
P
e
rs

o
n
a
l
C
o
p
yFalsification of Hybrid Systems using Symbolic Reachability and

Trajectory Splicing
Sergiy Bogomolov

Australian National University
Canberra, Australia

Goran Frehse
ENSTA ParisTech - U2IS
Palaiseau Cedex, France

Amit Gurung
Martin Luther Christian University

Shillong, India

Dongxu Li
Australian National University

Canberra, Australia

Georg Martius
Max Planck Institute for Intelligent

Systems
Tübingen, Germany

Rajarshi Ray
National Institute of Technology

Meghalaya
Shillong, India

ABSTRACT
The falsification of a hybrid system aims at finding trajectories that
violate a given safety property. This is a challenging problem, and
the practical applicability of current falsification algorithms still
suffers from their high time complexity. In contrast to falsification,
verification algorithms aim at providing guarantees that no such
trajectories exist. Recent symbolic reachability techniques are ca-
pable of efficiently computing linear constraints that enclose all
trajectories of the system with reasonable precision. In this paper,
we leverage the power of symbolic reachability algorithms to im-
prove the scalability of falsification techniques. Recent approaches
to falsification reduce the problem to a nonlinear optimization prob-
lem. We propose to reduce the search space of the optimization
problem by adding linear state constraints obtained with a reacha-
bility algorithm. We showcase the efficiency of our approach on a
number of standard hybrid systems benchmarks demonstrating the
performance increase in speed and number of falsifyable instances.

CCS CONCEPTS
• General and reference → Verification; • Theory of compu-
tation → Timed and hybrid models; • Software and its engi-
neering → Formal methods;

KEYWORDS
trajectory splicing, falsification, reachability analysis, hybrid sys-
tems, safety verification, non-linear optimization

ACM Reference Format:
Sergiy Bogomolov, Goran Frehse, Amit Gurung, Dongxu Li, Georg Martius,
and Rajarshi Ray. 2019. Falsification of Hybrid Systems using Symbolic
Reachability and Trajectory Splicing . In 22nd ACM International Conference
on Hybrid Systems: Computation and Control (HSCC ’19), April 16–18, 2019,
Montreal, QC, Canada. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3302504.3311813

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
HSCC ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6282-5/19/04. . . $15.00
https://doi.org/10.1145/3302504.3311813

1 INTRODUCTION
We consider the problem of finding bugs in dynamical systems
with both continuously evolving variables as well as discrete states
(modes), i.e., hybrid systems. This problem is known as falsification
and different tools such as S-TaLiRo [3], Breach [15], and FalStar
[14] are available. In this paper, we consider the special case of
finding a trajectory that starts inside a given set of initial states
and that leads to a given set of bad states. In addition to search-
ing for bugs, our kind of falsification problem can arise naturally
as part of a verification process. When one has failed to verify a
system (proving that bad states are not reachable), it is often not
clear whether the system actually violates the property or whether
the verification tool was simply unable to show safety, e.g., due to
overapproximations. Finding a concrete counterexample is then
equivalent to our type of falsification problem. Such counterexam-
ples are highly valuable to designers since they are essential for
understanding bugs in the design or modeling mistakes that may
have tripped up the verification process. In the present work, we
propose to enhance existing falsification techniques by incorpo-
rating techniques from verification, and in particular reachability
analysis.

One way to establish safety of the system is by a reachability
analysis of the model wherein all reachable states of the automaton
are computed. Computing the accurate set of reachable states for
a hybrid system is in general intractable. Therefore, existing tech-
niques produce a conservative over-approximation [1, 6, 10, 18, 29].
A commonly used over-approximation of the accurate reachable
states of a dynamical system is known as a flowpipe. Verification
of safety properties of a model is then implied from the empti-
ness of the intersection between the flowpipe and the specified
unsafe set of states. Generally, one cannot resort to reachability
analysis straightforwardly for a solution to falsification problems:
a non-empty intersection of flowpipe and unsafe state set does not
necessarily imply the violation of safety properties, essentially due
to the over-approximation in a flowpipe.

Recently, a method for falsifying hybrid systems based on trajec-
tory splicing has been proposed in [34]. The method starts with a
candidate sequence of disjoint trajectory segments, each of which
describes the evolution of the system in one discrete state. By min-
imizing the sum of the distance between each segment pair, the
falsification task is solved upon identifying a segment sequence
with a zero minimum cost.

1

P
e
rs

o
n
a
l
C
o
p
yHSCC ’19, April 16–18, 2019, Montreal, QC, Canada S. Bogomolov et al.

We address two problems that may arise when applying the
approach from [34] to complex hybrid systems: First, the trajectory
splicing relies on a sequence of discrete states that contains a valid
counterexample as input, which is assumed as known apriori. In
fact, the sequence is usually manually picked by observing simu-
lations of the system [34]. Such an approach can be hard to scale
to large hybrid systems with complex behaviors. Also, simulations
are inherently incomplete, in the sense that one may not always be
able to observe a violating trajectory even if the system is unsafe.
The second problem is that the approach initializes the nonlinear
optimization problem using the bounding information from the
system model, e.g. invariant constraints. Since the reachable set is
usually a subset of the region defined by such explicitly attainable
constraints in the model, the bounding information acquired this
way can be rather coarse in practice. In particular on instances
where such information is partially missing, the nonlinear opti-
mization problem can explore an unnecessarily large search space
and is also more likely to fall into local minima and cost more it-
erations to converge. This prevents the optimizer from a fast and
stable convergence.
Contributions: In this paper, we propose to enhance the trajectory
splicing approach with symbolic reachability analysis, which helps
to solve the aforementioned issues.

(1) We use reachability analysis to automatically produce can-
didate sequences of discrete states. As opposed to [34], our
approach is independent of expert knowledge of the sys-
tem and provides a violating counterexample as soon as one
can be found. This provides a fully automated falsification
approach for hybrid systems.

(2) We exploit the constraints from the symbolic reachability
analysis to efficiently prune the search space of the nonlinear
optimization problem. This helps the optimizer and leads
to a faster and more stable convergence. As a result, the
falsification has a better chance to succeed.

(3) We propose a trajectory splicing-validation loop, which as-
sures that the counterexample rigorously respects the invari-
ant conditions.

We implemented the ideas presented in this paper in a state-of-
art reachability analysis tool XSpeed [29] and compare with the
baseline approach in [34]. We find that our approach can usually
identify counterexample trajectories faster and more consistently.
Particularly on longer trajectories, our approach is a clear winner.
The relevant artifacts are publicly available online1.

The rest of the paper is structured as follows. In Sect. 2, we
briefly recall concepts of hybrid systems, reachability analysis, and
falsification. Sect. 3 describes our main proposal to enhance falsifi-
cation with symbolic reachability analysis and trajectory splicing,
including how we take advantage of the reachability result to prune
the search space. In Sect. 4, we present our practical evaluation on
standard hybrid system models. We recall existing works in Sect. 5
and conclude the paper in Sect. 6 with discussions on possible future
work.

1http://xspeed.nitmeghalaya.in/falsification.html

2 HYBRID AUTOMATA, REACHABILITY,
AND FALSIFICATION

In this section, we formalize our notions of hybrid automata, reach-
ability analysis, and falsification, based on established concepts
from literature.

2.1 Hybrid Automata
Hybrid automata are a mathematical model of hybrid systems, i.e.,
systems exhibiting both continuous and discrete dynamics. A state
of a hybrid automaton is a 2-tuple (ℓ,x), where ℓ is a location (dis-
crete state, mode) and x is an n-dimension real vector representing
the values of the continuous variables.

Definition 2.1 (Hybrid automaton). [2] A hybrid automaton (HA)
is a tuple (L,X , Inv, Init , Flow, Trans) where:

- L is the set of locations of the hybrid automaton.
- X = {x1, . . . ,xn } is the set of continuous variables.
- Inv : L → 2Rn maps every location to a subset of Rn , called

the invariant. All trajectories must lie inside the invariant.
- X0 is a pair (ℓinit ,Cinit) such that ℓinit ∈ L and Cinit ⊆
Inv(ℓinit). It defines the set of initial states.

- Flow is a mapping of the locations to ODE equations of the
form Ûx = f (x), called the flow equation of the location. A
flow equation defines the evolution of the system variables
within a location.

- Trans is the set of (discrete) transitions of the automaton.
A transition δ = (ℓ,G,M, ℓ′) changes a state (ℓ,x) of the
hybrid automaton to another state (ℓ′,x ′) given that x lies
in the guard set G ⊆ Rn . The linear mapM : Rn → Rn

changes x to the new vector x ′ = Mx + b, where M is an
n × n matrix and b ∈ Rn . We denote the guard set and the
linear map of a transition δ with G(δ) andM(δ).

We consider flows in the form of linear differential equations, i.e.

Ûx = Ax + u,

where A ∈ Rn×n ,x ∈ Rn ,u ∈ Rn , which implies that the closed-
form solution of f low(x , t) exists [29]:

f low(x , t) = eAtx + Φ(A, t)u . (1)

If A is invertible, Φ(A, t) = A−1(eAt − I). Otherwise, it can be com-
puted as a submatrix of the matrix exponential of a block matrix
according to [18].

The behaviors of a hybrid automaton are formally described as
runs, which are alternating sequences of time elapse, during which
x evolves according to (1), and discrete transitions, which update x
according to x ′ =M(x).

Definition 2.2 (Run). A run of a hybrid automaton is a sequence

(ℓ0,x0)
τ0−−→ (ℓ0,y0)

δ0−−→ (ℓ1,x1)
τ1−−→ (ℓ1,y1), . . . ,
δN−1−−−−→ (ℓN ,xN)

τN−−→ (ℓN ,yN)
such that for all i = 0, . . . ,N , (i) (ℓ0,x0) ∈ Init ; (ii) ∀t ∈ [0,τi],
f lowℓi (xi , t) ∈ Inv(ℓi); (iii) f lowℓi (xi ,τi) = yi ; (iv) yi ∈ G(δi) and
xi+1 =M(yi). The times τi are called the dwell times of the system
in the respective locations ℓi .

2

P
e
rs

o
n
a
l
C
o
p
yFalsification of Hybrid Systems using Symbolic Reachability and Trajectory Splicing HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

2.2 Symbolic Reachability Analysis
We give a brief summary of reachability analysis and describe the
algorithm we use to obtain a symbolic abstraction of the reachable
states.

Definition 2.3 (Reachability). A state (ℓ,x) is reachable if there is
a run of the system such that (ℓ0,x0) ∈ X0 and (ℓN ,xN) = (ℓ,x).

Reachability analysis tools produce a conservative approxima-
tion of the reachable states of the automaton. Reachable states can
be expressed as a union of symbolic states. A symbolic state s is a
tuple (l ,C) such that l ∈ L and C ⊆ Inv(l). An unsafe symbolic state
set SB defines a set of error states of the automaton. If ∃ sB ∈ SB
such that sB is reachable, then we say the automaton is unsafe. Since
we are interested in finding short counterexamples, we assume that
the reachability analysis is carried out as a breadth-first search up
to a given bounded depth N .

Definition 2.4 (Symbolic Reachability and Exploration Graph).
Given a HA, a set of unsafe symbolic states SB , and a search depth
N , a breadth-first symbolic reachability analysis (abbr. symbolic
reachability) produces an exploration graph (S,V), where S is a
set of symbolic states, containing a root state s0, and V is a set of
edges (s, s ′) ∈ S ×S . Each edge (s, s ′) is associated with a transition,
denoted as δ (s, s ′). We say that a run

(ℓ0,x0)
τ0−−→ (ℓ0,y0)

δ0−−→ (ℓ1,x1)
τ1−−→ (ℓ1,y1), . . . ,

τN−−→ (ℓN ,yN)
of HA matches a path

s0, s1, . . . , sN = (ℓ0,C0), . . . , (ℓN ,CN)
in the exploration graph if xi ∈ Ci and δi = δ (si , si+1) for i =
0, . . . ,N . The graph is complete up to depth N is the sense that
every run of length up to N has a matching path in the explo-
ration graph. The converse is not necessarily true: A path in the
exploration graph may have no matching run.

Our symbolic reachability analysis algorithm is a classical fixed-
point computation over a symbolic state space based on support
functions [20, 29]. The algorithm starts by initializing a queue of
symbolic states with the set of initial states. For each symbolic state
(ℓ,C), two image computations are carried out: first the continu-
ous states reachable by time elapse via Flow are computed. This is
called flowpipe approximation. Then for each outgoing transition
of location ℓ, the symbolic state in the new location (also called a
“transition image") is computed. All the obtained symbolic states
are put back on the queue, unless they are contained in a previ-
ously visited symbolic state. We briefly describe those two image
computations.

Flowpipe Approximation. We discretize time by a fixed time step
∆t and overapproximate the reachable states with a union of convex
sets Ω0, . . . ,ΩN−1, where N = T/∆t . The convex set Ωi overapprox-
imates the reachable states over a time interval [i∆t , (i + 1)∆t]. Let
R[0,T](C) denote the set of reachable states over a time horizon T .
Let Ωi be defined as

Ω0 = CH (C, eA∆tX0 ⊕ ∆tu ⊕ αB) (2)

Ωi+1 = eA∆tΩi ⊕ βB (3)

where CH (·) is the convex hull operation; α , β are constants de-
pending on X0, u and ∆t ; B is the unit ball in p-norm [26]. Then

R[0,T](C) ⊆
N−1⋃
i=0

Ωi .

Transition Image. For each outgoing transition (ℓ,G,M, ℓ′), we
compute the image as follows. First, we identify which Ωi overlap
with the guard G, i.e.,

Ωi ∩ G ∩ Inv(ℓ) , ∅.
In case there are multiple sets intersecting with the guard, we
adopt the box-template hull aggregation [18] to limit the number
of symbolic states. For each of the sets that overlap with the guard,
we compute the image

Ω′i =M
(
Ωi ∩ G ∩ Inv(ℓ)

) ∩ Inv(ℓ′). (4)

The new symbolic state (ℓ′,C′) is added to the states of the explo-
ration graph, along with the edge

((ℓ,C), (ℓ′,C′)) and the associ-
ated transition.

2.3 Counterexamples and Falsification
Symbolic reachability provides us with an exploration graph (S,V),
from which we can extract a set of paths that lead from the ini-
tial to the bad states. We aim at identifying, which of these paths
correspond to actual runs of the system.

Definition 2.5 (Abstract and concrete counterexamples). An ab-
stract counterexample in an exploration graph (S,V) is a sequence

s0,δ0, s1,δ1, . . . ,δN−1, sN ,

of symbolic states si ∈ S and transitions δi = δ (si , si+1) ∈ V
such that s0 ⊆ Init and sN ∩ SB , ∅. We say that an abstract
counterexample is also concrete if there is a matching run in HA.
The length of a counterexample is N + 1, the number of locations
visited.

In the process of checking whether an abstract counterexample
is concrete, we will go through intermediate stages where the coun-
terexample is concrete in the sense that there are corresponding
solutions of the ODEs, but where invariants, guards and transi-
tion maps may not be satisfied. We formalize these intermediate
counterexamples a follows.

Definition 2.6 (Relaxed counterexample). Given an abstract coun-
terexample

(ℓ0,C0),δ0, (ℓ1,C1), . . . ,δN−1, (ℓN ,CN),
a corresponding relaxed counterexample is a sequence

(ℓ0,x0)
τ0−−→ (ℓ0,y0)

δ0−−→ (ℓ1,x1) . . .
τN−−→ (ℓN ,yN)

such that ∀i ∈ [0,N] (1) xi ,yi ∈ Ci and (2) f lowℓi (xi , t) ∈ Ci ,
∀t ∈ [0,τi] with f lowℓi (xi ,τi) = yi . In other words, relaxed coun-
terexamples are not required to satisfy invariants, guards, and tran-
sition maps of HA.

The above definitions allow us to define falsification tasks in
hybrid systems, and it is our target in this paper.

3

P
e
rs

o
n
a
l
C
o
p
yHSCC ’19, April 16–18, 2019, Montreal, QC, Canada S. Bogomolov et al.

Definition 2.7 (Falsification task). Given an HA and a set of un-
safe symbolic states SB , a falsification task (HA,SB) is to find a
concretizable counterexample of HA.

The exploration graph produced by symbolic reachability defines
a set of abstract counterexamples of given length: the set of paths
in the graph that lead from the initial to the bad states. We can
check each of these abstract counterexamples using falsification
techniques for a given path. If no concrete counterexample is found,
we can increase the search depth. If a user-defined depth is exceeded,
we can report that no counterexamples have been found up to this
depth. The precise mechanism for checking counterexamples is
presented in the next section.

3 COMBINING FALSIFICATION AND
SYMBOLIC REACHABILITY

In this section, we propose an approach to solving a falsification task
using symbolic reachability and trajectory splicing. An overview
of our approach is shown in Fig. 1. Given a falsification task, we
first apply symbolic reachability analysis to find a set of abstract
counterexamples. We use breadth-first-search (BFS) as the under-
lying search algorithm in the space of symbolic states, such that
the number of discrete transitions is minimized. This helps to min-
imize the dimension of the non-linear optimization problem. We
run symbolic reachability analysis up to a fixed number of discrete
transitions. Each time an abstract counterexample is found, we
formulate the falsification task as a nonlinear optimization problem
using the idea of trajectory splicing, while taking into account the
reachability analysis result to refine the bounding constraints.

If the nonlinear problem can be solved with a cost function close
to zero, we acquire an instance of a relaxed counterexample. We
then call the validation routine to check whether such a relaxed
counterexample respects the invariant constraints or not. In case
it doesn’t, we refine the optimization problem to exclude such
an invalid trajectory from the solution space. Depending on the
setting, we terminate the process either after exhaustive attempts
to splice all the abstract counterexamples or after finding a concrete
trajectory.

In Sect. 3.1, we briefly recall the approach [34] to reduce a falsifi-
cation task to a trajectory splicing problem. In Sect. 3.2, we explain
the idea of using symbolic reachability analysis to improve the
performance of solving a trajectory splicing problem. In Sect. 3.3,
we describe how we formulate the trajectory splicing problem as
a nonlinear optimization problem. In Sect. 3.4, we explain the ne-
cessity of validating a relaxed counterexample against invariant
constraints and present the trajectory validation loop.

3.1 Concretizing Counterexamples Using
Trajectory Splicing

A segmented trajectory defines a set of trajectories within the
location sequence that is specified by an abstract counterexample.

Definition 3.1 (Segmented trajectory and trajectory segments).
Given an abstract counterexample (ℓ0, C0), δ0, (ℓ1, C1), . . ., δN−1,
(ℓN ,CN), a segmented trajectory P is defined to be a sequence of

abstractCE := reachAnalyzer.getNextCE()

abstractCE exists?

True

P:= createOptProblem(abstractCE, SB)

cost, relaxedCE :=
runOptimizer(P)

cost = 0 ?False

isValid:=runValidation(relaxedCE)

True

isValid?

P := refineOpt
Problem()

False

Falsification Task
(HA, SB)

False return None

Trajectory
Splicing

Sym bolic
Reachabil i t y

Validat ionreturn
relaxedCE

True

reachAnalyzer :=
ReachabilityAnalyzer(HA)

Figure 1: Proposed falsification scheme overview: Given an
HA, ReachabilityAnalyzer() creates an instance of reach-
ability analyzer. On each call of getNextCE(), the ana-
lyzer tries to find and returns an abstract counterexam-
ple (abstractCE). createOptProblem() creates an optimiza-
tion problem given an abstract counterexample and a
set of unsafe states. runOptimizer() runs an optimization
routine given an optimization problem and returns a re-
laxed counterexample (relaxedCE) if cost equals to zero.
runValidation() runs the trajectory validation routine and
test whether the relaxed counterexample respects invari-
ant conditions. refineOptProblem() refines the optimization
problem taking into account the validation result.

N + 1 trajectory segments {π0,π1, . . . ,πN } [34]:

©«

π0 : (ℓ0,x0)
τ0−−→ (ℓ0,y0)

π1 : (ℓ1,x1)
τ1−−→ (ℓ1,y1)

... . . .

πN : (ℓN ,xN)
τN−−→ (ℓN ,yN)

ª®®®®®®¬
(5)

such that (i) the location sequence is specified by the abstract coun-
terexample, i.e. (ℓ0, ℓ1, . . ., ℓN). (ii) (ℓ0,x0) ∈ Init and (xi ,yi) ∈ Ci
(iii) yi ∈ G(δi), ∀i ∈ [0,N − 1], where G(δi) is the guard set

4

P
e
rs

o
n
a
l
C
o
p
yFalsification of Hybrid Systems using Symbolic Reachability and Trajectory Splicing HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

of the transition δi and (iv) f lowℓi (xi , t) ∈ Ci , ∀t ∈ [0,τi] with
f lowℓi (xi ,τi) = yi , ∀i, 0 ≤ i ≤ N

Generally, a segmented trajectory may not depict a trajectory
of the hybrid automaton since the segments can be disconnected
with each other. However, if it is possible to splice the segmented
trajectories, such a sequence indicates an actual trajectory of the
system. Splicing can be formulated as a nonlinear optimization
problem with the objective of minimizing the distance between
the end-points of the trajectory segments. The overview of the
optimization problem formulation using Definition 3.1 is as follows:

minimize
x0, ...,xN ,τ0, ...,τN

N−1∑
i=0

COST(πi ,πi+1) (6)

subject to
COST(πi ,πi+1) = dist(M(δi)(yi),xi+1) (7)

0 ≤ τi ≤ T , ∀i : 0 ≤ i ≤ N − 1 (8)
xi ,yi ∈ Inv(ℓi), ∀i : 0 ≤ i ≤ N (9)

x0 ∈ CInit (10)
yi ∈ G(δi), ∀i : 0 ≤ i ≤ N − 1

(11)
f lowℓi (xi , t) ∈ Inv(ℓi), ∀i : 0 ≤ i ≤ N ,

∀t ∈ [0,τi],
(12)

yi = f lowℓi (xi ,τi), ∀i : 0 ≤ i ≤ N
(13)

The function dist() is a mapping Rn × Rn → R which computes
the Euclidean distance between two vectors. We remark that since
we are considering f low in the form of linear differential equations,
one can computeyi given xi and τi according to Eq. 1. Therefore, xi
and τi are the only two sets of decision variables in this formulation.

When the cost is zero, the solution is a spliced segmented trajec-
tories and therefore a concrete counterexample. No solution with
zero cost implies the non-existence of a concrete counterexample
for this abstract path.

3.2 Search Space Pruning Using Abstract
Counterexample

According to Definition 2.4, a concrete trajectory segment in a
location ℓi must be within Ci . Therefore, one can always take into
account the constraint Ci ⊆ Inv(ℓi) to restrict the search space of
the optimization problem (6). Since the reachable set is a subset of
the invariant, it provides finer constraints. In addition, the invariant
is quite often unbounded, in which case one can only use an infinite
bound to initialize the optimization problem. In the following, we
describe the additional constraints we deduce from the flowpipe.
We start by introducing the following definition:

Definition 3.2 (Projection function). A projection function projd (x)
is a mapping from Rn → R that projects vector x to its d-th com-
ponent, i.e. projd (x) = ed · x , where ed is a unit vector with d-th
component equal to 1 and all others equal to 0.

Note that projection gives an easy way to produce lower and
upper bounds using linear programs. Given Definition 3.2 and an

abstract counterexample (ℓ0, C0), δ0, (ℓ1, C1), . . ., δN−1, (ℓN ,CN),
we now formalize the constraints as follows.

Constraints on the starting point xi . The starting point in location ℓi
belongs to the set Ω0, which over-approximates the set of reachable
states over the time interval [0,∆t]. We add the constraint xmin

i ≤
xi ≤ xmax

i , where

xmin
i,d = min

x∈Ω0
{projd (x)}, d ∈ Z,d ∈ [1,n] (14)

xmax
i,d = max

x∈Ω0
{projd (x)}, d ∈ Z,d ∈ [1,n] (15)

Constraints on the ending point yi . (i) if ℓi is not the location of
the last segment, the ending point for the trajectory segment in ℓi
should satisfy the guard constraints. Additionally, we can deduce
from the reachability analysis that the set of reachable states in li
is a subset of Ci , i.e. yi ∈ Ci . Therefore, the constraint we have is

yi ∈ G(δi) ∩ Ci , where i < N (16)

(ii) if ℓi is the location of the last trajectory segment, the endpoint
yN should be inside the unsafe states SB = (ℓB ,CB). Following
the same reasoning as in (16), we deduce yN ∈ CN . We add the
constraint below:

yN ∈ CB ∩ CN (17)

Constraints On dwell time. To obtain precise constraints over the
dwell times τi , we add an extra variable t to the hybrid automaton,
with flow Ût = 1. Each discrete transition resets t to zero so that
the time variable measures only the time elapsed in the current
location of the automaton. Consequently, the flowpipe computed
from the symbolic reachability analysis also provides reachability
information on the dwell time in each mode. We can then obtain
constraints on t , i.e., over the dwell times, in a similar way as on
xi and yi . Since we know that yi must satisfy the guard of the
transition δi for a discrete transition to take place, we may take
the projection of the time dimension from the reachable set Ci in a
location ℓi and intersect the guard set of the transition δi , i.e. G(δi)
in order to obtain the bounds on the dwell time at location ℓi . We
add the constraint τmin

i ≤ τi ≤ τmax
i , where

τmin
i = min

x ∈Ci∩G(δi)
{projd ′(x)}

τmax
i = max

x ∈Ci∩G(δi)
{projd ′(x)},

(18)

where d ′ is the index for the time dimension. The projection of
Ci ∩ G(δi) is always a subset of [0,T] and ensures to prune the
search space.

3.3 Finding Trajectories Using Nonlinear
Optimization

Solving the optimization problem (6)–(13) cannot be done in a
straightforward way because the cost function is nonlinear. Even
for systems with linear f low dynamics, the cost is nonlinear in
the dwell times τi . One way to solve the problem efficiently is to
convert most of the constraints into soft constraints, i.e., add them
as penalty terms to the cost function (Lagrange multipliers) [8].
If all constraints are converted, then an unconstrained optimizer
can be employed. Here, we keep some constraints hard and use
a constrained nonlinear optimizer. It is reasonable to constrain

5

P
e
rs

o
n
a
l
C
o
p
yHSCC ’19, April 16–18, 2019, Montreal, QC, Canada S. Bogomolov et al.

the initial point of each location to be in the invariant set and
also keep the time limits as hard constraints. In contrast, the end-
points of each location are nonlinearly coupled to the starting point
and should be soft constraints to make the cost function smooth
and differentiable. A constraint of the form p ∈ P, where P is
a polyhedron, becomes an additive part of the cost, which is 0 if
p ∈ P and otherwise the sum of (squared) distances to the violated
hyperplanes.

Definition 3.3. Given a polyhedron P = {x ∈ Rn | Wx ≤ b}.
W is an m × n matrix, where each row is normalized. We reflect
the constraint p ∈ P in the optimization problem by adding an
extra term computing the sum of (squared) distance to the violated
hyperplanes.

dp(p,P) =
m∑
i=1

max
(
0,

(∑n

j=1Wi, jpj
)
− bi

)2
(19)

The relaxed optimization problem is as follows:

minimize
x0, ...,xn,τ0, ...,τn

n−1∑
i=0

CC(πi ,πi+1) + dp(yn ,CB) (20)

subject to

τmin
i ≤ τi ≤ τmax

i , ∀i : 0 ≤ i ≤ n − 1 (21)
x0 ∈ C0 (22)
xi ∈ Inv(ℓi), ∀i : 0 ≤ i ≤ n (23)

xmin
i ≤ xi ≤ xmax

i , ∀i : 0 ≤ i ≤ n, (24)
with

CC(πi ,πi+1) = dist
(M(δi)(yi),xi+1

)
+ dp(yi ,Ci) + dp

(
yi ,G(δi)

)
(25)

yi = f lowℓi (xi ,τi). (26)
The only term that is missing from the new cost function is

the invariant constraint (12). It is omitted because it would add
infinite terms (∀t). To ensure that this constraint is satisfied we add
a validation routine, see Sect. 3.4 below.

The new cost function (20) has a particular structure that al-
lows for a single optimization procedure. Note that all terms in the
cost function are positive (≥ 0). If the constraints Eq.(21)–(24) are
satisfied and (20) is zero then the original cost (6) is zero with all
constraints satisfied. Thus, there is no trade-off between terms and
the values of the Lagrange multipliers can be fixed to 1. Since the
cost function is differentiable, we supply analytical gradients to the
solver, see Appendix A.1. In practice, due to numerical calculations,
the cost needs to be below a certain threshold in order to be consid-
ered successful. We observe that usually a cost below a threshold
of 10−6 is sufficient to indicate a concrete counterexample.

3.4 Trajectory Validation
The particularly challenging constraint to encode in the optimiza-
tion problem is the invariant constraint (12). The difficulty arises
since yi (t) = f lowℓi (xi , t) is a continuous function of t in the inter-
val [τmin ,τmax]. Therefore it is not possible to explicitly encode
the containment check of yi (t) in the invariant of location ℓi . To
address this problem, we propose to remove this constraint from the

optimization problem and instead separately check for the possible
violation of this constraint in the spliced trajectory. In this way,
we delay the checking of this constraint to a later step that we call
trajectory validation. During trajectory validation, (12) is explicitly
checked at discrete time points tk with the numerically computed
yi (tk). This checking is performed by computing the distance of the
point yi (tk) to the invariant set. A distance of zero implies that the
trajectory point satisfies the invariant, whereas a non-zero distance
implies a violation of the invariant. We consider only polyhedral
invariants in this work. Our point to polyhedron distance function
is shown in (19). In order to deal with numerical inaccuracy in the
distance computation, a distance of less than 10−3 is considered to
be zero. Note that the precision of the validation phase is limited to
the number of discrete points in the trajectory checked for validity.
Checking the trajectory samples for validity that are separated by a
small time-step is desirable for precision but expensive because of
the large number of distance computations. In our implementation,
we keep the number of samples for validation as a parameter that
can be tuned to meet the desired accuracy. We call this parameter
the number of validation steps. The larger the number of validation
steps, the better the accuracy is.

If a trajectory is found to be violating the invariant, we record
all trajectory segments πi and dwell times τ ∗i which violate the
invariant (dp(yi (τ ∗i), Invi) > 0). We call these the refinement points
for the violating trajectory. The optimization problem is modified
to avoid generating invalid trajectories at those points. This is done
by adding the distance of dp(yi (τ ∗i), Invi) (for all refinement points)
to the cost function. Our algorithm keeps adding the refinement
points and restarting the solver until a valid trajectory is found.

4 EXPERIMENTS
We compare the performance of the trajectory splicing algorithm
with additional constraints on dwell times and starting points of
the trajectory segments (referred to as FC), and the approach in
[34], which does not employ any extra constraints derived from a
symbolic reachability analysis (referred to as WoFC).

4.1 Experiment Setup
Implementation and environment. We implement our ideas in the
state-of-art reachability analysis tool XSpeed[29]. The reachability
analysis is performed using a support-function-based algorithm as
sketched in Sect. 2.2, with a box-template directional abstraction [?
], and with a time-step of 0.01 for computing flowpipes.

The optimization problem for splicing is solved using the open-
source library Nlopt [21], which provides an interface to a number of
non-linear optimization routines in C++. In our experiments, we use
a gradient-based optimizer MMA (Method of Moving Asymptotes)
[31]. We fix two parameters of the optimizer, i.e. error tolerance and
max-iterations. Error tolerance measures the accuracy of splicing. A
splicing is accepted when the minimum of the cost function is less
than or equal to the specified error tolerance, which we set as 10−6.
The number of iterations by the optimization routine is bounded
by max-iterations, which we set as 20K.

All the experiments are performed on a machine with Intel Xeon
CPU E5-1650 v4, 3.60GHz, 64 GB RAM.

6

P
e
rs

o
n
a
l
C
o
p
yFalsification of Hybrid Systems using Symbolic Reachability and Trajectory Splicing HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Benchmark description. We run experiments to search counterex-
amples on different instances (19 in total) from four models. Each
instance considers a unique initial and an unsafe set. These in-
stances include Platooning [7], the oscillator [18], the Filtered os-
cillator [18] and the Navigation benchmarks [16]. The Platooning
benchmark models the motion of a platoon of vehicles following
a leader vehicle. The vehicles in the platoon communicate their
respective position, velocity and acceleration with each other so
that each vehicle can maintain a safe distance with the vehicle that
is ahead in the platoon. The effect of the loss in communication is
modeled as a “dropout" mode, which changes the dynamics of the
automaton. The oscillator is an affine system with two variables
x , y which oscillate between two equilibria. The Filtered oscilla-
tor models an oscillator system together with k-filters. The filters
smoothen x to produce the output z. The Navigation benchmark
models the motion of an object in a plane, partitioned into unit
squares. The motion dynamics of the object varies in each square
and changes instantaneously as the object crosses from one square
to another in the plane. The details, e.g. dimensionality and the
number of locations, of each instance can be found in all the tables
in the following section.

4.2 Results
In our evaluation, we empirically evaluate the coverage of our ap-
proach and demonstrate that it finds a larger number of concrete
counterexamples in most of the cases. Note that by adding extra
constraints into the optimization problem, we can reduce its search
space. At the same time, the structure of the optimization problem
might get more complicated due to introduced non-linear terms.
Therefore, it is important to investigate whether the embedding of
additional constraints in fact pays off. In this setting, we first run
the reachability analysis. While exploring the symbolic state space,
the reachability algorithm collects all the found abstract counterex-
amples. After this preprocessing phase has been finished, we iterate
over all the abstract counterexamples and try to concretize each
of them. We report the total number of concrete counterexamples
found. Here, a higher number of found concrete counterexamples
clearly indicates a better coverage.

Table 1 shows the results of the approaches FC and WoFC with
respect to the coverage. We observe the following:
• By employing additional constraints, the optimization engine

succeeds in finding at least one concrete counterexample for
all the 19 instances. In the absence of these constraints, the
optimizer only succeeds on 7 instances.
• On instances solved by both approaches (seven in total), FC

on average finds a concrete counterexample 2-4 times faster
than WoFC on 5 instances: Nav (4), Nav (5), Nav (6), Nav (8)
and Platooning (1).
• On instances Nav (1) and Nav (9), WoFC found more concrete

counterexamples using less time than FC.
Thus, we conclude that extra constraints improve the robustness

of the concretization algorithm.
Figure 2 shows the generated concrete counterexamples of dif-

ferent lengths for two instances of the navigation benchmark, as
well as the instances of oscillator and filtered oscillator benchmarks.

Table 1: Results of the FC and WoFC approaches. #AbsCE
is the number of abstract counterexample from the reach-
ability analysis. This number can be large due to the over-
approximations in the flowpipe computation. The results of
the benchmarks marked (*) are obtained by using a time-
step of 0.1 during flowpipe computation. #ConCE is the
number of concrete counterexamples found by each ap-
proach. The best performer is highlighted in bold.

Benchmark Dim. #Loc #AbsCE #ConCE
FC WoFC

Nav (1) 5 9 2 1 2
Nav (2) 5 25 5 2 -
Nav (3) 5 25 275 1 -
Nav (4)* 5 225 969 6 2
Nav (5)* 5 225 414 2 1
Nav (6)* 5 400 19 4 1
Nav (7)* 5 400 101 9 -
Nav (8) 5 625 10 3 1
Nav (9) 5 625 29 3 4
Nav (10) 5 625 2 2 -
Nav (11) 5 625 2 2 -
Nav (12) 5 625 2 2 -

Platooning (1) 11 2 1 1 1
Platooning (2) 11 2 2 1 -
Oscillator (1) 3 4 3 3 -
Oscillator (2) 3 4 1 1 -
Oscillator (3) 3 4 2 2 -

Filtered Osc. (1) 11 4 6 2 -
Filtered Osc. (2) 11 4 2 1 -

4.2.1 Efficiency. In this setting, we demonstrate the efficiency of
our approach on solving a given falsification task. The falsification
setting corresponds to the overall scheme depicted in Fig. 1, where
we interleave the reachability analysis and optimization calls. Once
an abstract counterexample is found by the reachability analysis,
we try to concretize and validate it. The process terminates as soon
as it finds a concrete counterexample. We record the accumulative
reachability analysis (RA Time) time, accumulative optimization
time (Opt. Time) and sum them up as the time to solve the falsifica-
tion task (Fal. Time). Smaller falsification time is in favour. Table
2 shows the result for the falsification setting. We observe that
FC results in faster falsification in comparison to WoFC, in 15 out
of the 19 instances. Also, WoFC is not successful in finding any
falsifying trajectory in 12 of the instances where FC succeeds. We
note that in 4 of the instances, WoFC results in faster falsification
than FC. This shows that having additional constraints in the opti-
mization problem is not always beneficial in terms of performance
of a falsification task.

We remark that we do not make a direct comparison with the
tool S-TaLiRo [3] as it would boil down to the comparison between
the optimization engines in Matlab and C++. Instead, we concen-
trate on showing the influence of additional constraints from the
reachability analysis on the performance of an optimization engine.

7

P
e
rs

o
n
a
l
C
o
p
yHSCC ’19, April 16–18, 2019, Montreal, QC, Canada S. Bogomolov et al.

(a) CE in Nav (7) (b) CE in Nav (9)

(c) CE in Osc. (2) (d) CE in F-Osc.(1)

Figure 2: (a) - (b): Counterexamples of length 9 and 8 for
Nav (7) and Nav (9) benchmark instances, respectively. (c): A
counterexample of the length 5 on Oscillator (2). (d): A coun-
terexample of the length 4 on Filtered Oscillator (1). The yel-
low box shows the set of initial states. The red box shows the
set of unsafe states. The gray region shows the flowpipe. The
blue curve shows the concrete counterexample.

The experiments provide evidence that the optimization engine
indeed benefits from extra constraints.

5 RELATED WORK
Our work is closely related to optimal control, RRTs and task plan-
ning.

Optimal control. Studies on falsification from the perspective of
optimal control can be broadly classified into single-shooting and
multiple-shooting approaches. A single-shooting approach searches
directly for a full counterexample, while a multiple-shooting search
for piecewise but possibly disjoint trajectory segments. In this
regard, the basis of our work can be seen as a direct multiple-
shooting approach [9] in the domain of hybrid systems. Recent
works in optimal control [23, 33] propose to combine simulations
and (heuristic-guided) graph search to identify the most promising
abstract counterexample. One common problem these approaches
have is that they usually provide a weak (if any) guarantee on find-
ing a counterexample due to the incompleteness of simulations
and the quality of the heuristic. Our work distinguishes from them
by enhancing the falsification process with symbolic reachability
analysis, which provides a guarantee on the finding of an abstract
counterexample.

RRTs. Rapidly-growing random tree (RRT) is a technique widely
used in robotics and motion planning [5, 24, 25, 32]. These methods
grow a tree-like structure to explore the continuous space until
a target state is reached. RRTs have variations depending on the
direction of the search (bi-directional RRTs [4, 22]) and whether
the search is heuristic-informed [19]. However, the steering of the
growth of RRTs in the hybrid scenario remains challenging as the
classical directional information becomes less useful because of the
presence of discrete transitions.

Task planning. Task planning targets at finding a feasible plan,
which is a sequence of actions, brings the system from the initial
state to a state which satisfies a set of goal constraints. Falsification
translates to task planning by viewing the constraints defining the
bad set as the goals. In recent years, the planning community has
made progress towards hybrid domains with both continuous and
discrete evolutions [17]. The cutting-edge hybrid domain planners
[13, 27, 28, 30] usually employ time discretization. Among them,
UPMurphi [27] and DiNo [28] also adopt a refinement loop by de-
tecting spurious system behaviors in a validation routine. Upon
identifying a spurious behavior, they re-run the planner with a
smaller granularity discretization, in which case their search space
easily blows up. We avoid this problem by taking advantage of gradi-
ent information and non-linear optimization routines. It would also
be interesting to investigate the feasibility of our idea in the plan-
ning domain considering recent works on the translation between
planning domains and hybrid system models [11, 12].

6 CONCLUSIONS
We propose a falsification technique for hybrid systems, combining
symbolic reachability analysis and non-linear trajectory optimiza-
tion using the splicing approach. In this way, we present the first
algorithm for a fully automated falsification process that scales to
large problem sizes. Our method is implemented in the XSpeed
software package [29] and will be made publicly available. The
experimental evaluation shows that our approach can produce
concrete counterexamples in an efficient and robust manner. We
remark that the principle of adding reachability constraints is also
applicable to nonlinear systems which we leave for future work.

ACKNOWLEDGMENTS
This work was partially supported by DST-SERB, GoI under Project
No. YSS/2014/000623, by the Air Force Office of Scientific Research
under award number FA2386-17-1-4065 and by the ARC project
DP140104219 (Robust AI Planning for Hybrid Systems). Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the United States Air Force.

REFERENCES
[1] Matthias Althoff, Olaf Stursberg, and Martin Buss. 2010. Computing reachable

sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear
analysis: hybrid systems 4, 2 (2010), 233–249.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. 1995. The algorithmic analysis of hybrid
systems. Theoretical Computer Science 138, 1 (1995), 3–34.

[3] Yashwanth Singh Rahul Annapureddy, Che Liu, Georgios E. Fainekos, and Sriram
Sankaranarayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification for

8

P
e
rs

o
n
a
l
C
o
p
yFalsification of Hybrid Systems using Symbolic Reachability and Trajectory Splicing HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Table 2: Result for the falsification setting. RA Time: the accumulative time for the reachability analysis for FC and WoFC. Opt.
Time: the accumulative time for the optimization calls for FC and WoFC. Fal. Time: the falsification time, which is the sum
of reachability analysis time and optimization time. #Att.: the number of abstract counterexamples explored to find the first
concrete counterexample; The results of the benchmarks marked (*) are obtained by using a time-step of 0.1 during flowpipe
computation.

Benchmark Dim. #Locs
FC Time (secs) WoFC Time (secs) #Att.

RA Opt. Fal. RA Opt. Fal. FC WoFC
Nav (1) 5 9 10.76 43.79 54.55 7.31 0.74 8.05 2 1
Nav (2) 5 25 25.67 67.00 92.67 - - - 2 -
Nav (3) 5 25 4488.46 32163.70 36652.20 - - - 231 -
Nav (4)* 5 225 5.67 247.53 253.20 5.56 203.48 209.04 5 5
Nav (5)* 5 225 217.17 5262.36 5479.53 60.39 1083.67 1144.06 45 11
Nav (6)* 5 400 7.91 205.13 213.04 24.55 1763.22 1787.77 3 15
Nav (7)* 5 400 64.20 1495.34 1559.54 - - - 12 -
Nav (8) 5 625 7.82 351.14 358.96 9.24 596.68 605.92 5 7
Nav (9) 5 625 91.77 1636.79 1728.56 94.53 1377.20 1471.73 11 9
Nav (10) 5 625 12.01 29.35 41.36 - - - 1 -
Nav (11) 5 625 16.41 127.32 143.73 - - - 1 -
Nav (12) 5 625 22.84 374.72 397.56 - - - 1 -

Platoon (1) 11 625 0.90 0.68 1.58 0.88 0.72 1.60 1 1
Platoon (2) 11 625 2.01 718.16 720.17 - - - 2 -

Oscillator (1) 3 4 2.74 0.95 3.69 - - - 1 -
Oscillator (2) 3 4 3.50 1.29 4.79 - - - 1 -
Oscillator (3) 3 4 2.63 1.00 3.63 - - - 1 -

Filtered Osc. (1) 11 4 12.77 1823.68 1836.45 - - - 4 -
Filtered Osc. (2) 11 4 12.89 673.77 686.66 - - - 2 -

Hybrid Systems. In Tools and algorithms for the construction and analysis of systems
(LNCS), Vol. 6605. Springer, 254–257. https://sites.google.com/a/asu.edu/s-taliro/.

[4] C. Wouter Bac, Tim Roorda, Roi Reshef, Sigal Berman, Jochen Hemming, and
Eldert J. van Henten. 2016. Analysis of a motion planning problem for sweet-
pepper harvesting in a dense obstacle environment. Biosystems Engineering 146
(2016), 85 – 97. Special Issue: Advances in Robotic Agriculture for Crops.

[5] Stanley Bak, Sergiy Bogomolov, Thomas A. Henzinger, and Aviral Kumar. 2017.
Challenges and Tool Implementation of Hybrid Rapidly-Exploring Random Trees.
In International Workshop on Numerical Software Verification. Springer.

[6] Stanley Bak and Parasara Sridhar Duggirala. 2017. Hylaa: A tool for computing
simulation-equivalent reachability for linear systems. In Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control. ACM,
173–178.

[7] I. Ben Makhlouf and S. Kowalewski. 2015. Networked Cooperative Platoon of
Vehicles for Testing Methods and Verification Tools. In Proc. of ARCH14-15. 1st
and 2nd International Workshop on Applied veRification for Continuous and Hybrid
Systems. 37–42.

[8] Dimitri P Bertsekas. 1999. Nonlinear programming. Athena scientific Belmont.
[9] H.G. Bock and K.J. Plitt. 1984. A Multiple Shooting Algorithm for Direct Solution

of Optimal Control Problems*. IFAC Proceedings Volumes 17, 2 (1984), 1603 – 1608.
9th IFAC World Congress: A Bridge Between Control Science and Technology,
Budapest, Hungary, 2-6 July 1984.

[10] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Frédéric Viry, Andreas Podelski,
and Christian Schilling. 2018. Reach set approximation through decomposition
with low-dimensional sets and high-dimensional matrices. In Proceedings of the
21st International Conference on Hybrid Systems: Computation and Control (part
of CPS Week). ACM, 41–50.

[11] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, and Martin Wehrle.
2015. PDDL+ Planning with Hybrid Automata: Foundations of Translating Must
Behavior.. In ICAPS. 42–46.

[12] Sergiy Bogomolov, Daniele Magazzeni, Andreas Podelski, and Martin Wehrle.
2014. Planning as Model Checking in Hybrid Domains.. In AAAI. 2228–2234.

[13] Amanda Jane Coles, Andrew I Coles, Maria Fox, and Derek Long. 2012. COLIN:
Planning with continuous linear numeric change. Journal of Artificial Intelligence
Research 44 (2012), 1–96.

[14] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon
Ernst, Zhenya Zhang, Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. 2018.

ARCH-COMP18 Category Report: Results on the Falsification Benchmarks. In
ARCH18. 5th International Workshop on Applied Verification of Continuous and
Hybrid Systems (EPiC Series in Computing), Goran Frehse and Matthias Althoff
(Eds.), Vol. 54. EasyChair, 104–109. FalStar : https://github.com/ERATOMMSD/.

[15] Alexandre Donzé. 2010. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In International Conference on Computer Aided Verification.
Springer, 167–170. Breach : https://github.com/decyphir/breach.

[16] Ansgar Fehnker and Franjo Ivancic. 2004. Benchmarks for Hybrid Systems Veri-
fication. In HSCC (Lecture Notes in Computer Science), Rajeev Alur and George J.
Pappas (Eds.), Vol. 2993. Springer, 326–341.

[17] Maria Fox and Derek Long. 2002. PDDL+: Modeling continuous time dependent
effects. In Proceedings of the 3rd International NASA Workshop on Planning and
Scheduling for Space, Vol. 4. 34.

[18] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
2011. SpaceEx: Scalable Verification of Hybrid Systems. In Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV) (LNCS), Shaz Qadeer
Ganesh Gopalakrishnan (Ed.). Springer. http://spaceex.imag.fr.

[19] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2014. In-
formed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2997–3004.

[20] Colas Le Guernic and Antoine Girard. 2009. Reachability Analysis of Hybrid
Systems Using Support Functions. In CAV (Lecture Notes in Computer Science),
Ahmed Bouajjani and Oded Maler (Eds.), Vol. 5643. Springer, 540–554.

[21] Steven G. Johnson. 2018. The NLopt nonlinear-optimization package. http:
//ab-initio.mit.edu/nlopt.

[22] James J. Kuffner and Steven M. LaValle. 2000. RRT-Connect: An Efficient Ap-
proach to Single-Query Path Planning. In ICRA.

[23] Jan Kuřátko and Stefan Ratschan. 2014. Combined global and local search for the
falsification of hybrid systems. In International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 146–160.

[24] Steven M LaValle. 1998. Rapidly-exploring random trees: A new tool for path
planning. (1998).

[25] Steven M LaValle and James J Kuffner Jr. 2001. Randomized kinodynamic planning.
The international journal of robotics research 20, 5 (2001), 378–400.

9

P
e
rs

o
n
a
l
C
o
p
yHSCC ’19, April 16–18, 2019, Montreal, QC, Canada S. Bogomolov et al.

[26] Colas Le Guernic and Antoine Girard. 2010. Reachability analysis of linear
systems using support functions. Nonlinear Analysis: Hybrid Systems 4, 2 (2010),
250–262.

[27] Giuseppe Della Penna, Daniele Magazzeni, Fabio Mercorio, and Benedetto Int-
rigila. 2009. UPMurphi: A Tool for Universal Planning on PDDL+ Problems. In
ICAPS.

[28] Wiktor Mateusz Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio. 2016. Heuristic Planning for PDDL+ Domains.

[29] Rajarshi Ray, Amit Gurung, Binayak Das, Ezio Bartocci, Sergiy Bogomolov, and
Radu Grosu. 2015. XSpeed: Accelerating Reachability Analysis on Multi-core
Processors. In Hardware and Software: Verification and Testing - 11th International
Haifa Verification Conference, HVC 2015, Proceedings (Lecture Notes in Computer
Science), Nir Piterman (Ed.), Vol. 9434. Springer, 3–18. http://xspeed.nitmeghalaya.
in.

[30] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramirez. 2016. Interval-
Based Relaxation for General Numeric Planning.. In ECAI. 655–663.

[31] Krister Svanberg. 1987. The method of moving asymptotes – a new method for
structural optimization. International journal for numerical methods in engineering
24, 2 (1987), 359–373.

[32] Gu Ye and Ron Alterovitz. 2017. Guided motion planning. In Robotics research.
Springer, 291–307.

[33] Aditya Zutshi, Jyotirmoy V Deshmukh, Sriram Sankaranarayanan, and James
Kapinski. 2014. Multiple shooting, cegar-based falsification for hybrid systems.
In Proceedings of the 14th International Conference on Embedded Software. ACM,
5.

[34] Aditya Zutshi, Sriram Sankaranarayanan, Jyotirmoy V. Deshmukh, and James
Kapinski. 2013. A trajectory splicing approach to concretizing counterexamples
for hybrid systems. In Proceedings of the 52nd IEEE Conference on Decision and
Control, CDC 2013, December 10-13, 2013. 3918–3925.

A APPENDIX
A.1 Derivatives of cost function terms
We provide the gradient of the terms in Eq. (20) with respect to xi
first. We denote zi =M(δi)(yi).

(1) distance between end-points:

∂
(∑N−1

j=0 dist(zj ,x j+1)
)

∂xi
=

[
∂ (dist(zi−1,xi))

∂xi

]
i>0
+
∂(dist (zi ,xi+1))

∂xi

=

[
∂(xi − zi−1)2
∂xi

]
i>0
+
∂(xi+1 − zi)2
∂xi

= 2
([(xi − zi−1)]i>0

−M(δi)(eAτi)(xi+1 − zi)
)

(27)

(2) point-polytope distance (Eq.(19)):

∂dp(p,P)
∂p

=

m∑
i=1

Wi max (0, (Wi · p) − bi) (28)

∂yi
∂xi
=
∂(eAτi xi + Φ(A,τi)u)

∂xi
= eAτi (29)

One can easily compute ∂dp(yi ,Ci)
∂xi

and ∂dp(yi ,G(δi))
∂xi

using Eq. (28),
(29) and the chain rule.

We now provide the gradient of the terms in Eq. (20) with respect
to τi .

(1) distance between end-points:

∂
(∑N−1

j=0 dist(zj ,x j+1)
)

∂τi
=
∂dist(zi ,xi+1)

∂τi

= 2(zi − xi+1) · ∂zi
∂τi

(30)

Now we compute ∂zi
∂τi

. For brevity, we use M , b to denote
the transformation matrix and bias vector ofM(δi).

∂zi
∂τi
=
∂M(δi)(yi)
∂τi

=
∂(Myi + b)
∂yi

· ∂yi
∂τi

= M · ∂yi
∂τi

(31)

∂yi
∂τi
=
∂(eAτi xi + Φ(A,τi)u)

∂τi

= AeAτi xi + e
Aτiu (32)

(2) point-polytope distance (Eq. 19):
One can easily compute ∂dp(yi ,Ci)

∂τi
and ∂dp(yi ,G(δi))

∂τi
using

Eq. (28), (32) and the chain rule.

10

