|E| = E) set of links/edges of G (its cardinality)
Ev set of edges of connected to a node v ∈ V
C (|C| = M) set of commodities (its cardinality)
JOptimal Transport ModelI

B ∈ RN,E oriented incidence matrix of G
G ∈ RN,M In-flowing mass matrix
F ∈ RN,M Out-flowing mass matrix
` ∈ RE

+ vector of edge lengths
µ̂ ∈ RE

+ conductivity/transport density vector
P ∈ RN,M pressure/potential matrix
∆ • := L−1Bᵀ • “discrete gradient” operator, here L := diag[`]
JMessage Passing ModelI

Ivw ∈ RM current vector passing through (v, w) ∈ E
Λi
v = {0,+1,−1} {transit node/source/sink} for commodity i ∈ C

Evw message associated to (v, w) ∈ E
JAcronymsI

EDP Edge-Disjoint Path
MP Message Passing
MCOT Multi-Commodity Optima Transport algorithm
MSG Multi-Start Greedy algorithm
SMP-EDP Sequential Message Passing Edge-Disjoint Path algorithm
SMSG Sequential Multi-Start Greedy algorithm

Table 1: Summary of notation.
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Introduction

Optimal path selection and network routing play a crucial role in the constantly expanding
domain of network science. Indeed, these concepts stand at the core of several practical
applications and innovations from which we benefit on a daily basis. These range from
the Internet itself, in which data transmission among users and servers is regulated
via routing protocols [35], to telecommunication networks, where the decision making
process controlling package transfer is pivotal to guarantee Quality of Service [13]. Other
fields where efficient traffic management routines are extensively studied are urban
transportation (see [21] for an overview), and biological networks [38,47–49]. The former
deals with compelling tasks both for human activities and civil logistics, where the
importance of high performing road networks could contribute, for example, to partially
resolving environment-related issues. The second, although apparently not closely related
to our everyday routine, has indeed a significant connection with research on optimization
of railway and highway networks. In fact, the study of biological networks applies to
many natural systems where complex transportation structures spontaneously emerge
seemingly as consequence of optimality principles. Such are metabolic networks, as
for example blood circulation systems in animals, and areal branches and underground
roots in plants, which try to explore as much as possible the surrounding space for
delivering or absorbing vital nutrients [7, 8]. However, recent work concentrated on the
study of “Pysarum Machines” as model of biological optimizers that nowadays serve as
paradigm for network modeling [2–4,37,43,49]. Moreover, biologically-inspired models
constitute the foundation of what we call the Multi-Commodity Optimal Transport
(MCOT) algorithm, one of the two building blocks of this thesis.

While the potential range of applications for routing and optimal transport on
networks is wide, a proper theoretical and computational efficient modeling framework
needed to address this problem is still lacking. In particular, while several progresses
have been recently made theoretically in optimal transport theory, they remain mainly
abstract efforts, not applicable in practice. On the other side, the main computationally
efficient algorithmic implementations currently being used by practitioners are based on
simple heuristics like greedy optimizations, which do not make use of relevant theoretical
insights provided by optimal transport theory or statistical physics.

We consider Multiple Sources-Multiple Sinks (MS-MS) routing problems, where we
have a set of sources (or senders) and a set of sinks (or receivers) communicating
in an underlying network structure. The former are nodes in the network who send
some quantity (e.g. information), the latter are those receiving it. Among MS-MS, we
distinguish two different settings, which we will consider in the remain of the thesis:

1. One Source-Multiple Sinks. In this case information is sent from a certain source
but is not directed towards another specific sink. Instead, each source’s information

1



2

can be collected by any among the sink nodes. In this context each source is a
commodity.

2. One Source-One Sink. In this case there is a one-to-one pairing between a given
pair of source and sink. In other words, a source needs to transfer information only
to one particular sink. We refer to these source-sink (or sender-receiver) pairings
as communications or commodities.

These two classes of problems are commonly studied in computer networking. In this
setting OS-MS and OS-OS models are respectively addressed as multicast and unicast
routing schemes. In the first case, a simultaneous distribution of information towards a
group of destinations is performed; in the second case a package sent from a machine is
directed to only one other device.

In this thesis we develop theoretical models and the corresponding algorithmic
implementation for these two problem settings. Specifically, we propose Multi-Commodity
Optimal Transport (MCOT) for the One Source-Multiple Sinks setting and Sequential
Message Passing with Edge Disjoint Path constraint (SMP-EDP) for the One Source-One
Sink setting.

The MCOT model is a principled generalization of the slime mold Physarum dynamics
recently developed by Facca et al. [15] and originally proposed by Tero et al. [48], which
has been further studied in subsequent works [47, 49]. In this thesis we extend the
so-called adaptation equations characterizing the dynamics of the problem to the MS-MS

framework. The goal of this model is twofold: i) adapt theoretical principles of optimal
transport theory to a concrete routing application; ii) highlight the connection between
a biological system like the slime mold dynamics and the abstract optimal transport
formalism studied in [44,53–55]. Moreover, this has an intuitive physical interpretation
and outperforms a heuristic multi-start greedy (MSG) algorithm. These two models are
extensively compared in term of metrics as network traffic and total path length.

The starting point to build the SMP-EDP algorithm is the formal definition of edge
disjoint path problem. This is a constrained optimization problem where the goal is
finding, given a network topology and a set source-sink pairings, the maximum number
of paths joining each source with its sink that can be accommodated at the same
time given no edge is allowed to have more than one communication passing through
it. This is called edge-disjoint constraint, and it results in having paths associated to
different communications not overlapping on the edges. This problem is largely applied
in transmission services requiring high quality data transmission and full bandwidth
exploitation. Some examples are: Routing and Wavelength Assignment (RWA) problems
in optical networks [26, 45, 57], where each light-path is reserved for a single wavelength.
Or accommodation problems in telecommunications, from local wireless networks to
global coverage architectures [46, 59]. During the last decades, several studies have
been devoted to solve this problem. Some of the most common approaches are greedy
algorithms [12, 23, 25, 50], linear programming [9, 23, 27], evolutionary algorithms [20,40]
and ant-colony routines [10,41].

In this thesis we consider the approach of message-passing (MP) algorithms, a method
that uses principles of statistical physics to effectively incorporate global information and
process long-range interactions between network users as they compete for using the same
infrastructure. Specifically, we extend the work of Altarelli et al. [5] by relaxing the hard
constraint of edge-disjointedness to allow for more than one active network route to pass
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through an edge. Loosening this constraint by means of a sequential method, we are able
to achieve the accommodation of all the communications of the networks, maintaining
all the advantages of the MP formulation. Moreover, our algorithm largely outperforms
a sequential multi-start greedy (SMSG) method, used as benchmark in absence of any
theoretically supported ground truth. The two methods are compared in terms of several
metrics, from total path length, to traffic management and number of accommodated
source-sink pairs.

Outline of the thesis.

• Chapter 1. In the first chapter we present the MCOT model. Starting from its
theoretical derivation, we present the algorithm and its properties. An extensive
comparison with a multi-start greedy algorithm is performed.

• Chapter 2. Here, first we discuss the key points regarding the theoretical derivation
of the SMP-EDP model. Then we show the results of exhaustive numerical exper-
iments in which the algorithm is tested against a multi-start greedy benchmark
routine.

• Chapter 3. This chapter is dedicated to a comparison of the two models previously
presented. The goal is to highlight their differences and similarities, in order to be
able to improve both methods in the future.

• Conclusions. In this final chapter we close the thesis by providing a summary of
the key points of our analysis and of possible future works.



Chapter 1

Optimal Transport Model

Optimal transport (OT) models, other than a purely theoretical interest, displayed a
great applicability to a large variety of contexts. Starting from the investigation of the
path-finding ability of slime mold in mazes [33, 38], these models have been employed to
replicate railroad networks [49,52] and road networks [1, 43,51]. Other applications are
modeling path formation in wireless sensor architectures [24], and designing supply chain
structures [60]. Moreover, optimal transport theory has also been exploited in medicine,
for example to replicate the vascular structures of human placentas [56].

In recent years OT has been investigated with several techniques, from Physarum
(slime mold) solvers used by most of the works just cited, to more complex biologically-
inspired models as in [17], where Physarum Machines are used to solve MS-MS trans-
shipment (minimum cost flow) problems. A large contribution in the study of OT is
given by linear optimization methods, indeed the dual formulation of the original Monge
OT problem (1781) [34] proposed by Kantorovic [22] is inspired by a discrete linear
program [14]; for a brief presentation on the state-of-the-art we can refer to [42]. In most
of the current literature routing problems are tackled considering constrained settings.
Precisely, to overcome their complexity different simplifications are made to the problem
formulation, e.g. imposing heuristic traffic constraints to manage congestion, or limiting
the capacity of the amount of mass the network can transport.

In this first chapter of the thesis is devoted to introducing the MCOT model, first
presenting its mathematical formulation and then describing the details of its numerical
implementation. Before moving to the model construction it is necessary to highlight the
purpose of MCOT. What we want to do is, given a graph G and a set of sources/sinks
(nodes sending/receiving mass), to build an algorithm capable to optimally distribute the
mass flowing in the network. The meaning of “optimality” in this context is anything
but simple, in particular we want a method capable of minimizing the network total
length while managing traffic and rerouting at a moderate computational cost. One of
the purposes of the numerical experiments performed in this thesis is that of allowing
a quantitative characterization of these properties, showing how the MCOT routine
outperforms the state-of-the-art.

1.1 Building blocks

The first step to construct the MCOT model is to introduce its main building blocks.
All the elements we present are combined together in what we refer as the adaptation

4



1.1. Building blocks 5

equations (cfr. [48]), which entirely characterizes the dynamics of the problem. Many
of the objects in our formulation have the same physical interpretation of those of the
Physarum Solvers. Despite that, many crucial differences between the two methods arise.
Indeed, in this chapter we explain all these similarities and distinctions in detail.

1.1.1 Commodities

The topology of the network on which the accommodation of mass is performed is given
by an unweighted and undirected graph G(V, E). Here V is the set of vertices, and E the
set of edges. Nodes and links have respectively cardinality |V| = N and |E| = E. Some
of the nodes G form the set of commodities, these are vertices that play the role of either
sources or/and sinks of mass, we label them with C ⊆ V .

In the context of railway networks we can think of C as stations, where people can
both go on or off a train. Instead the set V \ C represents the set of junctions, in these
passengers can only move from one train to another, but neither exit nor enter from and
in the network. Another practical and intuitive visualization may be the one of river
networks, here commodities are sources of water and wells while the remaining vertices
represent confluence points of rivers where different channels merge together.

Formally we can define the set of commodities as

C := {v ∈ V : gv or fv 6= 0},

where the two terms gv and fv measure respectively the amount of in-flowing and
out-flowing mass of a node v. Collecting the couples (gv, fv) ∀v ∈ V we can build
matrices G ∈ RN,M and F ∈ RN,M . These can be constructed following the element-wise
definition ∀v ∈ V , ∀i ∈ C

Gi
v := δvi g

i (1.1a)

F i
v := I{v∈C}(1− δvi)F̃

i
v (1.1b)

where ∑
v∈V

F̃ i
v = f i ∀i ∈ C (1.2)

and I{v∈C} denotes the indicator function on set C.
It is immediate to understand that in matrix G we are simply collecting the in-flowing

mass contributions given by all the gv terms. In particular, every row Gv is associated
to a node v ∈ V and i) it is entirely equal to 0 if v /∈ C, i.e. vertex v is a “junction”; or ii)
the in-flowing mass contribution to the vertex is given solely by Gi

i = gi if v = i ∈ C. The
definition of matrix F is less straightforward, it should should be intended as follows:
every N -dimensional column F i represents the out-flowing mass produced by a node
i ∈ C. This mass is distributed among all the nodes v ∈ C \ {i} which contributes F̃ i

v

each, meanwhile the entries of the vertices in V \ (C ∪ {i}) are equal to 0. This seemingly
articulated definition is crucial to guarantee the well-posedness of the problem, it is in
fact important to build the model in such a way that mass entering a source i cannot
outflows from a “junction” or from i itself. This latter constraint has to be imposed so
that we avoid trivial dynamics where no mass is actually moving trough the network.



6 Chapter 1. Optimal Transport Model

To further clarify the rationale behind definition (1.1b), that still may be not evident,
it is useful to resort again to the railroad network framework. Suppose we have a simple
railway made with two stations {s1, s2} and a junction {j}. We connect the nodes as
in figure 1.1, in such a way that every passenger in order to move from s1 to s2 has to
travel through j. In this setting the only non-zero terms of the 3 × 2 matrix F are: F s1

s2 ,
measuring the amount of passengers entering station s1 and exiting station s2, and F s2

s1 ,
measuring the number of people traveling from s2 to s1. The entries F s1

j and F s2
j are

equal to 0 because no people can exit the network from the junction. Instead, F s2
s2 and

F s1
s1 are equal to 0 because to be that every person (unit of mass) entering the network

is actually moving along a travel route joining two different stations (commodities).

s1 s2j

Mass contributions:

• F s1
s1 = F s2

s2 = 0

• F s1
j = F s2

j = 0

• F s2
s1 , F s1

s2 6= 0

Figure 1.1: Railway network toy model. The orange squared nodes are the sources/sinks,
the black circle is the junction. The physical edges of the netrork are drawn in gray, the
colored curved lines serve to give an idea of the which routes are associated with the
entries of F .

Lastly, equality (1.2) expresses conservation of the out-flowing mass generated by
every commodity i ∈ C. In particular, each f i term has to be exactly distributed between
all the other nodes of the graph and no mass has to “get stuck” in the network.

1.1.2 Pressure gradients

The force exerted by the mass entering in source i ∈ C on a vertex v ∈ V \ {i} is encoded
by a pressure variables piv, collecting together all these N ×M terms we can build
the matrix P ∈ RN,M . Every N -dimensional column P i of this matrix contains the
contributions to the total pressure pi that i ∈ C exercises on the entire network, formally
this reads

pi =
∑
v∈V

P i
v ∀i ∈ C.

In constructing the adaptation equations it is in our interests to measure differences
of pressure between neighboring vertices, so that we are able to replicate the typical
mechanism of Physarum Solvers where the width of a link e ∈ E is regulated by the force
gradient between neighboring nodes linked by e. To be precise, we start by the defining
for all i ∈ C

δpie := piv − piw, (1.3)

where with e = (v, w) ∈ E we label the edge joining nodes w and v. All pressure difference
terms are be collected in a E ×M matrix, that can be easily written in compact form
with the matrix multiplication BᵀP . Here B ∈ RN,E is the signed incidence matrix of
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the undirected graph G, this is constructed by assigning a fictitious orientation to the
edges of the network and by setting Be

v = ±1 if an edge e has node v as start/end point,
0 otherwise.

To properly measure the pressure “gradient” associated to every link e ∈ E we divide
every contribution introduced in (1.3) by its edge length. Precisely we define

(∆P )ie :=
δpie
`e

∀e ∈ E , ∀i ∈ C, (1.4)

where `e is the length of edge e ∈ E . In order to rewrite the previous definition in a
more elegant fashion we can collect all the `e terms in a vector ` ∈ RE

+, containing the
lengths of the links in the graph. Using this object we construct the diagonal matrix
L := diag[`] ∈ RE,E that allows to write all the contributions of equation (1.4) in a
E ×M -dimensional matrix reading as

∆P := L−1BᵀP .

This last quantity contains the pressure gradients acting on every edge, and generated
by every in-flowing and out-flowing mass term associated to each commodity. We may
refer to

∆ • := L−1Bᵀ •

as discrete gradient operator because of its straightforward similarity with its more
common continuous counterpart.

1.1.3 Additional constraints

In addition to constraint (1.2), matrices G,F ∈ RN,M need to satisfy the following
requirements to guarantee the well-posedness of the problem. First, we must have that

gi 6
∑
j∈C
j 6=i

f j ∀i ∈ C, (1.5)

that is: for every commodity i ∈ C the quantity of in-flowing mass cannot be greater
than its total out-flowing contribution, obtained summing on all the vertices C \ {i}.
Moreover, to maintain mass balance we need the following chain of equalities to hold for
every commodity i ∈ C ∑

v∈V
Gi

v − F i
v = gi −

∑
v∈V

F i
v = 0. (1.6)

This last expression says that the no mass can remain in the network. Precisely, every
unit of mass entering a source i must flow out from a sink different from i itself, in such
a way that the difference in (1.6) is identical to 0 for every i ∈ C.

1.1.4 Transport density

In order to present all the necessary quantities needed to construct the adaptation
equations we need to introduce one last object, the transport density (or conductivity).
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Correspondingly to what is done for Physarum Solvers we associate to every edge e ∈ E
a variable µ̂e > 0, that intuitively can be thought as the area of the (tubular) section of
a link. Its physical interpretation is provided by studies on slime molds [18,36,39,48],
where the idea of “current reinforcement” is extensively discussed. This consists in the
typical behavior of molds based on feedback mechanisms regulating the thickness of each
link, in which high rates of protoplasmic materials stream stimulate an increase in tube
diameters. This positive feedback mechanism between flux and edge thickness is indeed
encoded by adaptation equations, in which the evolution in time of each µ̂e follows the
principle: the greater the flux, the thicker the channel.

It is important to notice that since we modeled pressure gradients separating the contri-
butions provided by each commodity in C, in principle we could define M communication-
dependent transport densities µi

e. However, this would have the effect of losing all
information on traffic occupancy, resulting in a selfish accommodation of the commodi-
ties. This fundamental step of making transport densities communication independent is
indeed is carried out by the adaptation equations, and will be largely discussed along
the thesis.

For convenience of notation, analogously to what has been done with the other
quantities on the model we collect all the transport densities into a vector µ̂ ∈ RE

+ and

we define a diagonal matrix M := diag[µ̂] ∈ RE,E
+ .

1.2 Adaptation equations

Before moving to the analysis and formulation of the equations, we point out again that
in the majority of the current literature routing problems are rephrased considering
simplified settings. Here, to avoid intractable problems heuristic constraints are often
imposed to deal with traffic, or limitations on the capacity of the edges are built ad-hoc
for each case of study. Furthermore, most of the state-of-the-art approaches studying
routing on networks are incapable of returning a solution while taking in account the
occupancy state of all the edges of the graph at the same time, limiting the dynamics to
reach sub-optimal results. Our formulation of the multi-commodity flow problem consists
in an improved original approach to the ones already present in the current literature. In
fact the method we are presenting is naturally able to take in account global information
on the traffic of each edge while performing accommodation.

Using all the elements introduced in §1.1 we can write the adaptation equations
that we propose in this thesis. These are presented with a similar fashion to the one
of [15], where the authors study, in a continuous framework, the connections between the
adaptive Physarum dynamics and Monge Kantorovich Optimal Transport algorithms for
the solution of Basis Pursuit problem for the case of one commodity. Here, however, we
consider the existence of more than one commodity and adapt the equations accordingly
to take into account how this impacts the problem’s setting and solution. In particular,
it is crucial to distinguish the pressure pi exercised by a commodity i ∈ C. This implies
that at each edge we should distinguish a transport density per commodity µi

e, which is
due to δpie. Having said that, the straightforward generalization of the model proposed
in [15] would be to consider one adaptation equation per commodity. However, this would
make the |C| problems independent, and this generalization trivial. Instead, we need a
quantity to couple the different commodities together, as in a realistic scenario where
commodities compete for the network infrastructure. This quantity should be a function
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of the various transport densities f({µi
e}i), as this is the main variable controlling how

the mass of different commodities travels through edges. There could be several choices
for this function, here we consider the simple scenario

f({µi
e}i) = µi

e =: µ̂e, ∀i ∈ C. (1.7)

This implies that all the transport densities µi
e on edges should be equal, and equal to

an overall transport density µ̂e. In this way, we can now consider only this quantity and
propose an adaptation equation only for it, which implicitly couples all the individual
commodities together allowing for a straightforward mathematical non-trivial generaliza-
tion of the one-commodity case. While this assumption might be valid in certain cases
but too strict in others, depending on the application considered, we leave for future work
more complex functions f({µi

e}i) which might lead to intractable adaptation equations.
Taking this into account, we propose the following adaptation equations

BML−1Bᵀ P = G− F (1.8a)

∀e ∈ E , ∀i ∈ C : µi
e =: µ̂e (1.8b)

∀e ∈ E : ˙̂µe = µ̂β
e ||(∆P )e||22 − µ̂e. (1.8c)

In the system (1.8a−1.8c), matrices G,F ∈ RN,M and B ∈ RN,E are data input of the
problem. These quantities may vary dependently on the context we are working on, and
are directly related to the nature of the problem itself and to the underlying network
topology. Instead, the pressure P ∈ RN,M and the transport density vector µ̂ ∈ RE

+ are
dependent variables, which values are updated by solving the adaptation equations.

Moreover, in (1.8c) the additional scalar parameter β > 0 has been introduced, which
relevance is largely discussed and justified in several works on OT [44, 54, 55]. This,
intuitively, serves as tuning for the importance given to traffic congestion. That is,
regulating its value we can control tendency of mass to travel on common routes or to
spread among different paths. To be more precise, for β > 1 the solution returned by
the adaptation equations is a graph with a smaller number of thick edges (high values of
µ̂e), meaning flow is consolidated through fewer routes. Instead, if β < 1 the result is
a network with many thin (low values of µ̂e) links, meaning the paths distribute more
widely through the network. In the former case a lower “importance” is given to traffic
congestion, reason for which a solution with thicker edges is preferred to one where mass
is rerouted on a high number of links, meanwhile in the second situation we strongly
penalize traffic favoring rerouting. Formally, this tendency of the model of preferring one
behavior with respect to the other is given by subadditivity (resp. superaddivity) of the

function µ̂e 7→ µ̂β
e for β < 1 (resp. β > 1). The limit case of β = 1 corresponds to the

case in which traffic neither favored nor disadvantaged, so all the mass gets distributed
along the shortest paths joining sources and sinks.

We now proceed in a brief discussion of each one of the equations building the system
(1.8a−1.8c).

1.2.1 Kirchoff’s law

Equation (1.8a) is Kirchoff’s law for the network, expressing conservation of mass. Indeed
referring to the description of the quantities done in §1.1 we notice that the r.h.s of this
equation is exactly the difference of in-flowing and out-flowing mass entering and exiting
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the graph. Instead, the left hand side describes the mass flux moving through the edges.
We can exhibit clearly the role played by each term separating the contribution of every
commodity i ∈ C. In particular taking

BML−1Bᵀ P i = Gi − F i ∀i ∈ C

we equate two N -dimensional vectors; the entries of the one on the r.h.s are of the form

Gi
v − F i

v =


gi v = i

−F̃ i
v v ∈ C \ {i}

0 v ∈ V \ C

and express either the mass entering i, or exiting from a vertex v ∈ C \ {i} because of
commodity i. The terms on the l.h.s. are of the form

∑
e∈Ev

µ̂e

`e
δpie ∀v ∈ V ,

where with Ev we label the set of links attached to node v ∈ V . Each one is proportional
to the ratio “area/length” of an edge e, measuring the ease with which a mass can move
through the link, multiplied by the pressure difference, encoding the force acting on e.

1.2.2 Ansatz

As said, the ansatz (1.8b) plays a crucial role in merging the traffic information given
by every commodity in C, so that we can build a model that is capable of adapting the
values of the conductivities taking in account all the contribution given by the sources
in the network at once. Formally we construct the model in such a way that µ̂e, ∀e ∈ E
is independent with respect to i, i.e. µ̂e = f({µi

e}i). This passage is critical in the
formulation of the problem because by jointly measuring the amount of mass provided
by each node in C we obtain a system of equations that naturally regulates the ease with
which mass travels though links based on the force exerted by every commodity.

Again, equation (1.8b) is a particular case of the more general (1.7); in this thesis we
consider only the simplest case with f ≡ Id, that is µi

e = µ̂e ∀e ∈ E , ∀i ∈ C.

1.2.3 Dynamics

In equations (1.8c) we write the actual dynamics of the transport densities. Here we see
that the E time derivatives on the l.h.s. are balance by two contributions. One is simply
equal to −µ̂e, and causes an exponential decay of the conductivities when no force is
acting on the link e. This first factor gets balanced by the positive terms µ̂β

e ||(∆P )e||22
with which we measure the force acting on the edge e produced by all the commodities
together.

These terms replicate exactly the typical behavior of slime molds, where a feedback
mechanism regulates the thickness of each link; enforcing transportation in edges through
which a large amount of mass moves, and shrinking tubes with low rates of protoplasmic
materials stream.
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1.3 Numerical routines

1.3.1 MCOT algorithm

The numerical implementation of the system of equations (1.8a−1.8c) has done been via
a numerical scheme summarized in the following pseudocode. The algorithm is discussed
extensively in this section.

Algorithm 1 MCOT algorithm

1: input: graph topology G(V, E)
2: input: set of communications C
3: input: in-flowing and out-flowing mass gi, fi ∀i ∈ C
4: input: β > 0
5: construct G,F ∈ RN,M

6: initialize µ̂(0) ∈ RE

7: while convergence == False do

8: solve eq. (1.8a) for the pressure matrix
return→ P ∈ RN,M

9: set ansatz given by eq. (1.8b)

10: solve eq. (1.8c) with a finite difference scheme: µ̂(t)
update→ µ̂(t+ 1)

11: return {µ̂∗,P ∗}, conductivity and pressure at convergence

The scheme above provides a general outline of the method designed to solve the
problem; however, in the experiments presented in thesis we made some specific choices
regarding the implementation of the code. It is essential to highlight that the core of
the scheme remains always the one of algorithm (1) independently on the setting, minor
changes has been made, and can be done, with the purpose of improving performance
in different frameworks, e.g. when working with synthetic data rather than with real
networks. In particular, in our implementation we modified four main aspects that
are worth describing: i) the artificial construction of G,F ∈ RN,M in absence of a real
mass assignation, ii) the initialization of the transport density vector µ̂ ∈ RE

+, iii) which
convergence criteria is set by the boolean variable convergence and, lastly, iv) the choice
of the finite difference scheme used to solve equation (1.8c).

In detail, there are some cases in which G and F are not given as data of the problem.
For example, when working with synthetic networks it may be necessary to both artificially
sample C and construct these matrices. Different techniques are equivalently valid, the
only requirement that they have to fulfill are indeed set by expressions (1.1a) and (1.1b),
coupled with constraints (1.2), (1.5) and (1.6) which ensures mass conservation. Our
technique, to which we refer as Auxiliary Receiver method, is summarized in pseudocode
(2). This briefly consists in randomly set an in-flowing gi contribution to each commodity
in C, and correspondingly assign the same amount of mass to a node ji ∈ C \ {i}, so that
mass balance is satisfied.

The transport densities are sampled as µ̂e ∼ U(0, 1). This decision has been made
by means of trial and error: first we initialized the conductivities as µ̂e = const. ∀e ∈ E
choosing different values for const., however, sampling transport densities uniformly
proved to considerably reducing the number of iterations needed to reach convergence.

Several criteria could be in principle chosen to decide whether the scheme has
converged or not. For example, a common and elementary technique consists in directly
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Algorithm 2 Auxiliary Receivers method

1: initialize the variable M(= 50 conventionally in our experiments)
2: for each i ∈ C do
3: sample gi ∼ U{0,M}
4: sample index as ji ∼ U{C \ {i}}
5: set F i

ji
= −gi

exploiting mass balance, formally we could define a residual from equation (1.8a) as

res :=
∑
i∈C

∣∣∣∣BML−1Bᵀ P i − (Gi − F i)
∣∣∣∣
2

and eventually set the convergence criterion

if (res < tol) then {convergence == True}

where tol is a scalar parameter set a priori.
An equivalently valid choice is the one made in [15], that we adopt in our code.

Precisely, what we do is using the discretized time derivative of the transport densities
by setting the following condition

if

(
||µ̂(t+∆t)− µ̂(t)||2

∆t||µ̂(t)||2
< tol

)
then {convergence == True}.

The argument in parenthesis is the time derivative of the conductivity vector divided
by its norm, expressing the relative variation of µ̂ between two consecutive time steps.
What we do is simply imposing convergence when this relative quantity is small enough
i.e. smaller than tol, so that the routine stops when the transport densities are almost
stationary. In our simulations the tolerance is conventionally set to tol = 10−3.

Lastly, to solve (1.8c) we use a Forward Euler method with fixed time step, approxi-
mating for every e ∈ E the conductivities µ̂e(t+∆t) as

µ̂e(t+∆t) = µ̂e(t) + f(µ̂(t),P (t), t)∆t+O(∆t2) ' µ̂e(t) + f(µ̂(t),P (t), t)∆t,

where with f we label the r.h.s of equation (1.8c). The utilization of more advanced
finite difference scheme could be part of future investigations.

1.3.2 MSG algorithm

In the numerical analysis performed in this thesis, the MCOT scheme is tested against a
Multi-Start Greedy algorithm. The choice of this benchmark algorithm is backed by the
fact that this second routine is widely employed as state-of-the-art, and by its moderate
computational cost that allows to perform a comparison at a reasonable price. Moreover,
the necessity of having a second benchmark method naturally arises being a theoretical
baseline for the performance of MCOT still missing. The method is schematized in
pseudocode (3).

The motivation behind the method is the following: first we select one random
commodity from the set C and we perform a Multi-Sink Dijkstra Weighted routine by
running the function WeightedDijkstra. This computes all the cheapest paths π joining
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Algorithm 3 MSG algorithm

1: input: graph topology G(V, E)
2: input: set of communications C
3: input: in-flowing and out-flowing mass gi, fi ∀i ∈ C (used alg. (2))
4: input: γ > 0
5: for n = 1, n 6 Ntot, n← n+ 1 do
6: initialize sinks list S = C
7: assign traffic to every edge e ∈ E , te(0) = 0
8: assign to every edge e ∈ E a cost ce(0) = `e(te + 1)γ

9: while C != ∅ do
10: sample i∗ ∼ U{C}
11: S ← S \ i∗
12: while gi∗ != 0 do

13: do WeightedDijkstra(source = i∗, sinks = S, weight = c)
return→

{BestPath, s∗ ∈ S} (see [19] for documentation)
14: for e ∈ BestPath do
15: te ← te + 1, ce ← `e(te + 1)γ

16: if gi∗ > fs∗ then
17: gi∗ ← gi∗ − fs∗ , fs∗ ← 0
18: S ← S \ s∗
19: if gi∗ < fs∗ then
20: fs∗ ← fs∗ − gi∗ , gi∗ ← 0
21: C ← C \ i∗
22: S ← S ∪ {i∗}
23: for e ∈ E do
24: if te > 1 then Cn

tot += ce

25: choose outcome with lower Cn
tot

the selected source and every other sink of the graph using a Dijkstra’s (SPF) algorithm;
the total cost of each path π is calculated by summing the cost ce of every edge e ∈ π,
and the cheapest BestPath is chosen among these routes. Formally this is

BestPath = argmin
π∈Π(i∗,S)

{
C(π) :=

∑
e∈π

ce

}
where Π(i∗,S) denotes the set of all the cheapest paths joining i∗ and the sinks in S.

After having found the BestPath associated with the endpoint s∗ we run an “emptying
procedure” that consists in transferring the mass gi∗ to sink s∗. Here it is important to
notice that if the in-flowing mass of node i∗ is greater than the capacity fs∗ the SPF

scheme is repeated keeping i∗ fixed until gi∗ is equal to 0. Moreover, when gi∗ = 0,
the node i∗ gets removed from the set of commodities, to avoid re-sampling it when
iterating the cycle. Analogously, when fs∗ = 0 the vertex s∗ is eliminated from S, being
its capacity to accommodate the gi∗ equal to zero. One last important detail is the
following, when a node i∗ is sampled it gets removed by the sets of sinks, and re-added
at the end of the accommodation. This operation has the same purpose of construction
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(1.1b). Namely, avoiding trivial dynamics where the mass in-flowing from a commodity
exits the graph from the exact same node.

In algorithm (3) we also introduced the new scalar parameter γ > 0, which has a
direct analogy with the exponent β > 0 of MCOT. The purpose of γ is indeed controlling
traffic congestion, and the intuition behind its functioning is straightforward. For values
of γ < 1 the cost contribution (te+1)γ is subadditive, while if γ > 1 this is superadditive,
meaning that in the former case traffic congestion is preferred over rerouting, while in the
second taking different routes is favored over concentrating mass on less edges. Following
this reasoning it comes natural to compare experiments performed with MCOT and MSG

where β = 1/γ.

Lastly, we notice that the accommodation scheme is executed Ntot times for every
instance, this is what makes the algorithm Multi-Start. We use this expedient to remedy
the intrinsically poor performances of greedy routines where i) the index i∗ is chosen at
random at every iteration, ii) global traffic occupancy is not taken in account and every
source choose selfishly its sink.

1.4 Numerical analysis: MCOT vs. MSG

In this section we show some of the results of our numerical experiments. The idea
behind the choice of the quantities we decide to present is twofold: first, we try to
analyze separately the different settings upon which MCOT and MSG are built, looking
for connections and similarities in the problem formulations. In MCOT we have in fact a
mechanism of accommodation similar to the one of Physarum Solvers, where the idea
of traffic is not encoded by a discrete variable expressing the occupancy state of a link
(as for the MSG), but instead it is given by the transport densities. Secondly, we try to
directly compare the two methods using metrics that are shared by the models, examples
are the total length of the graph, or the number of non occupied edges.

The analysis has been entirely performed on a benchmark internet-like topology
obtained using the BRITE graph generator [28]. Performances of MP on these kind of
graphs have been studied in [5]. These experiments, as we will see later on in the thesis,
have been used as baseline for the implementation of SMP-EDP. The network comes from
a setting in which spatial position of nodes is not relevant, because of that we assigned
conventional lengths `e = 1 + 10−3ε, ε ∼ U(0, 1) to every edge e ∈ E . The purpose of
the bias ε is to ease the selection of BestPath when running WeightedDijkstra, so that
we avoid obtaining routes with the same cost C(π). This choice is easily modifiable
when using the schemes, for example to model railroad or road networks in which spatial
coordinates of stations and junctions play a crucial role in the experimental setting.
Independently on the framework, however, the qualitative reasoning explaining all the
results we are presenting does not change.

The structure of this section is the following. We divide the text in different subsec-
tions, each one associated with a quantity studied in the analysis. These metrics are first
briefly presented, and a motivation for its relevance its given; after this first introduction
we show and discuss our numerical results.
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1.4.1 MCOT: Transport density fraction

The first quantity that we inspect is what we refer as transport density fraction. This is
the portion of total conductivity occupied by each edge in the graph. Precisely, for every
link e ∈ E we compute the ratio

Re =
µ̂∗
e∑

e′∈E µ̂
∗
e′

and we collect these objects in a E-dimensional vector R. The entries of this array are
consecutively sorted is ascending order and plotted against the edge indices, the purpose
of this procedure is highlighting how different behaviors in traffic congestion arise when
running the model changing β. The expected outcome, consistently with the discussion
in §1.2, is the following. For β < 1 the mass traveling through the graph is redirected to
many thin the edges to avoid congestion, this will reflect in having a larger fraction of E
a occupying a consistent portion of

∑
e′∈E µ̂

∗
e′ , resulting in bigger tails when plotting R

vs. E . If β > 1 the model naturally reroutes mass on fewer more trafficked links, in this
case the algorithm produces a network where the total transport density is distributed
among less edges, correspondingly we obtain smaller tails in the plot R vs. E .

We can clearly see this behavior in figure 1.2, obtained running the MCOT scheme
on the mesh blrand 10 1 used in [5], choosing M = 50 random commodities among
the N = 500 total nodes of the graph, and averaging 5 different realizations of the
algorithm. Precisely, in this plot four different stem plots are displayed, realized setting
β ∈ {0.5, 1.0, 1.5, 2.0}. For the one obtained fixing β = 0.5 we see that the entries of R
are distributed in such a way that most of the links in the graph occupy a large amount
of the total area of the plot, producing thick tails. Instead in the two cases where β > 1
the total transport density

∑
e′∈E µ̂

∗
e′ is mainly concentrated on approximately 100 edges,

while the remaining links have negligible values of Re.
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Figure 1.2: Sorted entries of R vs. E . MCOT, mesh: blrand 10 1, N = 500, M = 50,
E = 1020, β ∈ {0.5, 1.0, 1.5, 2.0}. Results averaged over 5 realizations. Similar plots for
M = 30, 40 are in figs. A.1a and A.1b in appendix A.

From the analysis of this first quantity it is clear that not all the edges in a network
have the same “importance” in terms traffic, meaning that the mass may be concentrated
on a small fraction of the total number of links. Supported by this motivation we perform



16 Chapter 1. Optimal Transport Model

a “trimming procedure” of the graph at convergence, that consists in cutting those edges
that are “not important” for the dynamics. Here, we must formally define what we mean
with the term “importance” of a link.

A first technique could be deleting all the edges which transport density is below a
certain fixed threshold τ > 0, deciding that not relevant links are those with µ∗

e small
enough. This corresponds to constructing the set

Eτ := {e ∈ E : µ̂∗
e > τ, with τ > 0},

with which we build the network

Gτ := G(V, Eτ ).

However, in the context we are studying this elementary approach has the disadvantage
of cutting links not taking care to which nodes these are attached. That is, after the
trimming process we could end up with a graph where one or more commodities are
disconnected from the rest of the graph. This is something that clearly we want to
avoid, since on a network where sources and sinks are disconnected accommodation
cannot performed. To overcome this problem we use a different cutting method: we
iteratively delete edges in increasing order of µ̂∗

e, paying attention that at least a path
between any pairing of commodities in C exists. We label the network obtained in this
way with G∗ := G(V, E∗). The advantage of this refined procedure is that it can erase
edges occupying a small fraction of

∑
e′ µ̂

∗
e′ , while not cutting out sources from the giant

component of the graph. Throughout the following numerical analysis we study the
MCOT model using the trimmed network G∗.

1.4.2 MCOT: Pressure gradients

The second part of this section is devoted to an intensive study of the discrete pressure
gradient matrix ∆P ∗ ∈ RE,M , quantity that can provide useful insights on the MCOT

algorithm.

Initially, we are interested in seeing how the pressure gradients are distributed on the
edges of the network. This examination is done with the purpose of understanding how
the graph distributes the force acting on its edges, when changing β from the subadditive
to the superadditive regime. Also in this case a prediction of the result can be done
beforehand, and the intuition behind that comes once again from Physarum Solvers. It is
known [47,48] that in their construction it is assumed that the flow of mass in the links is
modeled as a Poiseuille flow; because of that, recurring to the Hagen-Poiseuille equation
we expect to obtain δpe ∼ 1/A2

e, where Ae is the section of the tube e. Moreover, since in
our model µ̂∗

e ∼ Ae, to bigger values of the transport densities (when β > 1) correspond
smaller pressure gradients. While for β < 1, when the graph has thinner edges, δpe
attains larger values.

This qualitative explanation is confirmed by the following plot. Precisely, we show
four histograms containing the entries of the E-dimensional array

∑
i∈C |∆P ∗i

e | obtained
for β ∈ {0.5, 1.0, 1.5, 2.0}. The simulation has been performed on blrand 10 1, with
M = 50.
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Figure 1.3: Histograms showing pressure gradients distribution on E . MCOT, mesh:
blrand 10 1, N = 500, M = 50, E = 1020, β ∈ {0.5, 1.0, 1.5, 2.0}. Results computed
over 5 realizations. Similar plots for M = 30, 40 are in figs. A.1c and A.1d in appendix
A.

In figure 1.3 we can see that for β = 0.5 the bins tend to have larger values and bigger
tails, as a confirmation of the fact that G∗ has many thin edges and that δpe ∼ 1/Ae.
Meanwhile as β grows the entries of the vector entries concentrate around small values
and the histogram has smaller tails. This behavior is strongly evident when β = 2, in
this case in fact all the entries of

∑
i∈C |∆P ∗i

e | are highly clustered around 0.

Now, we consider again the discrete pressure gradient matrix ∆P ∗ ∈ RE,M . What
we want to look at is again the distribution of its entries over the edges of the graph,
but i) we want to separate the pressure distribution produced by each commodity in C,
ii) we are interested in understanding which is the relation between the in-flowing mass
terms gi their correspondent E-dimensional arrays |∆P ∗i| ∀i ∈ C, where the absolute
values is applied element-wise to each entry of the vector.

In order to perform this analysis we buildM histograms associated to every commodity
in C that we order from left to right for increasing values of gi. This construction, that
we repeated using four different values of β ∈ {0.5, 1.0, 1.5, 2.0}, is displayed in figure 1.4.
The simulations were performed on the mesh blrand 10 1 fixing M = 30.

Looking at the four panels of figure 1.4 we can notice two different characteristic
traits of our model. The first is fundamentally the one that we displayed in figure 1.3,
namely that when for large values of the exponent β all the pressure gradients tend to
concentrate around small values, while decreasing β pressure differences are higher and
more widely distributed. This feature can be seen in these plots noticing that for β = 0.5
a large contribution to the total area of the histograms is given by the bins concentrated
around higher values of |∆P ∗i

e |. This portion of the area progressively decreases when
increasing β, for β = 1 we see that both the second and the third cluster of bins are
smaller; this trend is even more evident when β = 1.5, here in fact the third group of
bins has almost completely disappeared. Ultimately if β = 2.0 most of the pressure
histogram entries are concentrated around 0.

Furthermore, we may see how the bins are either almost monotonic increasing or
decreasing. This is symptomatic of another intuitive behavior of our model, that is:
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Figure 1.4: Histograms showing the pressure gradients distribution for each i ∈ C sepa-
rately. MCOT, mesh: blrand 10 1, N = 500, M = 30, E = 1020, β ∈ {0.5, 1.0, 1.5, 2.0}.
Results computed over 5 realizations. Similar plots for M = 40 are in figs. A.1e−A.1h
in appendix A.

to higher values of gi correspond higher values of pressure gradients. This, other than
being supported by physical intuition, i.e. it is reasonable to expect that inserting a
larger amount of mass in a node the force exerted by that vertex will be higher, is also
formally verifiable with equation (1.8a) where pressure terms are directly proportional
to in-flowing mass. In particular, the first cluster of bins is approximately monotonically
decreasing while the other clusters are approximately monotonically increasing, meaning
that a larger portion of the total pressure gradient contribution tend to be occupied by
those commodities with higher values of gi.

To complete this first part of the numerical analysis we inspect the relation between
the entries of matrix ∆P ∗ ∈ RE,M and the commodities in C.

Formally what we have done in the numerical implementation is the following. We
built a stem plot where in the x-axis we inserted the commodity indices i ∈ C, and on the
y-axis the total absolute pressure difference each commodity exercises on all the edges in
E :

∑
e∈E |∆P ∗i

e |, ∀i ∈ C. The commodities, also in this case, are ordered from the left to
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the right for increasing in-flowing mass. Moreover we kept fixed for every β the in-flowing
and the out-flowing mass assigned to each node, together with the assignations of sources
and sinks in V. By doing that we hoped we might be able to compare qualitatively the
effect that the exponent has on different experiments with the same setting, meaning that
we wanted to find a trend where relative variation between each

∑
e∈E |∆P ∗i

e | remains
qualitative the same ∀i ∈ C, while the gradient (in absolute value) are suppressed as β
grows. However this seems not to be the case, since the complex topology of the network
doesn’t allow the comparison of instances of the graph with different exponents. This,
indeed, could be objective of future investigations. Still, to provide a better graphical
understanding of how pressure gradients are distributed among edges we put beside the
stem plot four instances of the mesh at convergence with β ∈ {0.5, 1.0, 1.5, 2.0}.

In figure 1.5 we show the results of our experiments. The simulations have been
performed on the mesh blrand 10 1, setting M = 30.

Looking at these figures some observations on our model can be done. First of all we
have, again, that to higher values of β correspond smaller values of the pressure gradients:
in this case we notice that the stem plots gets largely suppressed when increasing β. In
fact we pass from having values ranging approximately in the interval (0, 80) for β = 0.5,
to having all the stems close to 0 if β = 2.0. Apart from that, we see that the stem
plots are not exactly monotonically increasing, meaning that to higher gi not always
correspond higher values of the pressure gradients on G∗. This is a clear signal that
traffic, namely the interaction with other commodities, plays a crucial role in rerouting
the mass in the graph.

As said, figures 1.5b−1.5e serve to provide an intuition on how the mass is distributed
in the network. Here the size of the orange squared nodes (the commodities) are
proportional to their in-flowing mass and the 3 nodes with the biggest gi have been
colored in green, blue and purple. Moreover, we superimposed to the faded gray links of
width ∝ µ̂e other edges colored in the same way as commodities 28, 29, 30. Their width
is

widthie ∝
|∆P ∗i

e |∑
i∈{28,29,30}

∑
e∈E |∆P ∗i

e |
,

so they are proportional to the pressure gradient caused separately by each commodity
on every link, which is a first naive and intuitive way to try to split the contribution
of the conductivities µ̂e that are merged by equation (1.8b). From the plots we have a
qualitative impression of the effect that β has on penalizing or favoring traffic congestion,
furthermore we can see how the topology of the mesh affects mass rerouting. For example,
focusing on figure 1.5e we clearly notice how, even if the purple source has the biggest
in-flowing mass, its pressure contribution is consistently smaller than the green one.
Indeed mass entering i = 28, before exiting the network gets rerouted between many
“junction” nodes from which it cannot exit.

1.4.3 MSG: traffic and efficiency

This subsection of thesis is devoted to studying the results of the numerical experiments
performed with the MSG scheme. In particular, we want to find a way to quantitatively
measure network traffic, focusing on trying to understand which is its relation with the
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Figure 1.5: Panels (a):
∑

e∈E |∆P ∗i
e | vs. C. Panel (b-e): Qualitative explanation of

non-trivial interaction among commodities. `e = 1 + ε10−3, ε ∼ U(0, 1), the position of
each node is sampled at random in the square [0, 1] × [0, 1] for visualization purpose.
MCOT, mesh: blrand 10 1, N = 500, M = 30, E = 1020, β ∈ {0.5, 1.0, 1.5, 2.0}. Results
computed on one single instance, keeping {gi}i and {f i}i fixed for every β. Similar plots
for M = 40, 50 are in figs. A.1i and A.1j in appendix A.
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exponent γ > 0. This analysis has been carried out by constructing the following two
plots:

• a histogram of the traffic distribution on the edges of the network. This measure
is performed for different values of γ, ranging in the set {0.0, 0.5, 1.0, 1.5, 2.0}, so
that we can have a clear visualization of the effect that γ has on mass rerouting.

• a plot of the efficiency vs. γ. This quantity has been defined with the purpose of
evaluating the fraction of edges e for which the BestPaths of two or more sources
overlap. A formal expression is provided by

efficiency := 1− |{e ∈ E | te > 1}|
|E|

. (1.9)

As we have done for most of the previous metrics, by analyzing algorithm (3), we
can give a qualitative explanation of the behavior of the plots. Precisely, we recall how
the cost of an edge changes as a power law w.r.t γ, namely for every e ∈ E we have
ce = (te+1)γ . Practically, this means that when we perform the accommodation routine,
as we increase the value of γ the WeightedDijkstra scheme tend to choose longer path
with less overlaps against shorter routes which edges have been already traversed. The
effect on the traffic distribution is the following, for γ = 0 the final network has short
routes with many overlaps, since the cost of each edge remains equal to `e at every
iteration of the scheme. Instead, increasing γ, it is reasonable to expect a graph where
routes taken by commodities are progressively longer and the overlaps monotonically
decrease. The same behavior reflects on the plot of the efficiency, here we have a smaller
fraction of overlaps when γ grows, so to get a monotonically increasing curve.

Traffic distributions and efficiency are displayed in the following plots. As usually,
the simulations have been performed on the mesh blrand 10 1.
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Figure 1.6: Histograms showing the traffic distribution on E for different values of
γ. MSG, mesh: blrand 10 1, N = 500, M = 50, E = 1020, γ ∈ {0.0, 0.5, 1.0, 1.5, 2.0}.
Results averaged over 5 realizations. Similar plots for M = 30, 40 are in figs. A.1k and
A.1l in appendix A.
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Figure 1.7: efficiency vs. γ. MSG, mesh: blrand 10 1, N = 500, M = 30, 40, 50,
E = 1020. Results averaged over 5 realizations.

Looking at figure 1.6 we see the behavior just described. When increasing γ the bin
cluster centered around 1 increases, highlighting that the more γ grows, the stronger
is the tendency of the scheme to return routes with less overlaps. On the contrary
the remaining bin clusters have the opposite tendency, with a decay in the y-axis for
increasing values of γ. In figure 1.7 we see that all the curves of the efficiency are
monotonically increasing, in particular we pass from having a fraction of trafficked edges
approximately equal to 0.5, to getting values around 0.9 for γ = 2.0.

1.4.4 Idle edges

In this last part of the numerical analysis we focus on the comparison of our two methods,
studying metrics useful to find their differences and similarities, other than highlighting
the better performances of the MCOT algorithm respect to the MSG. Here, following the
intuition given in §1.3.2, to do a meaningful comparison between the results we evaluate
experiments obtained fixing the exponents so that β = 1/γ.

The first quantity that we analyze is the idle edge fraction. This has two different
formal definitions for the contexts of MCOT and MSG. These are, respectively, the
portion of edges that gets trimmed in the cutting procedure performed to obtain G∗,
formally

edge idle fraction := 1− |E∗|
|E|

.

And the amount of edges that does not get occupied when running the MSG routine,
that is

edge idle fraction :=
|{e ∈ E | te = 0}|

|E|
. (1.10)

The two definitions above have the same meaning, since both the quantities are
measuring how many link the in-flowing mass occupies in the accommodation process.
In this regard, we may notice that when running MCOT scheme in principle all the edges
gets occupied i.e. µ̂∗

e > 0 ∀e ∈ E , in this case it is the cutting scheme discussed above
that plays a key role in allowing a meaningful comparison between the methods.
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The plot idle edge fraction vs. β is shown in the figure 1.8. The experiments have
been performed, also in this case, on the mesh blrand 10 1 taking different values of
the ration M/N .

Looking at the plot we can see that for both algorithms the fraction of idle edges
is monotonically increasing with β. This trend is consistent with all the theoretical
discussion we have done up to this points. Indeed, in the MCOT model when increasing
β we tend to have a smaller fraction of edges occupying the larger portion of the total
transport density (see fig. 1.2), so a bigger number of links will be trimmed off to obtain
E∗. Instead in the MSG model, as we have just seen in the previous subsection, a big
value of γ (small value of β) forces longer routes with no overlap, meanwhile if γ is small
(resp. β is high) more traffic congestion is allowed, resulting in shorter paths and less
occupied edges.

Despite having the same qualitative behavior, it is import to highlight the differences
between the results obtained with the two routines. What we can clearly notice is that
the MCOT algorithm enhances the tendency of the model to favor or penalize traffic
congestion. In fact in the subadditive regime, when β = 0.5, the fraction of idle edges of
the MCOT model is lower than the MSG one. Instead, if β increases and we pass to the
superadditive regime, the idle edges fraction is higher for the MCOT. In this sense then
the Optimal Transport approach performs better than the Greedy one, accentuating
the inclination to ease or impede congestion. Already from this first preliminary result
we can notice how the MCOT algorithm is a simple and efficient tool to easily perform
routing optimization while managing traffic on the network.
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Figure 1.8: idle edge fraction vs. β. Mesh: blrand 10 1, N = 500, M = 30, 40, 50,
E = 1020. Results averaged over 5 realizations.

1.4.5 Total length

A second part of our analysis is devoted to the study of the total length of the graph.
In particular, we want to study how this quantity changes with the exponent β, and
with complexity ratio M/N . Precisely, we study the normalized length L/L0 obtained
dividing the total length of the graph at convergence

L :=
∑
e∈E

`ete
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where the length of the mesh blrand 10 1 is denoted by L0. Analogously to what
happened studying the fraction of idle edges, the trimming process returning G∗ is crucial.
In fact in the MCOT model all the edges remain occupied, however trimming those edges
that are “not important” for the dynamics we are able to construct a graph G∗ that can
be meaningfully compared with the network using the MSG routine.

The results obtained with our numerical experiments are displayed in figures 1.9 and
1.10.

Looking at figure 1.9 we notice that the behavior of the total length is as we could
have expected. Increasing β both the models displays a monotonic decrease of L/L0,
consistent with the fact that more traffic is preferred over rerouting for large exponents.
Moreover, for bigger values of the ratio M/N , when the complexity i.e. the number of
sources to accommodate grows, the length of the graph gets bigger (under the same
value of β). Furthermore, even if the qualitative trend of the results is the same for both
algorithms there are also important differences. First, we notice that for β = 0.5 and
M/N = 0.04 the models return two networks with approximately the same length. What
happens here is that, being the number of sources in C small the rerouting process does
not stand out since most of the mass can be distributed without the need of changing
paths. However, progressively increasing the ratio M/N the total length of G∗ is also
increasing more and more w.r.t. the one of the MSG model. When passing to high
values of β, to the superadditive regime, to high values of the complexity M/N are
associated remarkably smaller values of L/L0 for the solid line (MCOT) w.r.t the dashed
ones (MSG). This tendency of enhancing the rerouting process is the same effect that we
observes when studying figure 1.8.
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Figure 1.9: L/L0 vs. β. Mesh: blrand 10 1, N = 500, M = 30, 40, 50, E = 1020.
Results averaged over 5 realizations.

When analyzing figure 1.10 we can appreciate the same typical features of the models
from a different perspective. Here we have, as expected, that the total length of the
graph is monotonically increasing with the ratio M/N . Apart from that, the fundamental
thing to notice is how β serves as a regulatory parameter for traffic congestion. This
mechanism is particularly visible in the MCOT algorithm; in fact this method compared
to the MSG returns graphs with larger total length when setting β = 0.5, and notably
smaller values of L/L0 for β in the superadditive regime, i.e. β = {1.5, 2.0}.
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Chapter 2

Message Passing Model

In the last decades, Message Passing has been largely employed in several fields of science
as spin-glass theory [30,31] and combinatorial optimization [32]. Only more recently this
technique has been used to tackle routing problems, a seminal paper in this setting is [5].

Here, the authors propose a distributed algorithm to solve the EDP problem built upon
MP. The method, other than being theoretically justified, is largely tested against several
benchmark algorithms. The results of this extensive analysis show how MP outperforms
most of the state-of-the-art methods, in this sense the capability of MP routine to take
in account the global traffic occupancy of the network proves to be fundamental for
performance improvement. Lastly, it is highlighted how the MP technique provides a
viable polynomial time implementation opening interesting perspectives in the solution
of routing problems.

Because of these key features, the MP routine of [5] is used as a baseline to construct
the SMP-EDP model, which, in turn, provides a novel approach able to overcome most
of the limitations of the ones present in the current literature.

Another interesting model, with better performance than most of the state-of-the-art
is developed in [58]. Here the authors use an approach derived by physics of interacting
polymers to build a distributed routing algorithm capable of considering all individual
path choices simultaneously. The model, however, presents two primary issues: the
algorithm shows issues in converging when taking large values of the complexity ratio
M/N , and the analytical derivation of the key equations may result impractical to the
reader due to its complexity. The remedy proposed to solve the first problem is to use
what is referred to as decimation procedure, which consists in fixing communication
paths already biased towards a particular choice of routes. For what concern the second
issue, the model remains intractable with respect to the rather self-contained analytical
derivation of the MP routine provided in [5].

The structure of this chapter is the following. First, we provide a short theoretical
introduction on the MP method. This presentation is made without any purpose of
completeness, it rather serves to briefly show which are the key elements composing
the setting on which SMP-EDP is based. Secondly, we want to formally construct the
SMP-EDP routine and the SMSG benchmark algorithm. These two methods are tested
in terms of both computational efficiency and performances, i.e. computing meaningful
metrics to study their capability of efficiently managing traffic congestion.

26
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2.1 Theoretical introduction

In this section we present the building blocks needed to construct the SMP-EDP model;
first, we formally define the EDP problem, then we introduce the Message Passing
equations. The last subsection is devoted to the explanation of the mapping of the EDP

problem into a weighted matching one. This step, as will be clear later in the thesis, is
essential to overcome the computational bottleneck introduced by the MP equations.

The derivations are done following for the most part [5] and [29].

2.1.1 The EDP problem

The EDP problem can be formally stated as follows. Given a graph G(V, E) and a set
of M communications C, i.e. pairings between sources and sinks, we want to find the
maximum number of edge-disjointed paths joining them that can be accommodated on
the network.

To solve this problem we map the EDP problem into a Minimum Weight EDP one
(MWEDP), formulation that takes in account both edge disjointness and path length
optimization. Formally, this consists in finding M communication paths πi, i ∈ C, that i)
satisfy the edge disjoint constraint, and ii) minimize the total cost, that we define as

C :=
∑
i∈C

c(πi) =
∑
i∈C

∑
e∈πi

ce,

with ce cost of a link e ∈ E . Practically, the EDP problem can be recovered from the
second formulation using an expedient: we connect each source-sink couple with an
extra edge and we assign to these M extra edges a cost ce > |E|. This step is essential
to guarantee that when performing the MWEDP accommodation each commodity gets
connected by a path, and the algorithm is forced to choose an extra edge only if no
other route can be taken while respecting the EDP constraint. Ultimately, after the
accommodation of every source-sink pair is done the extra links are removed, so that we
achieve both cost minimization and maximization in terms of the number of source-sink
couples.

The mathematical formulation of the problem can be done first introducing the
current vectors Ivw ∈ RM ∀(v, w) ≡ e ∈ E , which entries are defined as

Iivw :=


+1 if communication i passes from v to w

−1 if communication i passes from w to v

0 otherwise.

Each current has to satisfy Kirchoff’s law, analogously to equation (1.8a) in §1.2 we need
∀v ∈ V the constraint

∑
w∈∂v

Iivw − Λi
v = 0 ∀i ∈ C (2.1)

to be satisfied. Here we defined for each node v ∈ V and for each communication i ∈ C
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the variable Λi
v as

Λi
v :=


+1 v is a source for i ∈ C
−1 v is a sink for i ∈ C
0 otherwise.

This quantity, to some extent, encodes the same information provided by the two N ×M -
dimensional matrices G,F constructed for the MCOT model, in fact it allows to express
with one single object the distinction between sources and sinks. Moreover, before
continuing it is important to notice that each array contains M entries, allowing us to
register the edge occupancy caused by each communication separately. In this sense the
EDP problem setting is different from the MCOT, where to regulate traffic congestion it
is crucial to merge traffic given by different commodities.

The formulation of the problem can be further refined by noticing that because of the
EDP constraint each vector Ivw ∈ RM can be parametrized by a variable taking 2M + 1
values, associated to cases where one entry of I is equal to ±1, and the remaining are
equal to 0, or when the vector is identically equal to 0. It is clear how the set of currents
{Ivw}(vw)≡e∈E completely characterizes the occupancy of the network and using them we
can formulate the MWEDP problem in a compact fashion. Formally the problem reads as

{I∗
e} = argmin

{Ie}∈I

{
C({Ie}) :=

∑
e∈E

cef(||Ie||)

}
, (2.2)

where

||Ie|| :=
∑
i∈C
|Iie|,

the EDP constraint is ensured defining f as

f(||Ie||) :=


0 if ||Ie|| = 0

1 if ||Ie|| = 1

∞ if ||Ie|| > 1

and we label with I the space of all the currents for which equation (2.1) holds, namely

I :=

{
{Ie}e

∣∣∣∣ ∑
w∈∂v

Iivw − Λi
v = 0 ∀i ∈ C, ∀v ∈ V

}
.

In [5] the authors set ce = `e = 1 ∀e ∈ E , so that the final cost of the network is equal
to the total path length. In the SMP-EDP model, instead, the cost of each edge does not
remain fixed. Indeed the underlying idea of our algorithm is to construct an iterative
routine in which, at every step, each link get sequentially updated dependently on its
occupancy state in the past. It is by exploiting this expedient that we relax the original
formulation of the problem and we are able to accommodate all the source-sink couples.
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2.1.2 The Message Passing routine

The optimization problem (2.2) can be solved using a Message Passing routine. More
precisely, MP is able to provide a solution that is exact on trees and approximately
correct for locally tree-like cyclic graphs (Theorem 14.4, [29]).

The MP algorithm can be derived with the following construction. First, given a
tree G we build the modified cavity graph G[vw], made by the connected component
of G \ (v, w) (figure 2.1a). Secondly, we introduce the message Evw(Ivw), function of
the M -dimensional current passing trough the link (v, w) ∈ E ; this is the minimum
cost C({Ivw}) among all the current configurations on the cavity graph G[vw] satisfying
equation (2.1), given that the vector Ivw has been fixed a priori. We label the set of
these currents with I[vw]. Using these objects, and exploiting the absence of loops in the
subtree G[vw] (necessary condition for MP to converge exactly to {I∗

e}), we can write the
min-sum update

Evw(Ivw) = min
{Iuv}∈I[vw]

 ∑
u∈∂v\w

Euv(Iuv)

+ f(||Ivw||). (2.3)

The underlying idea of this method is that we can write an exact recursive equation
for Evw summing the cost contributions coming from the nodes u ∈ ∂v \ w and from
the additional fixed current Ivw. See figure 2.1b for an intuitive representation of the
min-sum recursion (2.3).

v w

G[vw]

(a) Modified cavity graph
G[vw].

v w

G[vw]

u

u′

u′′

(b) min-sum recursion, Evw gets
updated using the information
in {(u, v), (u′, v), (u′′, v)} ∈
∂v \ w

Figure 2.1: Figurative representation of MP.

Practically, when running the model, equations of the form (2.3) are iterated from an
arbitrary initialization of the currents. Once they converge, we can retrieve the optimal
configuration {I∗

vw}(vw)∈E given by

I∗
vw = argmin

Ivw

{Evw(Ivw) + Ewv(−Ivw)− f(||Ivw||)}

where the last term is subtracted to avoid counting counting twice the edges.

2.1.3 Weighted matching problem mapping

Even if equation (2.3) in theory provides a way of finding the solution the EDP problem, it
also introduces a computational bottleneck that we need to overcome. Precisely, to solve
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the min-sum recursion one needs to take in account all the possible currents consistent
with Kirchoff’s law (2.1) and the EDP constraint; the number of such objects grows
exponentially with the degree of node v.

In order to reduce the computational complexity of the method we map it to a
maximum weight matching problem on an auxiliary weighted fully connected graph G′v.
Precisely, taken a node v ∈ V we define G′v, a complete network which nodes are the
neighbors of v ∈ V (see figure 2.2). Its weight matrix is a symmetric matrix Q which
entries are

Qwu := min
16|j|6M

{Ewv(j) + Euv(−j)}+ Ewv(0) + Euv(0).

Here j parametrizes the 2M + 1 possible values the current vector Iwu can take, namely
Iiwu = δij for j > 0, Iiwu = −δij for j < 0 and Iiwu = 0 if j = 0. In order to initialize the
matrix Q we need to do O(MK2) operations, with K cardinality of the set of nodes in
G′v.

v w

G[vw]

u

u′

u′′

w

G′v u

u′

u′′

Figure 2.2: Building the auxiliary complete graph G′v.

This formulation can be further refined by noticing the following. We take a vertex
w ∈ ∂v, and we suppose that the communication passing through the edge (v, w) is
indexed by i. If we know also the other node where i is passing through, conventionally
labeled by u, then the least costly configuration in the remaining part of ∂v is

qmin
uw = −muw +

∑
x∈∂v\{u,w}

Exv(0)

where muw is the maximum weight of a second matching on a complete graph G′′vwu with
k − 2 edges, that we obtain removing w and u together with their incident edges from
G′v. A representation of this construction is given in figure 2.3. The crucial improvement
provided by this procedure is that the matching condition, that is: no colored edges in
the in G′′vwu can share a node, translates in forbidding edge overlaps. Therefore, thanks
to this mapping we are able to reduce the cost of the recursion (2.3) from exponential
to polynomial. We may also notice that the minimum weight is qmin

uw is independent of
i ∈ C, in fact a configuration of G′′vwu where one of the currents j is equal to i has higher
cost and it is naturally eliminated when performing the minimization to compute qmin

uw .
Notice that exploiting this observation we can reduce the computational complexity of
the algorithm by a further factor M .
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Figure 2.3: Building the auxiliary complete graph G′′vwu.

Ultimately, to complete the mapping of Evw we need to minimize over the node u,
namely for iteration t of the min-sum recursion (2.3) we have

Et+1
vw (i) = min

u∈∂v\w

{
Et

uv(i) + qmin
uw

}
+ cvw(i). (2.4)

This last expression has an intuitive interpretation. The update of the message Evw

is done by taking in account three contributions: i) the entering (resp. exiting if Evw

is entering in v) message over the neighboring nodes ∂v \ w, in accordance with the
underlying rationale of MP for which we update the information of a link using the one
entering in v (resp. w), ii) the optimal cost of the remaining neighbor qmin

uw and iii) the
infrastructure cost of the link (v, w): cvw(µ).

Finally, we notice that in order to evaluate each term inside the brackets in equation
(2.4) we need to perform a matching optimization on every complete graph G′′′vwu, ∀u ∈
∂v \w. Each problem has a complexity of the order O(K3 logK) [16]. Taking in account
that we have O(K2) possible combinations of v and w, and summing this last contribution
to the one given by the construction of Q, we get the final complexity of the problem

O(K5 logK +MK2).

that is polynomial in both M and K.
A last remark is needed. The mapping procedure can be similarly performed when

i = 0, i.e. no current is passing through (v, w). In this case a matching on the (k−1)-node
fully connected graph composed by the nodes u ∈ v \ w is done. Instead, if v is either
a source or a sink, i.e. Λi

v = ±1 for a certain i ∈ C, the same computation can be
performed using the following expedient. We add an extra auxiliary node to the network,
indexed by the communication label i, and connected to v. Then, we initialize at t = 0
the message Eiv and we never update it. In particular, we set E0

iv(j) = −∞ if 0 < ±j = i
(i is resp. a sender or a receiver), and E0

iv(j) = +∞ otherwise.

2.2 Numerical routines

2.2.1 SMP-EDP algorithm

One of the purposes of this thesis is relaxing the MP routine, developing a novel algorithm
able to accommodate all the sources in C at a moderate computational cost. Precisely,
in this regard we may notice how the hard constraint set by edge-disjointness limit
the MP routine to be able to allocate only a fraction Macc of the M commodities in C,
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since when having more and more routes on the network it may be impossible to join a
source/sink pairing without overlapping a previously occupied link. Even if w.r.t. many
of the state-of-the-art method MP improves performances in term of Macc [5] we want to
proceed further, building a scheme able to reach the goal Macc = M softening the EDP

constraint.

The core structure of SMP-EDP is contained in the following pseudocode1, which
explanation this section is devoted to.

Algorithm 4 SMP-EDP algorithm

1: input: graph topology G(V, E)
2: input: number of communications M
3: input: γ > 0

4: do AssignCouples(M,V) return→ C (M source-sink pairings)
5: assign traffic to every edge e ∈ E , te(0) = 0
6: assign to every edge e ∈ E a cost ce(0) = `e(te + 1)γ

7: associate to each link a binary occupancy occe = 0 ({0, 1} = {“free”, “occupied”})
8: while C != ∅ do
9: do MP(G, C, c) return→ {C′,Macc, BestPath} (in MP occe is employed to ensure edge-

disjointness)
10: for e ∈ BestPath do
11: te ← te + 1, ce ← `e(te + 1)γ

12: occe ← 0

13: C ← C \ C′

As we may see from the structure of the algorithm, the EDP constraint gets relaxed
using this strategy. After initially giving as inputs the graph topology and creating
the pairings between source-sink couples, we associate to every edge e ∈ E a cost ce
(collected in the array c ∈ RE) and a traffic variable te. The first quantity differs from
the one defined in traditional MP, in this context it has the purpose of controlling traffic
congestion. Precisely, in the original MP routine of [5], the cost of each edge is ce = `e.
Instead in our model it is essential to update the cost as for MCOT exploiting the traffic
occupancy of the network, so that we can, for example, force rerouting if some edges are
already occupied.

Even more in detail, we can follow the structure of algorithm (4) step by step. First,
the S-S coupling is made with the function AssignCouples, then the MP routine is
sequentially performed. At each iteration, the MP scheme returns three objects: i) the set
of pairs C′ ⊆ C it has been able to accommodate, ii) the cardinality of this set |Macc| = C′,
and iii) the set of links BestPath. This last quantity contains the edges in E that are used
during a single MP execution, their occupancy state is encoded by the binary variable
occe which allows to perform the accommodation guaranteeing edge-disjointness. After
each run of the MP function, the traffic te and the cost ce of these links gets updated as
in algorithm (3), namely te ← te + 1 and ce ← `e(te + 1)γ . The occupancy state, in turn,
is set again to 0 for every edge e ∈ BestPath. It is by employing two different traffic
variables that we can construct the sequential update routine: the “local” (in the sense

1For an open-source version of the MP routine used as baseline to build algorithm (4) see:
https://github.com/cdebacco/MP EDP.

https://github.com/cdebacco/MP_EDP
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that it gets re-initialized at every iteration) quantity occe has the only purpose of ensuring
no edge overlapping, the “global” traffic occupancy, instead, plays a crucial role in traffic
congestion ensuring that changing the exponent γ we can regulate rerouting. The last
operation in the cycle is removing those S-S couples that have been accommodated,
so that when MP is launched again the allocation is performed solely on the remaining
commodities.

It is important to notice how after each iteration of MP both the cost and the traffic
occupancy of the links gets updated as in the MSG scheme. Precisely, for γ > 1 the cost
of the edges is superlinear w.r.t. the traffic, while for γ < 1 it is sublinear. Qualitatively
this means that for “small” values of the exponent taking the same routes multiple
times is favored, up to the limit case of γ = 0 where path allocation does not influence
consecutive iterations. Instead, enlarging γ rerouting is preferred over traffic congestion.

A natural and crucial question that may arise now is why the relaxation of the EDP

problem has not been done by simply softening the hard edge-disjoint constraint, running
the MP directly updating ce as `e(te+1)γ . The answer has been already given in §2.1.3, in
fact a necessary requirement to build the weighted matching mapping is edge-disjointness.
This condition is indeed translated in not having communications sharing the same node,
that is the definition of matching, and it is fundamental to reduce the complexity of the
scheme from exponential to polynomial. Therefore the EDP constraint on one side may
have the drawback of worsening the results e.g. in terms total path length, but at the
same time it is essential to guarantee the solvability of the problem.

2.2.2 Reinforcement

To accelerate convergence we use in each MP routine the reinforcement technique of
[5,6, 11]. This method, to some extent, can be compared to the decimation procedure
of [58] where communications gets progressively fixed on links biased towards a certain
route assignation when performing accommodation.

This briefly consists in the following construction. At every time iteration t of the
MP routine we bias each message using a local external field of the form

htvw(i) := Et
vw(i) + Et

wv(−i) + cvw(i) (2.5)

that tends to align the messages with themselves. The reinforcement is introduced by
defining a communication-dependent cost, namely adding the fields hvw to the costs cvw
at each time step. Formally

ct+1
vw (i) = ctvw(i) + ηthtvw(i) (2.6)

with ηt time-dependent learning rate. This has the effect to lead the routine to converge
faster by gradually increasing the magnitude of each external field. In practice, we
set ηt as in [5], that is ηt = ρt fixing the growth rate to ρ = 0.002 in every numerical
experiment.

Improvements given by reinforcement have been extensively studied in several nu-
merical experiments performed with the MP scheme. A portion the analysis of this
thesis is devoted to showing how this technique boost performance also in the SMP-EDP

framework.
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2.2.3 SMSG algorithm

Analogously to the MCOT case, a theoretical baseline exploitable as benchmark for the
SMP-EDP scheme is still missing. To overcome this problem we build a second algorithm
with which we are able to draw meaningful comparisons in terms of metrics as, for
example, traffic congestion and total path length. In particular, we develop what we call
a Sequential Multi-Start Greedy (SMSG) routine. This scheme has the same structure
of algorithm (4), that is: we iterate accommodation steps where edge-disjointness is
imposed, and we relax this hard constraint using a local occupancy occe and global traffic
variable te. The crucial difference between the methods is that while in the previous case
at each sequential step we used a MP scheme, here we perform the accommodation via a
MSG algorithm. The SMSG scheme is briefly described by the following pseudocode.

Algorithm 5 SMSG algorithm

1: input: graph topology G(V, E)
2: input: number of communications M
3: input: γ > 0

4: do AssignCouples(M,V) return→ C (M source-sink pairings)
5: assign traffic to every edge e ∈ E , te(0) = 0
6: assign to every edge e ∈ E a cost ce(0) = `e(te + 1)γ

7: associate to each link a binary occupancy occe = 0 ({0, 1} = {“free”, “occupied”})
8: while C != ∅ do
9: for n = 1 6 Ntot, n← n+ 1 do

10: do Greedy(G, C, c) return→ {C′,Macc, BestPath} (in MP occe is employed to
ensure edge-disjointness)

11: for e ∈ E do
12: if occe == 1 then Cn

tot += ce

13: choose outcome with lower Cn
tot

14: for e ∈ BestPath do
15: te ← te + 1, ce ← `e(te + 1)γ

16: occe ← 0

17: C ← C \ C′

The underlying structure of the method, as said, is identical to the one of scheme (4).
First we give as inputs the graph topology and the number of total communications, with
which we create the source-sink pairings using the function AssignCouples. Secondly
we assign to each link in E a cost ce and a traffic occupancy te. Again, this second
quantity is different from the binary variable occe that is introduced with the purpose
of labeling edges that have been occupied when running the MSG routine, ensuring
edge-disjointness. After the initialization we run iteratively a MSG routine, i.e. a Greedy
algorithm repeated Ntot times, so that we can keep only the best realization in terms of
total cost Cn

tot. Finally, using the best instance returned from Greedy we update traffic
and cost as te ← te + 1 and ce ← `e(te + 1)γ .

The SMSG routine provides and easy-to-use benchmark comparable with the SMP-EDP

method. This algorithm, on one side can run at moderate computational cost. On the
other hand its performances are strongly effected by the its greedy nature for which
global information on edge occupancy is not exploited to maximize Macc. In fact, the
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accommodation of each path in Greedy is done as in algorithm (3), i.e. sampling at
random the S-S couples. This procedure clearly affect performance, and even if we
partially remedy this poor behavior by choosing the best path among multiple instances,
its performances are still worse than the one of the SMP-EDP scheme.

2.3 Numerical analysis: SMP-EDP vs. SMSG

In this part of the thesis we perform a quantitative comparison between the SMP-EDP

and the SMSG method. The analysis is divided in two parts: first we present some
experiments that have been performed with the purpose of studying the improvements
provided to SMP-EDP by the reinforcement technique described in §2.2.2. As will be
clear from these preliminary results, adding reinforcement greatly boost performance
and consistently reduce the script running time. For this reason in the second part of
the numerical analysis the SMP-EDP model is always executed with reinforcement. The
following results are devoted to draw a comparison between the schemes in terms of
usual metrics as graph length or traffic occupancy.

Analogously to §1.4 the numerical analysis has been entirely performed on the mesh
blrand 10 1 used in [5]. To each link of the graph we assigned a length `e = 1 + 10−3ε,
where the bias ε ∼ U(0, 1) has been introduced to facilitate converge, avoiding degenerate
cases with multiple paths having the same total cost.

2.3.1 Performance

As described in §2.2.2, we can improve the converge properties of the MCOT method
using the following trick. We define a local external field hvw as in equation (2.5)
for every (v, w) ∈ E , having the effect of gradually biasing messages to align with
themselves. Inserting these objects in the communication-dependent cost (2.6) results in
favoring aligned communications over the others in terms of their cost, speeding-up the
accommodation routine.

To give a quantitative proof of the improvements brought by reinforcement we
tested the model performing several experiments on blrand 10 1, while changing γ ∈
{0.0, 0.5, 2.0} and spanning the complexity ratio M/N in the interval [0.01, 0.1]. For
each run of the accommodation routine we measured the time [s] used by our CPU to
process the scripts, in figure 2.4 we display the obtained results.

Looking at the plot we notice that introducing the external fields hvw greatly improves
performances. More precisely, we have that for small values, i.e. M/N = 0.01, of the
complexity ratio the elapsed time does not differ much in the two cases with and without
reinforcement. However when increasing M/N , the impact of reinforcement becomes
progressively more evident, up to the point where the running time get halved or reduced
by 2/3. This behavior is consistent with what we may have expected, that is: for a
“simpler” problem where M is low it is reasonable not to have much rerouting, thus
introducing hvw does not really have an effect on accelerating convergence. Instead,
when we consider a “more difficult” problem, in the sense that M/N is larger, we
may encounter frequently a situation in which the preferred route of more than one
communication passes through a certain edge. It is in this case that the external fields
hvw are fundamental boost convergence.
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Figure 2.4: 〈tCPU〉 vs. M/N . SMP-EDP, mesh: blrand 10 1, N = 500, γ ∈
{0.0, 0.5, 2.0}, E = 1020. Results averaged over 5 realizations.

To further study the effects of reinforcement we analyze two other quantities. Here, we
not only compare different runs of the SMP-EDP model with and without reinforcement,
but we test our scheme against the SMSG algorithm, with the purpose of providing a first
glimpse on the advantages introduced by the SMP-EDP model over the state-of-the-art.

In particular, we build two plots in which we examine the quantities 〈#iterations〉 vs.
M/N and Macc/N vs. iteration, where an “iteration” is a step of the sequential routine
in which a single MP or Greedy edge-disjoint accommodation is performed. The purpose
of the first figure is to show how increasing the complexity ratio M/N influences the
total number of steps needed to converge, as we may notice the ability of MP to take
in account traffic occupancy is fundamental to increase the number of accommodated
Source-Sink couples Macc at each step, so that the number of iterations gets reduced. This
characteristic trait of the SMP-EDP algorithm to maximize Macc by taking in account
the global traffic occupancy of the network is displayed in the second plot, indeed here
we show how the fraction of allocated commodities changes for consecutive iteration.

The results of our numerical experiments are in the following figures. Each run of
the experiments has been executed on blrand 10 1, with the ratio M/N spanning in
the interval [0.01, 0.1] and setting γ to values in both the sublinear and the superlinear
regime, precisely γ ∈ {0.0, 0.5, 2.0}.

Analyzing figure 2.5 we notice the following. First, as we may have expected, for each
of the three models the total number of iterations is monotonically increasing with the
complexity M/N . This is consistent with the fact that as we add more commodities to
allocate we need more iterations to reach convergence, having less free edges to occupy at
every MP or Greedy step. Secondly, we see that the amount of steps used by the SMSG

scheme is consistently larger than the one used by the SMP-EDP algorithm. This is a
consequence of the capacity of MP of exploiting network traffic maximizing Macc at each
step (seen in fig. 2.6). Ultimately, we may notice that the runs of the SMP-EDP scheme
in which we applied reinforcement do not differs in terms of total iterations from the
ones without it. This fact, even if it may seems counter-intuitive at first sight, is in line
with the effect of reinforcement. Precisely, the external fields bias messages in such a
way that when having multiple communication selecting the same route a faster selection
of the message is made. This, of course, have no effect in increasing Macc, indeed the
values of this last quantity is mainly determined by edge-disjoint constraint.
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E = 1020. Results averaged over 5 realizations.
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In the three panels of figure 2.6 we clearly notice how performance of SMP-EDP

in terms of Macc overcome the one of SMSG. First, increasing M/N the number of
steps needed to perform the accommodation using a certain fixed model increases. As a
reference example may take fig. 2.6a, looking at the solid and dashed lines (correspondent
to SMP-EDP with and without reinforcement) we notice how the total number of iterations
used to accommodate all M Source-Sink pairings progressively grows from 1 (no lines is
shown when M/N = 0.01 since one step is sufficient to allocate all the commodities) to
9 when the complexity is equal to M/N = 0.1. The same happens for the dotted lines,
associated with the SMSG algorithm, which needs a monotonic increasing number of total
iterations to perform the accommodation as M/N gets bigger. In this case, however, more
steps are necessary to run the routine under the same value of M/N , w.r.t. the SMP-EDP

algorithm. This behavior is consistent with what we found in figure 2.5. Moreover, we
see that the solid and dashed curves rapidly decay over consecutive iterations. This
clearly exhibit the capability of MP to accommodate as much Source-Sink pairings as
possible. In turn, the dotted curves tend to be more flat, this trend is symptomatic of
the fact Greedy routines do not perform this maximization. Instead, when running MP

we sequentially sample the commodities to allocate uniformly from C, in doing that some
“bad” choices for two consecutive indexes often happen, meaning that we may select one
Source-Sink pair which path blocks the second one, causing Macc to decrease.

From this plots it is strongly evident that our algorithm provides a consistent
improvement in performance over SMSG, which is commonly used as state-of-the-art
scheme. Lastly, in force of the benefits given by reinforcement, in the rest of the
analysis the SMP-EDP routine will be always executed with reinforcement to speed-up
convergence.

2.3.2 Accommodation speed

A first preliminary plot that we may show is, again, Macc/N vs. iteration. Its behavior
and its justification remain the same we just discussed. However, in the following figure
we keep M/N fixed while changing γ. For visualization purpose we fade all the curves
but one, since the qualitative trend remains the same in each plot, independently of γ.
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Figure 2.7: Macc/N vs. iteration. Mesh: blrand 10 1, N = 500, M = 50, γ ∈
{0.0, 0.5, 1.0, 1.5, 2.0}, E = 1020. Results averaged over 5 realizations. Similar plots are
in B.1a and B.1b in appendix B.
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2.3.3 Traffic

In this part of the analysis we build meaningful metrics able to show how the SMP-EDP

model outperforms SMSG in terms of traffic optimization over the network. First, we
compare two histograms, one for each algorithm, which measure the traffic distribution
over the network, i.e. they have as entries the number of commodities occupying every
link in E . Secondly we plot the efficiency, already defined in equation (1.9), vs. γ with
the purpose of seeing how changing the exponent enforces or penalize traffic congestion.

Our numerical results are in the following figures. All the experiments were performed
on the mesh blrand 10 1 with γ ranging in the interval {0.0, 0.5, 1.0, 1.5, 2.0} and
M/N ∈ {0.06, 0.08, 0.1}.
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Figure 2.8: Histograms showing the traffic distribution on E for different values of γ.
Mesh: blrand 10 1, N = 500, M = 50, E = 1020, γ ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. Results
averaged over 5 realizations. Similar plots for M = 30, 40 are in figs. B.1c, B.1e and figs.
B.1d, B.1f in appendix B.
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Figure 2.9: efficiency vs. γ. Mesh: blrand 10 1, N = 500, M = 30, 40, 50, E = 1020.
Results averaged over 5 realizations.

Looking at figure 2.8a we see that, as the exponents grows, more edges tend to
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avoid traffic congestion. This reflects on the fact that bins clustered around 1 are
monotonically increasing with γ, while for values of the x-axis greater than 1 they
are almost monotonically decreasing. Looking at 2.8b we notice the same qualitative
behavior. However, comparing the two models we may see how the SMP-EDP model is
able to manage traffic congestion outperforming the benchmark scheme. In fact, the tail
of the histogram is larger in fig. 2.8b, meaning that we are more likely to obtain edges
occupied by a bigger amount of commodities when running the SMP-EDP routine.

From figure 2.9 we can notice two particular features. First, all the curves shows an
almost exact monotonic increasing behavior, consistent with the effect that γ has on
rerouting. Also, increasing the complexity M/N we reduce the efficiency under the same
value of γ, along with the principle under which adding more commodities we are more
likely to observe overlaps. Other than that, we notice how the SMP-EDP scheme always
returns larger values of the efficiency for every combination of γ and M/N , meaning
that constructing our model we are able to outperform the benchmark routine in terms
of traffic management.

2.3.4 Cost

Another metric providing useful insights on the SMP-EDP algorithm is the infrastructure
cost, defined as

C :=
∑
e∈Et

ce (2.7)

with Et := {e ∈ E | te > 0}. In particular, we are interested in the relation between this
quantity and γ and to exhibit that we construct two plots. The first shows how the ratio
∆Cn/Macc changes at each iteration of the algorithm, n; where labeling sequential steps
with the subscript n, we define the cost variation

∆Cn := Cn − Cn−1, C0 ≡ 0.

Here Cn is the total cost given by the edges with te > 0 at time step n. The second
quantity is C/M , this plot serves as a further verification to the capability of SMP-EDP

of optimizing traffic.
The results of our experiments are in figures 2.10 and 2.11. The simulations have

been performed on the usual benchmark mesh blrand 10 1.
From the first figure we notice that for increasing values of γ the infrastructure cost

derivative changes from being flat to being increasing. This trend is consistent with the
definition of ce = `e(t+ 1)γ , that is a power law w.r.t γ. Other than that, we see that
the solid curves, associated with SMP-EDP, attain lower values than the SMSG (dashed)
ones under the same values of γ. This is a consequence of the capability of MP of better
managing traffic congestion maximizing Macc. Moreover, Macc maximization leads to
faster convergence i.e. fewer sequential iterations needed by the SMP-EDP scheme to
accommodate all the routes, analogously to what seen in figure 2.7.

Figure 2.11 reflects definition (2.7), from which we see that the total cost is nothing
but a summation of exponential functions in γ. In the plot we notice how the total
infrastructure cost per communication is consistently smaller for the SMP-EDP scheme
over SMSG. Once again, this is a consequence of the effectiveness of SMP-EDP in reducing
traffic.
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Figure 2.11: 〈C〉 vs. γ. Mesh: blrand 10 1, N = 500, M = 30, 40, 50, E = 1020.
Results averaged over 5 realizations.

2.3.5 Idle edges

Analogously to what we have done in §1.4 we compute the idle edges fraction defined
as in (1.10). This quantity is plotted against γ in figure 2.12. The simulations were
performed on blrand 10 1.

Looking at the plot we may notice how all the curves are monotonically decreasing
with γ, this behavior is consistent with what we should expect. In fact for larger
values of the exponent rerouting is favored, reason why under the same complexity
M/N more edges gets occupied. Furthermore, also in this case the SMP-EDP model
outperforms SMSG. Its improvement in performance is particularly evident for bigger
values of γ. In this sense it is clear that for γ ∈ {0, 0.5}, when traffic congestion is
preferred over rerouting, the capacity of optimizing traffic of SMP-EDP does not take
part in accommodation. Instead, when entering the linear/superlinear regime (meaning
γ = 1/γ > 1), this characteristic feature of MP is highlighted by higher values of the free
edges fraction.
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Figure 2.12: idle edge fraction vs. γ. Mesh: blrand 10 1, N = 500, M = 30, 40, 50,
E = 1020. Results averaged over 5 realizations.

2.3.6 Total length

In this last part of the analysis we conclude the confrontation of the two models by
studying the total length of the graph. First, we start by constructing a plot in which we
compare the cumulative length, i.e. the total length of the network at each step, vs. the
iteration number. From this plot, displayed in figure 2.13, we notice how for every value
of the exponent γ the SMP-EDP scheme outperforms the SMSG algorithm, allocating
every source-sink pairing using routes with smaller lengths.
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Figure 2.13: 〈cumulative length〉 vs. iteration. Mesh: blrand 10 1, M/N = 0.1,
E = 1020. Results averaged over 5 realizations. Similar plots for M/N = 0.06 and
M/N = 0.08 in figs. B.1i and B.1j in appendix B.

Ultimately we study the ratio L/L0, that is the fraction between the length of the
graph

L :=
∑
e∈E

`ete

and the dimension of the mesh L0. This quantity is plotted against the exponent
γ and the complexity M/N . In figure 2.14 the plot L/L0 vs. γ is shown, looking
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at the curves we can observe that the length of the network, for small values of the
complexity M/N , remains almost constant. An inflection can be seen for γ > 1 and
M/N ∈ {0.08, 0.10, 0.12}, meaning that rerouting takes place for “large enough” values
of the complexity ratio. Moreover, for the same M/N vales, the SMP-EDP model returns
consistently smaller length than SMSG.
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Figure 2.14: L/L0 vs. γ. Mesh: blrand 10 1, N = 500, E = 1020. Results averaged
over 5 realizations.

In figure 2.15 we see how, for both models, the total length of the graph increases
as M/N grows. However, with the SMP-EDP scheme we are able to consistently reduce
L/L0. It is interesting to notice also how SMSG is greatly reduces performance when
rerouting is forced. Indeed, the dashed lines rapidly grow when enlarging γ. On the
contrary SMP-EDP is able to better manage traffic, maintaining the difference between
each L/L0 curve moderate for small and large values of γ.
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Figure 2.15: L/L0 vs. M/N . Mesh: blrand 10 1, N = 500, E = 1020. Results
averaged over 5 realizations.



Chapter 3

Comparison of the models

In this third chapter of the thesis we draw a qualitative comparison between MCOT and
SMP-EDP. This discussion has the purpose of highlighting differences and similarities
in the problems so that we can understand precisely on what terms the two algorithms
match up.

It is clear that at the current state both our models are in an embryonic stage and
not yet directly comparable, being in the first place the settings of the problems they are
intended to solve different. In this respect, the numerical analysis done in §§1.4 and 2.3
has been designed with the twofold purpose of both highlighting typical traits of each
model and to find common meaningful metrics, so that a preliminary comparison could
be performed. Here we want to examine how this analysis can be refined in the future,
proposing ideas constituting a possible baseline for following works.

3.1 Two different settings

A first issue that it is necessary to bring to light is the different nature of the two routing
problems we are tackling. On one side we have the One Source-Multiple Sinks setting,
where mass in-flowing from each commodity can outflow from any other sink of the
network. On the other side, we are dealing with the One Source-One Sink problem where
we make a one-to-one pairing between sources and sinks. A schematic representation
of the OS-OS accommodation process is done in figure 3.1, here we see that to each
commodity (orange squares) are associated a positive/in-flowing and negative/out-flowing
mass contribution. Moreover, while the accommodation is performed every node can
redirect its entering mass to any other sink in the graph (see for example step 1 where
the pink colored in-flowing mass exits the network from two separate nodes). In figure
3.2, instead, for every source (square) of a certain color, i.e. communication index, there
has to be only one other sink (diamond) colored in the same way to which we can send
mass. Indeed, as we see from step 1, mass can only be rerouted in such a way that no
source and sinks of two different colors can be the starting point and the endpoint of a
route.

Both frameworks are interesting to study per sé and, as extensively remarked in the
first part of the thesis, and are widely employed in several practical applications coming
from disparate contexts. However, it is reasonable to expect that the outcome of the
accommodation routine performed in one case cannot be directly matched with the other.
To some extent, constructing the S-S pairs can be thought as an additional constraint
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added to the One Source-Multi Sinks formulation. Indeed, this often entails producing
longer routes since there is no a-priori reason for which the (random) pairings should
agree with the goal of our schemes to optimize cost. A first improvement in this sense
could be done adapting the MCOT model the OS-OS setting, in such a way that each
source has a one-to-one matching with a sink, or equivalently by relaxing MP to the
OS-MS framework.

Step 0)
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Figure 3.1: Schematic representation of the OS-MS accommodation process.

Step 0)

Source

Sink Step 1)

Figure 3.2: Schematic representation of the OS-OS accommodation process.

Furthermore, networks returned by the two models are not directly comparable
in terms of traffic occupancy. In particular, the way traffic is encoded in the MCOT

algorithm is drastically different from the modelization done in the MP context. In
the first case traffic congestion is taken in account by pressure gradients, which are
responsible for the regulation of transport density. Instead in the MP setting we measure
traffic on a certain edge by simply counting the number of routes passing through that
link.

Regarding traffic management it is interesting to see how contrasting approaches are
used by the two models to perform the same task. Specifically, the MCOT algorithm
controls traffic by “forgetting” commodities labeling, i.e. the evolution in time of µ̂e
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is carried out merging in one single variable all the separate µi
e contributions given by

each commodity i ∈ C. Formally this is done with the ansatz (1.8b) that, as already
pointed out in §1.2.2, serves to group the conductivity terms coming from every source,
transforming µ̂e into a global variable. On the contrary in order to manage traffic
congestion, for the SMP-EDP routine it is necessary to separate each S-S pairing. In
this second setting the traffic variable te measures exactly the number of different paths
overlapping on a certain edge e ∈ E over all the consecutive iterations of algorithm (4).

To quantitatively compare the two models in terms of traffic we could directly act
on equation (1.8b), modifying the choice of the function f({µi

e}i) used to merge the
transport density contributions, with the purpose of distinguishing each commodity in C.
A meaningful choice of f seems to be everything but trivial, since the new ansatz should be
able to both separate each µi

e term, while merging them together to regulate congestion.
In this thesis we made the simplest possible ansatz choice, setting f ≡ Id, however
proposing alternatives for f could provide many useful insights on the accommodation
process.

A first naive approach to measure µi
e separately for each i ∈ C is exploiting pressure

gradients. Following the idea that the growth of the transport density µ̂e of a certain
link e ∈ E is regulated by the `2-norm of the vector containing the M pressure gradient
acting on link e. This result is what we represented in figures 1.5b−1.5e, where we gave
a first intuitive representation of the effect that each commodity has in rerouting mass
on the edges of the network, showing how the mesh topology is crucial in determining
the solution of the routine.

3.2 Length and traffic

As remarked several times all along the thesis the SMP-EDP and the MCOT models have
been designed with the purpose of optimizing mass rerouting while efficiently managing
traffic congestion. In this sense, a quantitative analysis on how these two quantities
relate to each other could be further extended by trying to measure how favoring total
length optimization is affecting traffic, or vice versa.

Theoretical results backing this type of metrics are still missing, meaning that given a
certain graph topology we do not know in principle which is the optimal way to perform
the accommodation process while penalizing or favoring the traffic. It is for this reason
that we can only study the total length/traffic trade-off using benchmark algorithms.
In detail, on one side of the “total traffic vs. optimal length” balance we have selfish
algorithms of Dijkstra type, where the mass in-flowing from each source gets rerouted to
a sink taking the shortest path, without taking in account the remaining commodities.
On the other hand, we can use as a benchmark algorithm to minimize traffic congestion
the SMP-EDP routine itself, setting γ → +∞. Meaning that we are increasing γ as much
as possible (trying to favor rerouting) while still maintaining Macc = M . Notice that in
the theoretical limit γ = +∞ we would have SMP-EDP “=” MP with the limitation of
not being able to connect each source-sink pairing.

This analysis could provide a novel perspective in terms of understanding where our
models are placed in the length/traffic trade-off. We could see how effectively modifying
the exponents γ and β contributes on managing traffic; that is, we could exactly measure
how much we are reducing traffic at the expense of forcing longer routes, or how much
we are allowing more trafficked edges by minimizing the total length of the network.



3.3. Practical applications 47

3.3 Practical applications

Ultimately, to complete this final discussion we mention the wide range of practical
application our schemes are in principle naturally able to model. In the introduction
of the thesis it has been strongly remarked how OT and MP are widely employed in
the current literature as a paradigm for efficiently solve routing problems stemming
from any field of science and engineering. Applications range from railway and highway
networks, to blood circulation networks, or routing protocols for package transportation
in telecommunication. Tackling all these problems with the SMP-EDP and the MCOT

algorithms could provide on one hand improvements to the performance of state-of-the-
art. On the other side it could serve as a way to deeply understand the rationale on
which our routines are built upon, providing many insights on the physical intuition
behind the problem formulations.



Conclusions

In this thesis we studied two novel approaches for solving routing problems on networks.
The first method has been built using tools coming from optimal transport; in particular
we extended the model proposed in Facca et. al. [15] to the Multiple Sources-Multiple
Sinks setting, where mass can flows in and out the network from multiple nodes. In §§1.1
and 1.2 we first presented the key quantities entering in the mathematical formulation of
the problem, then we coupled these objects into the adaptation equations (1.8a−1.8c)
which entirely characterize the dynamics of the model. In parallel with the mathematical
formulation of the problem, we constructed the MCOT algorithm (§1.3), that has been
tested against a benchmark MSG routine in an extensive numerical analysis in §1.4.
Our experiments displayed how our model outperforms the state-of-the-art in several
respects. Precisely, we designed different metrics to display that with MCOT we are able
to efficiently perform mass rerouting naturally taking in account length optimization and
traffic congestion. In this regard, the MCOT showed a great adaptability in both the
sublinear and the superlinear regime, being able to strongly penalize or enforce traffic by
regulating the exponent β.

Secondly, we proposed a method built upon the Message Passing technique. In detail,
in §2.1 we introduced the theory developed in [5], in §2.2 we extended the model to a
Sequential Message Passing scheme (SMP-EDP). Our algorithm has the advantage of
MP to take in account the traffic occupancy of all the edge in the network, and is able
to improve the results obtained with the state-of-the-art MP routines by relaxing the
EDP constraint. The scheme has been tested against a SMSG algorithm in §2.3, here the
metrics used to evaluate performance showed that our model outperforms most of the
methods used by practitioners nowadays. Indeed, building a sequential scheme iteratively
performing MP we were able to find a route joining all the M source/sink couples, while
optimizing total length and traffic at a moderate computational cost.

As remarked in chapter 3 the algorithms, other than providing many advancements
to the current literature, hint at future developments and open many new perspectives
for routing problems. In particular, our models are a first incipient modelization of
two different settings: the OS-MS framework and the OS-OS one. Future works could
be devoted to formulate a refined version of the models, with the MCOT algorithm
working in the OS-OS framework or, vice versa, with the SMP-EDP in the OS-MS one.
Furthermore, the numerical analysis presented in this thesis could be extended in many
ways, a possible direction could be the study of the total length/traffic trade-off, which
analysis could let us explore the effect of the exponents β and γ on traffic management.
Ultimately, the algorithms could be employed in modeling real networks, giving several
useful insights about problems belonging to disparate branches of science and engineering.
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[31] Mézard, M., Parisi, G., and Virasoro, M. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, vol. 9. World Scientific
Publishing Company, 1987. 10.1142/0271.
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Appendix A

Additional simulations: MCOT
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Figure A.1: Additional figures for §1.4.
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Appendix B

Additional simulations: SMP-EDP
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Figure B.1: Additional figures for §2.3.
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