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S1. Implementation Details
S1.1. Network Architectures

To encode our UV positional map of resolution 32 × 32
into local features, we use a standard UNet [11] as illus-
trated in Fig. S1(a). It consists of five [Conv2d, Batch-
Norm, LeakyReLU(0.2)] blocks (red arrows), followed by
five [ReLU, ConvTranspose2d, BatchNorm] blocks (blue
arrows). The final layer does not apply BatchNorm.

To deform the local elements, we use an 8-layer MLP
with a skip connection from the input to the 4th layer as
in DeepSDF [9], see Fig. S1(b). From the 6th layer, the
network branches out three heads with the same architec-
ture that predicts residuals from the basis point locations,
normals and colors respectively. Batch normalization and
the SoftPlus nonlinearity with β = 1 are applied for all but
the last layer in the decoder. The color prediction branch
finishes with a Sigmoid activation to squeeze the predicted
RGB values between 0 and 1. The predicted normals are
normalized to unit length.

S1.2. Training and Inference

We train SCALE with the Adam [6] optimizer with a
learning rate of 3.0e− 4, a batch size of 16, for 800 epochs.
As the early stage of the training does not reliably provide
nearest neighbor points on the ground-truth, we add Ln and
Lc when Ld roughly plateaus after 250 epochs.

The residual, normal and color prediction modules are
trained jointly. To balance the loss terms, the weights are
set to λd = 2e4, λr = 2e3, λc = λn = 0 at the beginning of
the training, and λc = λn = 0.1 from the 200th epoch when
the point locations are roughly converged.

For the inference time comparison in the main paper
Tab. 1, we report the wall-clock time using a desktop work-
station with a Xeon CPU and Nvidia P5000 GPU.

S1.3. Data Processing

We normalize the bodies by removing the body transla-
tion and global orientation from the data. The motion se-
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Figure S1: A visualization of our network architectures. (a)
The UNet for our UV pose feature encoder. (b) The MLP
for patch deformations. The numbers denote the dimen-
sions of the network input or the layer outputs.

quences are randomly split into train (70%) and test (30%)
sets. For the clothing types in the main paper, the number of
train / test data samples is: blazerlong 1334 / 563; shortlong
3480 / 976; and skirt 5113 / 2022.

S1.4. Definition of the Local Coordinates

Here we elaborate on the local coordinate system used
in the main paper Eq. (5). As illustrated in Fig. S2, for
each body point tk, we find the triangle where tk sits on the
SMPL [7] body mesh. We take the first two edges ~ek1, ~ek2
of the triangle, as well as the normal vector of the triangle
plane ~ek3 = ~ek1 ×~ek2, as three axes of the local coordinate
frame. Note that ~ek1, ~ek2, ~ek3 are unit-length column vec-
tors. The transformation associated with tk is then defined



as: Tk = [~ek1, ~ek2, ~ek3]. The residual predictions rk from
the network are relative to the local coordinate system, and
are transformed by Tk to the world coordinate according to
the main paper Eq. (5).

Figure S2: An illustration of the local coordinate system
defined on a body point tk. We take the triangle where it
locates on the SMPL body mesh (in grey), and build the
local coordinate frame using the edges and surface normal
of the triangle.

S1.5. Adaptive Upsampling

During inference, SCALE allows us to sample arbitrar-
ily dense points to obtain high-resolution point sets. As
the UV positional map provided by the SMPL model [7]
has a higher density around the head region and lower den-
sity around the legs, we mitigate the problem of unbalanced
point density by resampling points proportional to the area
of each local element. Note that we approximate the area
of patches by summing the areas of triangulated local grid
points. See Sec. S2.2 for qualitative results of the adaptive
sampling.

S1.6. Neural Rendering

Elaborating on the neural rendering of SCALE as shown
in the main paper Sec. 4.5, we use the SMPLpix [10] model
for neural rendering. It takes as input an RGB-D projection
of the colored point set generated by SCALE, and outputs a
hole-filled, realistic, image of the predicted clothed human.

RGB-D projections. Given the colored point set, X+ =
[X,Xc] ∈ RKM×6, where Xc ∈ RKM×3 are the RGB
values of the points X, we perform 2D projections using a
pre-defined set of camera parameters (K,R, t). The result
is a set of RGB-D images, Ix ∈ RW×H×4. In the case
where two points are projected to the same pixel, we take
the value of the point that has smaller depth. These images
are the inputs to the SMPLpix model.

Data and Training. We train SMPLpix using the same
data and train / test split as what we use to train SCALE.
Each (input, output) image pair for SMPLpix is acquired by
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Figure S3: Pipeline of neural rendering with SMPLpix [10].

performing the above-mentioned RGB-D projections to the
SCALE predicted point set and the ground truth point set
(of a higher density), respectively.

Note that the distorted fingers or toes in some of our re-
sults stem from the artifacts present in the ground truth point
clouds. Similarly, the holes in the ground truth scan data
lead to occasional black color predictions on these regions.
In addition, as the synthetic skirt data does not have ground
truth texture, we use the point normals as the RGB values
for the visualization and neural rendering.

The SMPLpix network is trained with the Adam opti-
mizer [6] with a learning rate of 1e − 4, batch size 10, for
200 epochs, using the perceptual VGG-loss [4].

Discussion. The neural point-based rendering circumvents
the meshing step in traditional graphics pipelines. Our SM-
PLpix implementation takes on average 42ms to generate a
512 × 512 image without any hardware-specific optimiza-
tion. Recall that SCALE takes less than 9ms to generate
a set of 13K points, our SCALE+SMPLpix pipeline re-
mains highly efficient, and shows promise for future work
on image-based clothed human synthesis with intuitive pose
control. Animations of the neural rendered SCALE results
are provided in the supplemental video1.

S2. Additional Discussions

S2.1. Tradeoff between Patches and Subsamples

Experiments in the main paper use K = 798 surface
elements (which corresponds to a 32 × 32 UV positional
map) andM = 16 points per element. In practice, these two
numbers can be chosen per the specifications of the task.

Here we discuss a degenerated case of our general for-
mulation: K = 798× 16, M = 1. That is, we use a much
higher number (12,768) of surface elements (corresponding
to a 128× 128 UV map), and sample only one example per
element, whereby the number of output points remains the
same. Such a setting is equivalent to the traditional mesh
vertex offset representation, where each body vertex corre-
sponds to a point on the clothing surface.

1Available at https://qianlim.github.io/SCALE.



We experiment with this setting (denoted as “Vert-
Offset”) and compare it to our method using surface ele-
ments in Tab. S1. The number of the network parameters is
kept the same for fair comparison.

The results reveal the advantage of our surface elements
formulation: high fidelity and efficiency. Compared to the
Vert-Offset representation, our method has 1/4 FLOPS and
lower GPU consumption in the UNet due to the 1/4-sized
UV map input. Nevertheless, it achieves overall comparable
normal error and consistently lower Chamfer error.

Table S1: Comparison between our surface element for-
mulation and vertex offset formulation. Chamfer-L2 ×
10−4m2, normal diff ×10−1.

Vert-Offset Ours

Chamfer-L2

blazerlong 1.13 1.07
shortlong 0.91 0.89
skirt 2.78 2.69

Normal diff
blazerlong 1.20 1.22
shortlong 1.09 1.12
skirt 0.97 0.94

S2.2. Effect of Adaptive Upsampling

Fig. S4 shows the effect of adaptive patch sampling at
test time. Due to the unbalanced point density in the SMPL
UV map, the SCALE output will have sparser points on the
leg region if the same number of points are sampled for ev-
ery surface element. Such sparse points can be insufficient
to represent the complex garment geometry in these regions,
e.g. in the case of skirts. Consequently, when applying Pois-
son Surface Reconstruction [5] to them, the reconstructed
mesh will have missing geometry and ghosting artifacts, as
demonstrated in the second column of Fig. S4. Adaptive
patch upsampling adds more points to the bigger patches.
With more points sampled on the skirt surface, the mesh
reconstruction quality is improved.

The figure also shows a limitation of our model: once the
model is trained, the test-time adaptive upsampling can only
increase the point density within each patch, while the gap
between patches cannot be shrunk. As discussed in the main
paper, a potential solution is to more explicitly model the
connectivity between the patches by incorporating a learn-
able triangulation. We leave this as future work.

S2.3. Extended Result Analysis

Error analysis on the patch periphery. From our quali-
tative results (main paper Figs. 3-5), the patches can suffi-
ciently deform to represent fine structures such as fingers.
Here, we perform additional numerical analysis by calcu-
lating the mean single-directional Chamfer error (from the
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Figure S4: Qualitative effects of the adaptive patch subsam-
pling.

Figure S5: An illustration of the correspondence between
the body points and the patches. Each black line connects a
body basis point and the center of its corresponding patch.

predicted points to the ground truth points) of the patches’
peripheral points and inner points respectively. We observe
a slightly larger Chamfer error (4%) from the peripheral
points than the patch center points. The low relative differ-
ence between the two is in line with the qualitative results,
yet shows space for improvement in future work.

Clothing-body correspondence. Fig. S5 illustrates the cor-
respondence between the patches on the clothed body sur-
face and the basis points from the underlying body.

S2.4. Additional Evaluations

CAPE data. In the main paper, we highlight the charac-
teristics of our model on the two prototypical outfit types



(blazerlong and shortlong) from the CAPE dataset. Here
we show the results on the rest of the CAPE dataset, which
comprises mostly tight-fitting clothes such as short / long T-
shirts, dress shirts, and short / long trousers. For each outfit,
30% of the sequences are selected for testing and the rest
are for training.

As shown in Tab. S2, our model again outperforms both
baselines in the Chamfer error by a large margin, and is
comparable with the CAPE model in terms of normal accu-
racy. Note that on several sequences NASA predicts bodies
with missing limbs, hence the high Chamfer error. Qual-
itative results in Fig. S6 are also in accordance with the
main paper experiments. Results from the CAPE model [8]
in general lack realistic pose-dependent clothing deforma-
tion. NASA [1] can predict detailed clothing structure with
notable influences of the body pose, but often suffer from
discontinuities between different body parts. SCALE pro-
duces clothing shapes that naturally move with varied poses,
showing a coherent global shape and detailed local struc-
tures such as wrinkles and edges.

Table S2: Reconstruction error on the entire CAPE dataset.
Chamfer-L2 × 10−4m2, normal diff ×10−1.

CAPE [8] NASA [1] Ours

Chamfer-L2 1.28 4.08 0.93
Normal diff 1.16 1.24 1.18

Long dress. In addition to the mid-length skirt in the main
paper, we also experiment with a more challenging long
dress. Similar to the skirt, the long dress data are created
with physics-based simulation. Since the dress deviates
from the body topology and contains thin cloth structures,
both baselines, CAPE and NASA, are unable to process it.
Here we compare with methods that use a global feature
code with the same setting as in the main paper Sec. 4.3.

As shown in Tab. S3 and Fig. S7, for either using a
large global surface element (as in AtlasNet [3] and 3D-
CODED [2], the first two columns in Tab. S3) or numerous
local surface elements (as in PCN [12], the last two columns
in Tab. S3), decoding the shape from a global shape code in
general fails to reconstruct the clothing geometry faithfully,
resulting in high numerical errors. In contrast, SCALE is
able to represent the wrinkles and folds on the dress while
producing a smooth shape for the upper body, validating
our key design choices, i.e. local feature codes and explicit
articulation modeling.

S2.5. Animated Results

Please refer to the supplemental video at https://

qianlim.github.io/SCALE for more qualitative com-
parisons against CAPE and NASA, as well as animated re-
sults produced by SCALE.
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Figure S6: Extended qualitative results on the CAPE dataset.

Table S3: Comparison between our method with methods that use a global feature code on the long dress data. “+Arti.”
denotes applying articulation. Chamfer-L2 × 10−4m2, normal diff ×10−1.

Global z+ Global z+ Global z+ Pose params+ SCALE
AtlasNet [3] AtlasNet [3]+Arti. PCN [12]+Arti. PCN [12]+Arti. (Ours)

Chamfer-L2 16.03 10.47 8.88 8.69 8.41
Normal diff 3.00 1.62 1.70 1.70 1.32

SCALE, SCALE,
Patch-colored Normal-colored

Global z + Global z + Global z + Pose params +
AtlasNet [3] AtlasNet [3]+Arti. PCN [12]+Arti. PCN [12]+Arti.

Figure S7: Qualitative results on the long dress data. “+Arti.” denotes applying articulation.


