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Infinite Kernel Learning

Peter Vincent Gehler and Sebastian Nowozin

Abstract. In this paper we consider the problem of automatically learning the kernel from general kernel
classes. Specifically we build upon the Multiple Kernel Learning (MKL) framework and in particular on the work
of (Argyriou, Hauser, Micchelli, & Pontil, 2006). We will formulate a Semi-Infinite Program (SIP) to solve the
problem and devise a new algorithm to solve it (Infinite Kernel Learning, IKL). The IKL algorithm is applicable
to both the finite and infinite case and we find it to be faster and more stable than SimpleMKL (Rakotomamonjy,
Bach, Canu, & Grandvalet, 2007) for cases of many kernels. In the second part we present the first large scale
comparison of SVMs to MKL on a variety of benchmark datasets, also comparing IKL. The results show two
things: a) for many datasets there is no benefit in linearly combining kernels with MKL/IKL instead of the SVM
classifier, thus the flexibility of using more than one kernel seems to be of no use, b) on some datasets IKL yields
impressive increases in accuracy over SVM/MKL due to the possibility of using a largely increased kernel set. In
those cases, IKL remains practical, whereas both cross-validation or standard MKL is infeasible.

1 Introduction
In this work we consider the task of binary classification with a Support Vector Machine (SVM). Assume a set of
training points S = {(x1, y1), (x2, y2) . . . , (xn, yn)} is given, with samples xi ∈ X and labels yi ∈ {−1,+1}. A
classification function f : X → {−1,+1} is sought which yields small generalization error. The SVM algorithm
searches for an hyperplane in a feature space defined by some mapping φ : X → H via minimization of the
following objective (w∗, b∗) = arg minw∈H,b∈R

1
2‖w‖H +C

∑n
i=1 L(yi, 〈w, φ(xi)〉H + b). Here L denotes some

loss function, i.e. the hinge loss L(x, t) = max(0, 1 − xt). In the remainder of the paper we will use the so-
called kernel trick and replace all dot products 〈·, ·〉H with a kernel function k : X × X → R. The representer
theorem (Kimeldorf & Wahba, 1971; Schölkopf, Herbrich, & Smola, 2001) guarantees that an optimal solution of
the above minimization problem admits a representation of the form f(x) =

∑n
i=1 yiαik(x, xi) + b as expansion

around the training samples xi.
There are two ingredients which have to be specified prior to SVM training: the feature spaceH and the strength

of regularization. The function class (hyperplanes in H) is determined by means of the kernel function k, where
we will use the notation k(·, ·; θ) to express its dependency on some kernel parameters θ. We will think of θ as
specifying the type of kernel and its corresponding parameters, i.e. Gaussian and the bandwidth or polynomial
and the degree. The regularization is controlled by a constant, denoted by C ∈ R+, which controls the trade off
between smoothness of the prediction function and the ability to explain the training data correctly.

The ideal measure to select these parameters is the generalization error and C and θ should be set such that the
generalization error is minimized. Since one does not have access to this measure, upper bounds as the Span-Bound
or Radius Margin bound have been proposed to approximate it, see (Chapelle, Vapnik, Bousquet, & Mukherjee,
2002) for an application to SVM learning. Arguably the most prominent estimator is cross-validation (CV) which
has the shortcoming of being computationally expensive, especially in the case of many adjustable kernel parame-
ters.

The approach of Multiple Kernel Learning (MKL) (Lanckriet, Cristianini, Bartlett, Ghaoui, & Jordan, 2004;
Bach, Lanckriet, & Jordan, 2004; Sonnenburg, Rätsch, Schäfer, & Schölkopf, 2006) follows a different route
to select a set of kernel parameters. Here only the parameter C and a set of M so-called base- or proposal-
kernels k(·, ·; θm) have to be specified. Within this framework the final kernel is a mixture of the proposal kernels
k(x, x′; θ) =

∑M
m=1 dmk(x, x′; θm). In (Lanckriet et al., 2004) no conditions on the kernel parameters are im-

posed but instead the final matrix is required to be positive definite. This turns the problem into a semi-definite
program (SDP) for which the best known algorithms scale in the order O(n6). One can impose a simplex con-
straint on the mixing coefficients, turning the final kernel into a convex combination of the proposal kernels. This
constraint is also used in this work. The mixing parameters dm are found simultaneously with the SVM parameters
w and b during the minimization of the SVM objective, while the parameters θm are kept fixed at all times. Al-
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though the new objective function contains product-terms between variables, it is still possible to state the problem
as jointly-convex optimization problem (Zien & Ong, 2007; Sonnenburg et al., 2006).

As shown in (Argyriou et al., 2006), keeping the number M of base kernels fixed is an unnecessary restriction
and one can instead search over a possibly infinite set of base-kernels, e.g. all Gaussian kernels with separate
bandwidths σd ∈ [σmin, σmax] for each input dimension d. We will show experimentally that this flexibility of the
kernel class can translates into significant improvements in terms of accuracy.

The approach of combining multiple kernels offers the flexibility of combining several heterogeneous data
sources in a single framework. It has been applied with much success to the task of object classification (Bosch,
Zisserman, & Munoz, 2007) which aims to separate images of different categories of objects like chairs, cars,
flowers and trees. For each image a variety of different feature descriptors is available characterizing different
aspects of the image, like color or texture. The different descriptors vary in discriminability for different categories
an orange for example might better be described by color features, while a car is better represented by shape infor-
mation. Using MKL by far the best results have been obtained on the Caltech benchmark datasets (Fei-Fei, Fergus,
& Perona, 2004; Griffin, Holub, & Perona, 2007) as of now (Bosch et al., 2007). In (Sonnenburg et al., 2006) it
is argued that MKL is more interpretable than the ordinary SVM, since it is possible to inspect the selected kernels
after training which can reveal properties of the dataset.

This paper is organized as follows. In the next section we will present the proposed approach as the limit of
MKL. Section 3 will discuss the most important ingredient of this approach and relate to other work. In Section 4
we present the experiments comparing our approach to existing ones. We conclude with a discussion in Section 5.

2 Infinite Kernel Learning

We adopt the formulation of the primal objective function for MKL from (Zien & Ong, 2007), using the convention
1
0 := 0. Throughout the paper we will use the notation Θf to denote finite sets and Θ for sets of arbitrary
cardinality.

min
d,v,ξ,b

1
2

∑
θ∈Θf

1
dθ
‖vθ‖2 + C

n∑
i=1

ξi (1)

subject to yi

∑
θ∈Θf

〈vθ, φθ(xi)〉+ b

 ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n∑
θ∈Θf

dθ = 1, dθ ≥ 0.

This primal formulation uses the technique of substituting vθ := dθwθ so that the resulting problem becomes
convex in both dθ and vθ. Without this substitution the problem would be in a more intuitive form but non-convex
due to product terms between both variables.

In (Argyriou et al., 2006) it was noted that the set of base kernels needs not to be of finite size but can be an
infinite set of kernels. We build upon this insight and adopt it using the standard MKL objective (1). The kernel
is optimized over the entire set of kernels parametrized by Θ, namely the convex hull of {k(·, ·; θ); θ ∈ Θ}. Since
this can in principle also be an uncountable infinite set we name our approach Infinite Kernel Learning (IKL). The
objective we are interested in is the best possible finite MKL solution,

inf
Θf⊂Θ

min
d,v,ξ,b

1
2

∑
θ∈Θf

1
dθ
‖vθ‖2 + C

n∑
i=1

ξi (2)

subject to yi

∑
θ∈Θf

〈vθ, φθ(xi)〉+ b

 ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n∑
θ∈Θf

dθ = 1, dθ ≥ 0.
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The inner minimization problem is the standard finite MKL problem, which is convex. To derive its dual problem
we write its Lagrangian

L(d, v, b, ξ, δ, α, λ) =
1
2

∑
θ∈Θf

1
dθ
‖vθ‖2 + C

n∑
i=1

ξi + λ

∑
θ∈Θf

dθ − 1

− ∑
θ∈Θf

δθdθ

−
n∑
i=1

αi

yi
∑
θ∈Θf

〈vθ, φθ(xi)〉+ b

+ ξi − 1

− n∑
i=1

ηiξi,

and take the derivatives w.r.t. to the primal variables

∂L
∂dθ

= − 1
2d2θ
‖vθ‖2 + λ− δθ ,

∂L
∂vθ

=
1
dθ
vθ −

n∑
i=1

αiyiφθ(xi)

∂L
∂b = −

∑n
i=1 αiyi ,

∂L
∂ξi

= C − αi − ηi.

Resubstituting and imposing non-negativity on the Lagrange multipliers corresponding to inequalities, we arrive
at the dual problem with the simple form

(IKL-Dual-1) sup
Θf⊂Θ

max
α,λ

n∑
i=1

αi − λ (3)

subject to α ∈ Rn, λ ∈ R
0 ≤ αi ≤ C, i = 1, . . . , n
T (θ;α) ≤ λ, ∀θ ∈ Θf

where we defined

T (θ;α) =
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj ; θ). (4)

We note that if some point (α∗, λ∗) satisfies the last condition of the program (IKL-Dual-1) for all θ ∈ Θ then
it also satisfies the condition for all finite subsets Θf thereof. Thus we omit the supremum of (IKL-Dual-1) and
extend the program to the following semi-infinite program (SIP)

(IKL-Dual) max
α,λ

n∑
i=1

αi − λ (5)

subject to α ∈ Rn, λ ∈ R
0 ≤ αi ≤ C, i = 1, . . . , n
T (θ;α) ≤ λ, ∀θ ∈ Θ.

To show equivalence between both programs it remains to prove that all optimal points of (IKL-Dual) are also
optimal for (IKL-Dual-1), in other words that one can construct a finite set Θf for the solution of (IKL-Dual)
which is also be optimal for (IKL-Dual-1). This is the statement of the following theorem.
Theorem 2.1. [(Hettich & Kortanek, 1993)] If for all θ ∈ Θ and for all α ∈ [0, C]n we have T (θ;α) <∞, then
there exists a finite set Θf ⊂ Θ for which the optimum of (IKL-Dual-1) is taken and the values of (IKL-Dual-1)
and (IKL-Dual) are the same.

Proof. This result is a direct application of Theorem 4.2 in (Hettich & Kortanek, 1993).

In particular the previous theorem states that there exists an optimal solution of (IKL-Dual) with only a finite
number of nonzero dθ. The final classification function is again of the form

f(x) = sign

 n∑
i=1

yiαi
∑
θ∈Θf

dθk(x, xi; θ) + b

 . (6)
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2.1 Constraint Generation for IKL
The dual form (5) of the problem suggests a delayed constraint generation approach to solve it. The set of kernel
parameters now defines the set of constraints and in the remainder we will use both terms to refer to Θ. Starting
with a finite constraint set Θ0 ⊂ Θ ones reiterates between the restricted master problem, that is the search for
optimal α, λ and the subproblem, a search for violated constraints indexed by θ. The violated constraints are
subsequently included in Θt ⊂ Θt+1 ⊂ Θ. The final algorithm for IKL is summarized in Algorithm 1.

Algorithm 1 Infinite Kernel Learning
Input: Regularization constant C, Kernel parameter set Θ, Training set S = {(x1, y1), . . . , (xn, yn)}
Output: Parameters α, b, dθ

1: Select any θv ∈ Θ and set Θ0 = {θv}
2: t← 0
3: loop
4: (α, b, dθ, λ)←MKL solution with Θt {Solve restricted master problem}
5: θv ← arg maxθ∈Θ T (θ;α) {Solve subproblem}
6: if T (θv;α) ≤ λ then
7: break
8: end if
9: Θt+1 = Θt ∪ {θv}

10: t← t+ 1
11: end loop

The restricted master problem in line 4 can be solved using any MKL algorithm like plain gradient descent on
the objective function as proposed by (Chapelle et al., 2002; Rakotomamonjy et al., 2007) or the semi infinite
linear program (SILP) formulation of (Sonnenburg et al., 2006). Since the parameter λ is the Lagrange multiplier
of the equality constraint

∑
θ∈Θt

dθ = 1 it comes as a byproduct of the MKL algorithm.
Efficiently finding violated constraints is essential to the approach. We now state the subproblem explicitly and

postpone the detailed discussion of its structure and ways to solve it to Section 3.

Problem 1 (Subproblem). Given the parameters 0 ≤ αi ≤ C and training points {(x1, y1), . . . , (xn, yn)}, solve

θv = arg max
θ∈Θ

T (θ;α) = arg max
θ∈Θ

1
2

n∑
i,j=1

αiαjyiyjk(xi, xj ; θ). (7)

We can make the following statement, on the convergence of Algorithm 1 which depends on whether the sub-
problem can be solved.

Theorem 2.2. [(Hettich & Kortanek, 1993, Theorem 7.2)] If the subproblem can be solved, Algorithm 1 either
stops after a finite number of iterations or has at least one point of accumulation and each one of these points solve
(IKL-Dual).

Proof. Application of (Hettich & Kortanek, 1993, Theorem 7.2). Sketch: compactness (of the admissible set for
α) ensures existence of accumulation points. Continuity of the objective and the constraints ensure that these solve
(IKL-Dual).

We want to point out that although Theorem 2.1 guarantees the existence of a finite subset of constraints Θf

which is sufficient to represent all possible constraints Θ, there is no guarantee that Algorithm 1 will identify this
set. But if the algorithm terminates after a finite number of steps (and the subproblem can be solved) it reached
global optimality. Each strictly violated constraint with θv ∈ Θ corresponds to a primal descend direction of the
Lagrangian in dθv . Therefore, if θv is added to the finite set of kernels, the objective function will decrease. To
ensure global optimality one therefore needs to ensure that no further descend direction exists which is equivalent
to be able to solve the subproblem. All intermediate solutions of the algorithm are primal feasible.

From this viewpoint MKL corresponds to preselecting a set of constraints for the problem and solving the master
problem once with this set. The selection task, in other words the solution of Problem 1 is left entirely to the user
and the efficiency of MKL depends on how well the user samples from the set of constraints. Importantly any MKL
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solution is a subset of IKL, since the set of kernels the user would have chosen can be visited in the subproblem.
In IKL the kernel selection criterion is made explicit and optimized over in the subproblem.

2.2 IKL algorithm for finite kernel sets

It is straightforward to see that the IKL algorithm is also applicable to solve the standard MKL problem. In this
case at each iteration the subproblem has to be evaluated for each possible kernel choice. Those which violate the
constraint T (θ;α) ≤ λ are subsequently included in the same manner as it was done for the IKL algorithm. In
contrast to solving the MKL problem once using all kernels, for the IKL algorithm not all kernels have to be stored
in memory. Furthermore it might be advantageous in terms of speed and stability to optimize the mixing coeffi-
cients dθ on only a small subset of all possible kernel parameters. In the course of the experiments we found that
some runs were only tractable using the IKL algorithm in the described way instead of using SimpleMKL (Rako-
tomamonjy et al., 2007) with all kernels at once. For all experiments we use our own implementation with
Coin-IpOpt-3.3.5 (Wächter & Biegler, 2006) and libSVM (Chang & Lin, 2001)).

2.3 Related work

As already mentioned to our knowledge (Argyriou et al., 2006) were the first to note the possibility of an infinite
set of base kernels and they also stated the subproblem (Problem 1). We will defer the discussion of the subproblem
to the next section and shortly comment on the differences of the Algorithm of (Argyriou et al., 2006) and the IKL
Algorithm. We denote with g the objective value of a standard SVM classifier with loss function L

g(α,K) =
1
2
αTKα+

n∑
i=1

L

yi, n∑
j=1

αjk(xi, xj)

 . (8)

To simplify the notation we also denote with T (K;α) the value of the subproblem for the kernel matrixK and with
K(θ) the kernel matrix for k(·, ·; θ). The algorithm as used in (Argyriou et al., 2006) is summarized in Algorithm
2. At each iteration t it stores the current estimate of the optimal kernel matrix K̂t. The subproblem is solved to
search for a new Gram matrix for which the objective will decrease (note that for the special case of only one Gram
matrix at the IKL solution it holds T (K;α) = λ). Subsequently the estimate K̂t+1 is computed using a line search
between the newly found matrix and the current estimate K̂t. This update step effectively rescales all previously
found parameters jointly (Zhang, 2003). In (Argyriou et al., 2006) the line search is implemented using Newtons
method which in turn needs a differentiable Loss function like the quadratic loss. Another prominent choice, the
hinge loss is not differentiable and therefore one would have to resort to other minimization techniques to solve
for the new combination (e.g. any MKL algorithm).

In contrast our algorithm is totally-corrective and iteratively spans a subspace. This means that at each iteration
the optimum w.r.t. the entire subspace is found and in particular that each dθ is updated individually. This allows
for multiple pricing, i.e. adding more than one constraints at each iteration of the algorithm.

3 The Subproblem of Infinite Kernel Learning

We now turn our attention to the subproblem of the IKL algorithm. With T (θ;α) we have an analytic score
which guides the selection of kernels. Furthermore we have already seen that being able to solve it is a sufficient
condition for global optimality of the solution. The function T consists of two parts. On the one hand there is the
outer product of the labels yyT which we will refer to as the label matrix. On the other hand the α re-weighted
kernel matrix ααT ∗ Kθ, where the product ∗ denotes the elementwise multiplication. If we use the following
inner product between matrices 〈K1,K2〉F =

∑n
i,j=1K1(xi, xj)K2(xi, xj) we can recognize the subproblem as

an alignment problem between matrices, namely as the maximization of 1
2 〈yyT , ααT ∗ Kθ〉F . There is a high

alignment if the α reweighted kernel matrix is of a similar structure as the label matrix. The reweighting ensures
that the alignment is only measured for support vectors (all non-support vectors have αi = 0) which is reasonable
since those are the ones the final classification function is built with.

3.1 Relation to Kernel Target Alignment

Maximizing the alignment between the kernel matrix and the label matrix has been proposed before, usually as a
preprocessing step for kernel machines. In (Cristianini, Shawe-Taylor, Elisseeff, & Kandola, 2002) a normalized
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Algorithm 2 Algorithm of Argyriou et.al.
Input: Regularization constant C, Kernel parameter set Θ, Training set S = {(x1, y1), . . . , (xn, yn)}
Output: Parameters α, b, dθ

1: Select any θv ∈ Θ and set Θ0 = {θv}
2: t← 0
3: K̂0 ← K(θv)
4: (α, b)← SVM solution with K̂0

5: loop
6: θv ← arg maxθ∈Θ T (θ;α) {Solve subproblem}
7: if T (θv;α) ≤ T (K̂t;α) then
8: break
9: end if

10: Solve (α, γv)← arg maxα,γ g(α, γK(θv) + (1− γ)K̂t)
11: K̂t+1 ← γvK(θv) + (1− γv)K̂t

12: t← t+ 1
13: end loop

version of the above alignment was introduced as Kernel Target Alignment (KTA). In our notation it reads

(KTA) AKTA(Kθ,yyT ) =
〈Kθ,yyT 〉F

m
√
〈Kθ,Kθ〉F

. (9)

In (Cristianini et al., 2002) a concentration inequality for this sample-based alignment is presented stating that it
is not too dependent on the training set S. Furthermore it is possible to upper bound the generalization error of a
Parzen window classifier in terms of KTA. It is concluded that for high KTA one may expect good generalizations
and some empirical evidence for this is presented.

Other work on kernel alignments include (Baram, 2005) where Kernel Polarization (KP) is proposed which
simply omits the normalization term of KTA and thus obtains AKP(S,Kθ,yyT ) = m−2〈Kθ,yyT 〉F . This is
equivalent to the subproblem for constant α = 1/m.

An unnormalized version of the alignment was also used in (Crammer, Keshet, & Singer, 2002) to adapt a
kernel matrix by explicitly maximizing the alignment in a boosting scheme. The kernels are chosen using the inner
product as above, the αiαj terms turn into a weight corresponding to the difficulty predicting whether the points xi
and xj have the same label or not. They restrict the kernel set to outer products and show that solving the weighted
alignment turns into a generalized eigenvector problem. It should be possible to adapt this class of kernels for the
IKL algorithm.

3.2 Solving the Subproblem

In general, the IKL algorithm is suited for any class of parameterized kernels. The only ingredient is the ability to
solve the subproblem 1. The global optimum is only achieved if all violating constraints are identified.

We give up on global optimality for the benefit of being able to use a large class of kernels. Only kernel functions
which are differentiable w.r.t. θ are considered. We use the interior point method of (Wächter & Biegler, 2006) to
search for local maxima of T (·;α). The search is initialized in various points of the parameter space, including all
previously found constraints as well. This worked very well in practice and is used for all the experiments reported
in Section 4.

The authors of (Argyriou et al., 2006) proposed the following variant to solve the subproblem for the special
case of Gaussian kernels. They note that the subproblem decomposes naturally into a DC problem, that is it can
be written as the sum of a convex and a concave function (Horst & Thoai, 1999). Although all C2-functions can
be decomposed into a DC program finding such a decomposition is in general not trivial. The subproblem can be
decomposed into

T (θ;α) =
1
2

∑
yi=yj

αiαjk(xi, xj ; θ)−
∑
yi 6=yj

αiαjk(xi, xj ; θ)

 . (10)
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For the case of kernels in the form exp(−t) minimizing this equation corresponds to a minimization of sums of
exponentials. In (Argyriou et al., 2006) a cutting plane algorithm is devised to solve this problem. This algorithm
finds the optimal solution to the subproblem but is only applicable for the case of few parameters and results are
only reported for up to two parameters.

Of course all kinds of optimization techniques can be used to solve for (local) optima of T (·;α), examples are
homotopy method like the continuation approach (Rose, 1998). As a remark we want to note that for Lipschitz-
continuous kernels, those which satisfy |k(x, y; θ1)− k(x, y; θ2)| ≤ L|θ1 − θ2| for some constant L > 0, one can
resort to Lipschitz optimization methods (Horst & Tuy, 1996). This would guarantee global optimality but current
methods can deal with only up to 20 variables which in our case correspond to kernel parameters.

An interesting case are kernels which are non-differentiable w.r.t. their parameters or where parameters come
from a combinatorial set. For such cases efficient enumeration techniques have to be invented.

4 Experiments
In this section we will present experimental results on a number of benchmark datasets. Before we do so we
explain the experimental setup and present an toy example which illustrates the IKL algorithm.

4.1 Algorithmic settings
In practice we make several modifications to Algorithm 1. At each iteration the subproblem returns a set of
violating constraints to speed up convergence (we used up to 5 in the experiments). Coefficients dθ which became
zero are pruned out to keep the restricted master problem simpler. To speed up the master and subproblem calls
they are warm-started at the previously found solutions. We monitor the change of the objective function and
stop the algorithm once the improvement falls below a certain threshold. In the experiments we stopped whenever
the decrease is lower than 0.01% of the current objective function value. The implementation is a combination
of the interior point solver Coin-IpOpt-3.3.5 (Wächter & Biegler, 2006) and libSVM (Chang & Lin, 2001). The
Coin-IpOpt solver is used for both the restricted master problem (standard MKL solution) and as the solver for the
subproblem. The MKL program we implemented is SimpleMKL (Rakotomamonjy et al., 2007).

For all runs with a finite number of kernels we either used SimpleMKL or the IKL algorithm since they achieve
the same solution. The latter has proven to be faster in the case of many proposal-kernels and high values of the
regularization constant C. A detailed comparison of the different solvers in terms of efficiency is subject to future
work.

4.2 Considered Kernel Classes
For the experiments we use three different kernel classes which are variants of the well known Gaussian kernel.
The first class, in following denoted by (single) is the simple Gaussian kernel with isotropic covariance matrix

k(x, x′; θ) = exp

(
−θ2

D∑
d=1

([x]d − [x′]d)2

)
, (11)

where [x]d denotes the d’th element of the vector x. The second kernel class (separate) consists of (single) plus
all those of the form

k(x, x′; θd) = exp
(
−θ2

d([x]d − [x′]d)2
)
. (12)

This kernel measures the distance of two data points x, x′ only along the d’th dimension. The final and most
general kernel class (products) are all Gaussian kernels with an individual parameter θd for each dimension d,

k(x, x′; θ) = exp

(
−

D∑
d=1

θ2
d([x]d − [x′]d)2

)
. (13)

It is only with the last kernel that all possible subsets of dimensions can be modelled jointly. Note that this class is
too rich to use cross-validation. Just for testing two different choices in each dimension one would need to check
2D different parameters.

Many other interesting kernels can be considered. We just mention the scaled polynomial k(x, y; {γd}, p) =
(1 +

∑
d(x(d)y(d))/γ2

d)p or more general a kernel with rescaling of the input variables k(x, y; θ) = k(θTx, θT y),
see also (Chapelle et al., 2002).
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Figure 1: Chessboard Toy example, (a) distribution of training data in the first two dimensions, (b) IKL subproblem in the first
iteration for the two signal dimensions, (c) as (b) for one signal θ1 and one noise θ3 dimension.

4.3 Illustrative Toy example

To illustrate the subproblem in conjunction with the product kernels of the previous sections we constructed the
following toy example. A total of 300 training points are sampled from a checkerboard pattern as shown in Figure
1(a). Eighteen noise dimensions are added to form a 20 dimensional feature vector. The data is normalized
to zero mean and unit variance. Intuitively the best possible kernel would be of the class (products), setting
θ2
d = 0, d = 3, . . . , 20 and choosing θ1 and θ2 to reflect the distance between the data points in the first two

dimensions.
Now the IKL algorithm is started using some initial kernel which is not the “correct” one. In Figure 1(b)+(c)

slices of the subproblem function T are shown. In (b) the scaling parameters of the two signal dimensions θ1 and
θ2 are plotted against the objective value and in (c) θ1 is plotted against a scaling factor of a noise dimension θ3. In
both cases we have fixed all other scaling factors to zero. The hyperplane associated with the Lagrange multiplier
λ ≈ 62 is also shown. All parameters with function values above this hyperplane are violating constraints and thus
their inclusion will decrease the objective. The plot of Figure1(b) includes the “true” set of parameters (the ones
described above) for the problem and indeed the objective takes a maximum at this point. Note that in Figure1(c)
the scale is different, the subproblem function T takes much lower values and thus the expected decrease for
each of the shown constraints is much lower. It can also be seen in (c) that the objective function is much more
dependent on θ1 than it is on the scaling factor θ3, which corresponds to a noise dimension.

In the course of the algorithm, IKL identifies the signal dimensions automatically and selects only a single kernel
which achieves a perfect accuracy on a held out test set. To achieve the same result with an SVM or MKL learner
one would have to cross-validate over different scaling factors for each dimension or guess the correct scalings for
the proposal kernels.

4.4 Benchmark datasets

Up to now and to the best of our knowledge there is no extensive comparison between properly tuned SVM
classifiers and those which linearly combine multiple kernels. In this section we will fill this gap. IKL is the limit
of MKL and we need to decide whether the added flexibility increases the performance, leads to overfitting or
gives qualitatively the same results.

4.4.1 Experimental Setup
Thirteen different binary datasets with up to 100 independent splits (the datasets ”image” and ”splice” are

originally split only 20 times) and the very same experimental setup from (Rätsch, 2001) are used. With five
fold CV on the first 5 splits the parameters are determined (the regularizer C and the kernel k for SVM and C
for MKL/IKL) which are subsequently used to obtain the results on all splits. The following kernel parameters
are considered for all thirteen datasets θ−1 ∈ {1, 2, 3, 5, 10, 20, 30, 40, 50, 75, 100, 125, 150}. The regularization
constant is selected from the values C ∈ {10−2, 10−1, . . . , 103}. Five more multiclass datasets were taken from
(Duan & Keerthi, 2005) with 20 predefined splits. On each split we use five fold CV on the training set to
determine the parameters and then test on the test set (one-versus-rest). Tested kernel parameters are θ−1 ∈
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{0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20}, the regularization constant is chosen among C ∈ {10−2, 10−1, . . . , 104}. All
data was scaled to have zero mean and unit variance.

The amount of free parameters was varied using the three different classes as described in Section 4.2. For
(single) we compared all three methods: SVM, MKL and IKL. For MKL we constructed as proposal kernels all
kernel matrices with the kernel parameter in the range as described above. For IKL we allowed for all kernels with
θ ∈ [0, 30]. We found that restricting the admissible range to the one used for MKL and SVM (e.g. θ ∈ [1/150, 1])
does not alter the results. For (separate) all (single) kernels are used and additionally we applied the same range
to every dimension separately. This yields to 13(D + 1) proposal kernels for a D dimensional dataset. Finally for
(products) we allow all kernels with paramters in θd ∈ [0, 30]. This renders the subproblem to be D dimensional.

4.4.2 Results
The results are shown in Table 1 and Table 2. The four missing values correspond to settings which were too

expensive to compute. Even for the results reported here several millions of SVM trainings were performed. We
can draw several conclusions from the results. Comparing only the three (single) results we see that the SVM
almost always yields to slightly better results than MKL and IKL, which do not differ much. The added flexibility
of MKL and IKL to combine more than one kernel seems to be of little use with the possible exception of ABE.
In this setup the parameter space seems to be sampled densely enough such that the best kernel parameter for the
SVM is well enough approximated. The fact that the SVM yields slightly better or same results seems to indicate
that the cross-validation estimate is a more powerful estimator to select kernel parameter than simply minimizing
the MKL objective.

Adding the flexibility to model each dimension separately (separate) yields better results only on the datasets
Splice and SEG. The most general setting (products) reveals some impressive gains in performance for Image,
Splice and SEG, even improving over the MKL-(separate) results. In these cases the possibility to model correla-
tions between different dimensions explicitly yields more discriminative kernels.

For the practitioner there are thus two methods to choose from: SVM because it is much faster than the other
two methods and with good performance or IKL because the enlarged kernel class might lead to a significant
performance increase.

For some datasets we do observe worse results which are probably due to overfitting behavior (Twonorm, Heart,
WAV).

(single) (separate) (products)
SVM MKL IKL MKL IKL

Dataset #dim #tr / #te err err #k err #k err #k err #k
Banana 2 400/4900 10.5 ± 0.5 10.5 ± 0.5 1.0 10.6 ± 0.5 2.3 10.5 ± 0.5 1.0 10.7 ± 0.5 3.7
Breast-cancer 9 200/77 25.9 ± 4.3 27.9 ± 4.0 2.3 26.9 ± 4.7 2.9 26.7 ± 4.2 4.5 25.7 ± 4.1 16.1
Diabetis 8 468/300 23.2 ± 1.6 24.2 ± 1.9 2.8 23.8 ± 1.7 3.4 24.5 ± 1.6 4.0 24.3 ± 1.8 22.3
Flare-Solar 9 666/400 32.4 ± 1.7 35.1 ± 1.7 1.9 35.0 ± 1.8 2.2 34.3 ± 2.1 2.9 32.8 ± 1.9 2.6
German 20 700/300 23.7 ± 2.1 25.3 ± 2.3 2.0 25.3 ± 2.5 3.4 25.1 ± 2.2 8.3 24.6 ± 2.4 46.1
Heart 13 170/100 15.2 ± 3.1 16.4 ± 3.3 1.0 16.9 ± 3.2 2.5 16.7 ± 4.1 9.0 20.1 ± 3.6 28.2
Image 18 130/1010 3.0 ± 0.6 3.3 ± 0.7 1.0 3.4 ± 0.6 5.3 3.0 ± 0.6 1.6 1.4 ± 0.3 27.1
Ringnorm 20 400/7000 1.6 ± 0.1 1.6 ± 0.1 1.0 1.6 ± 0.1 1.2 1.7 ± 0.1 2.6 2.1 ± 0.2 16.3
Splice 60 1000/2175 10.6 ± 0.7 11.1 ± 0.7 2.0 12.6 ± 0.9 2.0 6.0 ± 0.4 24.1 3.1 ± 0.3 72.8
Thyroid 5 140/75 4.0 ± 2.2 4.7 ± 2.1 1.0 3.6 ± 2.1 3.2 4.7 ± 2.1 1.0 4.1 ± 2.0 12.7
Titanic 3 150/2051 22.9 ± 1.2 22.4 ± 1.0 1.1 22.5 ± 1.1 2.2 22.4 ± 1.0 1.9 22.4 ± 1.1 5.2
Twonorm 20 400/7000 2.5 ± 0.1 2.5 ± 0.1 2.0 2.6 ± 0.2 2.0 2.5 ± 0.1 3.8 3.8 ± 0.4 36.2
Waveform 21 400/4600 10.1 ± 0.5 9.9 ± 0.4 2.9 9.9 ± 0.4 2.5 10.2 ± 0.4 9.7 11.4 ± 0.6 33.7

Table 1: Test error and number of selected kernels on several two class datasets averaged over 100 (20) runs. In bold face are
those results with much better results than plain SVM and in italic those which are much worse. #tr denotes the number of
training points, #te the number of test points and #k the average number of selected kernels.

5 Discussion
We generalized MKL to its infinite limit and presented a new algorithm to solve it. Since MKL is a special case
of IKL this algorithm can also be used to solve MKL problems. We found it to be more efficient than existing
methods like (Rakotomamonjy et al., 2007; Sonnenburg et al., 2006) in the case of many possible kernels (details
not reported here). We identified the subproblem as the key ingredient of the kernel learning algorithm. Different
to (Argyriou et al., 2006) we solve it in a way which does not guarantee global optimality of the solution. On
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(single) (separate) (products)
SVM MKL IKL MKL IKL

Dataset #dim #tr / #te #cl err err #k err #k err #k err #k
WAV 21 300/4700 3 15.6 ± 1.2 15.5 ± 0.6 2.7 15.8 ± 0.7 2.1 16.4 ± 1.7 13.6 18.0 ± 1.0 35.1
SEG 17 500/1810 7 6.5 ± 1.0 6.8 ± 0.9 2.8 6.9 ± 0.9 3.7 5.0 ± 0.7 8.4 3.0 ± 0.5 18.0
ABE 16 560/1763 3 1.1 ± 0.3 0.8 ± 0.3 2.5 0.8 ± 0.3 3.0 0.7 ± 0.3 11.3 0.7 ± 0.2 33.8
SAT 36 1500/4935 6 10.4 ± 0.4 10.2 ± 0.3 3.6 10.1 ± 0.4 4.0 n/a n/a
DNA 181 500/2686 3 7.7 ± 0.7 7.8 ± 0.7 1.4 7.7 ± 0.8 2.0 n/a n/a

Table 2: Test error and number of selected kernels on several multi-class datasets averaged over 20 runs. #cl denotes the number
of different classes of the dataset. See also Table 1.

the other hand our approach is much faster and thus applicable to kernel classes with many kernel parameters to
choose. As we find in the experiments using very flexible kernel classes seems to be crucial if performance gains
are to be expected.

Our experiments are the first large scale comparison between SVM and MKL learning and indicate that for most
datasets there is little benefit of linearly combining kernels. Significant improvements over the standard SVM
classifier are found for only few datasets. Many results of MKL and IKL are worse than the ones obtained with
a standard SVM classifier suggesting an inadequacy of the objective function. A more detailed investigation is
subject to future work.

The subproblem provides a handle on how to select new kernels. This opens up the possibility to design problem
specific kernels, for example by turning previously separate preprocessing steps into the kernel itself.
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Rätsch, G. (2001). Robust Boosting via Convex Optimization: Theory and Applications. Ph.D. thesis, University
of Potsdam.

Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related opti-
mization problems. In Proceedings of IEEE, Vol. 86, pp. 2210–2239.

Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A Generalized Representer Theorem. In COLT’01, Vol. 2111
of Lecture Notes in Artificial Intelligence, pp. 416–426. Springer.
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