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Abstract. The main goal of this workshop – the third one of this type at
the MFO – has been to blend mathematical results from statistical learning
theory and approximation theory to strengthen both disciplines and use syn-
ergistic effects to work on current research questions. Learning theory aims at
modeling unknown function relations and data structures from samples in an
automatic manner. Approximation theory is naturally used for the advance-
ment and closely connected to the further development of learning theory,
in particular for the exploration of new useful algorithms, and for the theo-
retical understanding of existing methods. Conversely, the study of learning
theory also gives rise to interesting theoretical problems for approximation
theory such as the approximation and sparse representation of functions or
the construction of rich kernel reproducing Hilbert spaces on general met-
ric spaces. This workshop has concentrated on the following recent topics:
Pitchfork bifurcation of dynamical systems arising from mathematical foun-
dations of cell development; regularized kernel based learning in the Big Data
situation; deep learning; convergence rates of learning and online learning al-
gorithms; numerical refinement algorithms to learning; statistical robustness
of regularized kernel based learning.

Mathematics Subject Classification (2010): 68Q32, 41A35, 41A63, 62Gxx.

Introduction by the Organisers

The workshop “Learning Theory and Approximation”, organized by Andreas
Christmann (Bayreuth), Kurt Jetter (Stuttgart-Hohenheim), Steve Smale (Hong
Kong and Berkeley), and Ding-Xuan Zhou (Hong Kong), was held July 3–9, 2016.
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This half-size workshop was well attended, with 26 participants from Asia, Eu-
rope and North America. It provided an excellent platform for fruitful interactions
among researchers from statistical learning theory and approximation theory.

Learning theory aims at modeling unknown function relations and data struc-
tures from samples in an automatic manner. It started with some topics in sta-
tistics such as pattern recognition, nonparametric estimation, support vector ma-
chines, and statistical learning theory. More connections and applications to other
fields have been found within the last decade: computational biology, data mining,
computational topology, optimization theory, ranking methods, survival statistics,
and many others.

Already the first talks on Monday showed the broad coverage of this workshop
and opened discussions on the interplay between approximation theory, statistical
learning theory, dynamical systems, and computational biology. Steve Smale’s
talk on pitchfork bifurcation of dynamical systems arose from his mathematical
foundations to understand cell development in multi cellulars organisms. A toggle
switch of two gene networks was modelled by a special system of differential equa-
tions having second order terms which is in contrast to a classical model proposed
in the literature. In this talk it was proven that generically this new dynamical
system undergoes pitchfork bifurcation. Tomaso Poggio’s talk compared recent
deep learning algorithms and more classical shallow networks. His talk demon-
strated that deep learning methods can often outperform shallow networks if the
underlying unknown function is of compositional type whereas no substantial im-
provement seems to be possible in the general case because good shallow networks
are universally consistent. Recent oracle inequalities and learning rates for bi-
nary classification algorithms using adaptive partitioning were presented by Peter
Binev. The considered new approximation classes are much richer than Besov
spaces.

The Monday afternoon session was on approximation theory. The talk by Ger-
lind Plonka-Hoch proposed a sparse approximation of structured signals by the
modified Prony method and an explicit algorithm for sparse approximation of ex-
ponential sums was presented. Holger Wendland’s talk was on recent results of
multiscale radial basis functions. These meshfree methods occur in many disci-
plines including scattered data approximation, statistical machine learning, engi-
neering, and computer graphics. The results covered matrix-valued kernels, which
lead to divergence-free approximation spaces and their multiscale extensions. In-
terpolation and quasi-interpolation with multiquadrics were the topic of Martin
Buhmann’s talk. He showed that good error bounds are achievable, even when the
usual additonal constant is not present in the ansatz. To manage this modification,
he had to employ native spaces of Pontryagin type.

On Tuesday there were talks on learning theory and on approximation theory.
Bernhard Schölkopf emphasized in his talk that statistical correlation does not
necessarily imply causality and demonstrated how causality can be checked us-
ing statistical learning. Johan Suykens showed new extensions of learning with
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primal and dual model representations, in particular multilevel hierarchical ker-
nel spectral clustering for large scale networks and deep learning using restricted
kernel machines and conjugate feature duality. Alexandre Tsybakov considered
structured high-dimensional least squares estimation and proved new minimax
optimal results. Standard kernel approaches often fail for the Big Data situation,
because they do not scale well with the number of sample points. Therefore, Ding-
Xuan Zhou gave detailed error analyses for broad classes of distributed learning
algorithms based on a divide-and-conquer approach including least squares regu-
larization schemes and spectral algorithms. Gabriele Steidl presented new results
on iterative multiplicative filters for data labeling, which has been successfully ap-
plied, e.g, for image partioning and segmentation. She proposed an algorithm that
can be seen as an iterative multiplicative filtering of a label assignment matrix.
Philipp Kügler showed how action potential dynamics can be learnt for preclinical
drug safety testing. These results are important for pharmaceutical companies.

The talks on Wednesday morning were on machine learning. Ingo Steinwart
demonstrated in his talk on learning with hierarchical kernels, that a data-depen-
dent weighted sum of Gaussian kernels has a reproducing kernel Hilbert space
which is dense in C(X) with respect to the supremum norm provided the input
space X is a compact subset of Rd. This talk was strongly related to Tomaso
Poggio’s talk on deep learning, but the point of view was clearly quite different. It
became clear that more theoretical work is desirable for both approaches. Sayan
Mukherjee proved the asymptotic consistency of maximum likelihood estimators
for dynamical systems observed with noise. The proof involved ideas from both in-
formation theory and dynamical systems. Examples were shifts of finite type with
Gibbs measures and Axiom A attractors with SRB measures. Andreas Christmann
presented joint work with Ding-Xuan Zhou on robust pairwise learning with ker-
nels. Examples of pairwise learning occur in ranking problems and minimum error
entropy estimation. The robustness results covered a bounded influence function,
upper bounds for the maxbias over neighborhoods of total variation and of gross-
error neighborhoods, and qualitative robustness of the kernel estimators and their
empirical bootstrap approximation.

The first talks on Thursday dealt with approximation theory and its relation-
ship to machine learning. Compressive sensing considers the recovery of (approxi-
mately) sparse vectors (signals, images etc.) from incomplete linear measurements
via efficient algorithms. An extension of this theory replaces the sparsity assump-
tion by a low rank assumption of a matrix to be recovered. Holger Rauhut’s talk
investigated the sparse and low rank recovery via Mendelson’s small ball method.
Uniform convergence of stationary d-variate subdivision with a finite mask can
be analyzed through left convergence of products of certain matrices from a finite
alphabet of matrices constructed from the mask. In his talk on nonnegative sub-
division, Kurt Jetter showed that uniform convergence of nonnegative subdivision
is equivalent to the fact that each word from this alphabet is stochastic, indecom-
posable and aperiodic. Equivalently, each word of sufficient length must have the
scrambling property, or even must have a strictly positive column. The latter two
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properties refer to sign patterns of row stochastic matrices, and sufficient length
means that the length is at most equal to the number of possible sign patterns
of such matrices. Tomas Sauer’s talk on the recovery of sparse exponential sums
and sparse polynomials in several variables had strong connections to the talk by
Gerlind Plonka-Hoch. After a deep analysis it became clear, that the computation
of a special Prony ideal is crucial, because then the frequencies can be determined
by eigenvalue methods analogous to Frobenius companion matrices and the coef-
ficients by solving a special Vandermonde system. Stéphane Boucheron studied
the problem of lossless universal source coding for stationary memoryless sources
on a countably infinite alphabet and proposed an adaptive compression technique:
a collection of so-called envelope classes is considered and both dictionary and
pattern encoding are treated.

The talks on Thursday afternoon mainly dealt with machine learning and
wavelets. Yiming Ying presented his recent work on online learning with pair-
wise loss functions. Pairwise learning differs from more traditional learning tasks
like classification or regression, because (i) the objective function is usually defined
over pairs of instances which is quadratic in the sample size, and (ii) pairwise learn-
ing involves statistically dependent pairs of data points, which is fundamentally
different from the i.i.d. assumption in classification and regression. Yiming Ying
showed that the algorithmic implementation and the theoretical analysis of his
method is comparable to online algorithms in classification. This talk had ob-
vious connections to the talk by Andreas Christmann on the robustness aspects
of (non-online) pairwise learning. Dao-Hong Xiang presented her recent work on
quantile regression with varying Gaussians, coefficient-based conditional quantile
regression and learning with varying ǫ-insensitive pinball loss. The convergence
of the randomized Kaczmarz algorithm in Hilbert spaces was investigated by Xin
Guo. The convergence is a weak convergence with a polynomial rate. Weak con-
vergence is widely used in learning theory because it well corresponds to the strong
convergence in the L2 norm sense which is usually good enough for applications.

Friday was reserved for approximation theory. Joachim Stöckler combined
methods of real algebraic geometry, linear system theory and harmonic analy-
sis for the construction and parameterization of classes of tight wavelet frames.
Maria Charina investigated the construction of orthogonal multi-wavelets. She
showed that there is no much conceptual difference between wavelet (n = m = 1)
and multi-wavelet constructions and provided their complete and unifying charac-
terization. This characterization is based on classical results from system theory.
The link between wavelet and multi-wavelet constructions and system theory is
offered by the so-called Unitary Extension Principle. Karlheinz Gröchenig investi-
gated the question how many samples of a function f are necessary to completely
recover this function. By generalizing the Beurling concept of lower and upper
density, he derived quite general theorems for the study of sets of sampling, and
of sets of interpolation, in the setting of reproducing kernel Hilbert spaces. In this
way, universal density theorems are produced which include the results from the
literature as special cases. Elena Berdysheva’s talk on Durrmeyer type operators
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with respect to an arbitrary measure was motivated by earlier work by Zhou and
Jetter (2006) in the context of support vector machine classifiers with polynomial
kernels. This operator is a special compact self-adjoint integral operator and its
kernel is a Mercer kernel. In her talk, she dealt with various convergence properties
of this operator.

Acknowledgement: The organizers acknowledge the friendly atmosphere provided
by the Oberwolfach institute, and would like to express their thanks to the entire
staff. The MFO and the workshop organizers would like to thank the National
Science Foundation for supporting the participation of junior researchers in the
workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Pitchfork Bifurcation

Steve Smale

Development of a single cell into a multicellular organism involves a remarkable
integration of gene expression, molecular signaling, and environmental cues. This
talk is about pitchfork bifurcation of dynamical systems arising from our study of
mathematical foundations of cell development. This is joint work with I. Rajapakse
and is related to our previous work [1].

A classical example of pitchfork bifurcation (e.g. [2]) is from the following system
of ordinary differential equations

(1)
dx

dt
= µx− x3, x ∈ R

with a parameter µ ∈ R. This system has an equilibrium x0 = 0 for all µ. This
equilibrium is stable for µ < 0 and unstable for µ > 0. For µ > 0, there are two
extra equilibria, x1,2 = ±√

µ, branching from the origin which are stable. This
bifurcation is called pitchfork bifurcation.

A toggle switch of two gene networks described by

dx

dt
=

2

1 + ym
− x,

dy

dt
=

2

1 + xm
− y(2)

was designed and constructed in [3]. It was used to predict conditions for bistability
and pitchfork bifurcation, which was proved in [4].

By taking Taylor expansions of order two at m = 2, x = y = 1 for the Hill
functions in (2), we derive the following dynamical system

dx

dt
= y2 −my − x,

dy

dt
= x2 −mx− y.

This system has second order terms, which is different from the classical setting (1).
We prove that generically this dynamical system undergoes pitchfork bifurcation.

References
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Deep vs. shallow networks: An approximation theory perspective

Tomaso Poggio

(joint work with H. N. Mhaskar)

Summary
We describe recent results on hierarchical architectures for learning from examples,
that may formally explain the conditions under which Deep Convolutional Neural
Networks perform much better in function approximation problems than shallow,
one-hidden layer architectures.

Introduction
Deep Neural Networks especially of the convolutional type (DCNNs) have started
a revolution in the field of artificial intelligence and machine learning, triggering a
large number of commercial ventures and practical applications. Most deep learn-
ing references these days start with Hinton’s backpropagation and with Lecun’s
convolutional networks (see for a nice review [4]). Of course, multilayer convolu-
tional networks have been around at least as far back as the optical processing era
of the 70s. Fukushima’s Neocognitron [2] was a convolutional neural network that
was trained to recognize characters. The HMAX model of visual cortex [8] was
described as a series of AND and OR layers to represent hierarchies of disjunctions
of conjunctions.

Two of the basic theoretical questions about Deep Convolutional Neural Net-
works (DCNNs) are:

• which classes of functions can they approximate well?
• why is stochastic gradient descent (SGD) so unreasonably efficient?

In this contribution we describe a theoretical framework that we have introduced
very recently to address the first question [6]. The theoretical results include
answers to why and when deep networks are better than shallow by using the
idealized model of a deep network as a directed acyclic graph (DAG), which we have
shown to capture the properties a range of convolutional architectures recently
used, such as the very deep convolutional networks of the ResNet type [3]. For
compositional functions conforming to a DAG structure with a small maximal
indegree of the nodes, such as a binary tree structure, one can bypass the curse
of dimensionality with the help of the blessings of compositionality (cf. [1] for a
motivation for this terminology). We demonstrate this fact using three examples:
traditional sigmoidal networks, the ReLU networks commonly used in DCNN’s,
and Gaussian networks.

Compositional functions
Let us illustrate the advantage of approximating a compositional function using
deep networks corresponding to the compositional structure rather than a shallow
network that does not take into account this structure.

In the sequel, for any integer q ≥ 1, x = (x1, · · · , xq) ∈ Rq, |x| denotes the
Euclidean ℓ2 norm of x, and x · y denotes the usual inner product between x,y ∈
Rq. In general, we will not complicate the notation by mentioning the dependence
on the dimension in these notations unless this might lead to confusion.
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Let Iq = [−1, 1]q, X = C(Iq) be the space of all continuous functions on Iq,
with ‖f‖ = maxx∈Iq |f(x)|. Let Sn denote the class of all shallow networks with
n units of the form

x 7→
n
∑

k=1

akσ(wk · x+ bk),

where wk ∈ R
q, bk, ak ∈ R. The number of trainable parameters here is (q+2)n ∼

n. Let r ≥ 1 be an integer, and WNN
r,q be the set of all functions with continuous

partial derivatives of orders up to r such that ‖f‖+∑1≤|k|1≤r ‖Dkf‖ ≤ 1, where

Dk denotes the partial derivative indicated by the multi–integer k ≥ 1, and |k|1
is the sum of the components of k.

For explaining our ideas for the deep network, we consider compositional func-
tions conforming to a binary tree. For example, we consider functions of the form
(cf. Figure 2)

(1)
f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))).

Figure 1. A shallow universal network in 8 variables and N
units which can approximate a generic function f(x1, · · · , x8).
The top node consists of n units and computes the ridge func-
tion

∑n
i=1 aiσ(〈vi,x+ ti)〉, with vi,x ∈ R2, ai, ti ∈ R.

For the hierarchical binary tree network, the spaces analogous to WNN
r,q are

WNN
H,r,2, defined to be the class of all functions f which have the same structure

(e.g., (1)), where each of the constituent functions h is inWNN
r,2 (applied with only

2 variables). We define the corresponding class of deep networks Dn to be set of
all functions with the same structure, where each of the constituent functions is
in Sn. We note that in the case when q is an integer power of 2, the number of
parameters involved in an element of Dn – that is, weights and biases, in a node
of the binary tree is (q − 1)(q + 2)n.

The following theorem (cf. [5]) estimates the degree of approximation for shal-
low and deep networks. We remark that the assumptions on σ in the theorem
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below are not satisfied by the ReLU function x 7→ |x|, but they are satisfied by
smoothing the function in an arbitrarily small interval around the origin.

Theorem 1. Let σ : R → R be infinitely differentiable, and not a polynomial on
any subinterval of R.

(a) For f ∈ WNN
r,q

(2) dist(f,Sn) = Ø(n−r/q).

(b) For f ∈WNN
H,r,2

(3) dist(f,Dn) = O(n−r/2).

Proof. Theorem 1(a) was proved by [5]. To prove Theorem 1(b), we observe that

each of the constituent functions being in WNN
r,2 , (2) applied with q = 2 implies

that each of these functions can be approximated from Sn up to accuracy n−r/2.

Our assumption that f ∈ WNN
H,r,2 implies that each of these constituent functions

is Lipschitz continuous. Hence, it is easy to deduce that, for example, if P , P1, P2

are approximations to the constituent functions h, h1, h2, respectively within an

Figure 2. A binary tree hierarchical network in 8 variables,
which approximates well functions of the form (1). Each of
the nodes consists of n units and computes the ridge function
∑n

i=1 aiσ(〈vi,x+ ti)〉, with vi,x ∈ R2, ai, ti ∈ R. Similar to the
shallow network such a hierarchical network can approximate any
continuous function; the text proves how it approximates compo-
sitional functions better than a shallow network. Shift invariance
may additionally hold implying that the weights in each layer are
the same. The inset at the top right shows a network similar to
ResNets: our results on binary trees apply to this case as well with
obvious changes in the constants.
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accuracy of ǫ, then

‖h(h1, h2)− P (P1, P2)‖ ≤ ‖h(h1, h2)− h(P1, P2)‖+ ‖h(P1, P2)− P (P1, P2)‖
≤ c {‖h1 − P1‖+ ‖h2 − P2‖+ ‖h− P‖} ≤ 3cǫ,

for some constant c > 0 independent of ǫ. This leads to (3). �
We have extended the basic theorem to networks with ReLU and with Gaussian

activation functions. We have also extended the result to general DAG functions
that is functions defined on a directed acyclic graph (DAG)

As we mentioned in previous papers [7, 6] this definition, and in fact most of
the previous results, can be specialized to the class of Boolean functions which
map the Boolean cube into reals, yielding a number of known and new results.
This application will be described in a forthcoming paper.
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On classification algorithms using adaptive partitioning

Peter Binev

(joint work with Albert Cohen, Wolfgang Dahmen, Ronald DeVore)

We consider algorithms based on adaptive partitioning for classification of ran-
domly drawn data. The setup for binary classification is the following. LetX ∈ Rd,
Y = {−1, 1}, Z = X × Y , and assume that ρ = ρX · ρ(y|x) is the probability mea-
sure on Z according to which the data is drawn. Denoting by p(x) the probability
that y = 1 given x, we define the regression function η(x) := E(y|x) = 2p(x) − 1
as the expectation of y given x. Any ρX -measurable set Ω ⊂ X can be considered
a classifier assuming that it predicts y = 1 for all x ∈ Ω and y = −1 for all
x ∈ Ωc := X \ Ω. The probability of misclassification

R(Ω) :=

∫

Ω

1− p(x)dρx +

∫

Ωc

p(x)dρx
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by a set Ω is called risk. The Bayes classifier Ω∗ := {x : η(x) ≥ 0} minimizes this
risk and usually the performance of a classifier Ω is measured by the excess risk

R(Ω)−R(Ω∗) =

∫

Ω△Ω∗

|η(x)|dρX ,

where A△B := (A \ B) ∪ (B \ A) is the symmetric difference of two sets. If Ω
has to be chosen from a family of sets, then it is easy to see that the best possible
choice would be the set Ω that maximizes the quantity ηΩ :=

∫

Ω η(x)dρX .

A classification algorithm finds a classifier Ω̂(z) based on given data z = (zi)
n
i=1

of points zi = (xi, yi) ∈ Z drawn independently according to ρ. Our approach to
building such algorithms is to approximate directly the Bayes set Ω∗ using adap-
tively generated partitions ofX . This type of algorithms are usually categorized as
set classifiers in contrast to the plug-in classifiers which are based on the estima-
tion of the regression function η. In both cases the performance of the algorithms
is judged by how fast the excess risk decays when the sample size n grows. The
derivation of estimates about this behavior are usually based on properties of the
measure ρ quantified via assumptions on its behavior near the boundary of the
set Ω∗ (a margin condition) and the smoothness of the regression function η. A
typical margin condition (see [4, 3]) is the requirement (also known as Tsybakov
condition) that for some α ≥ 0 there exists a constant Cα such that

(1) ρX{x ∈ X : |η(x)| ≤ t} ≤ Cαt , 0 < t ≤ 1 .

The smoothness conditions are often expressed via approximation classes that are
linked to a nonlinear approximation process. In the case of set estimators, one
can consider a nested sequence (Sm)m≥1 of families of subsets of X , where m
represents the complexity of the family Sm. The approximation error am(ρ) is
defined via how well the Bayes classifier Ω∗ is approximated by the family Sm

am(ρ) := inf
S∈Sm

R(S)−R(Ω∗) .

Using that this quantity is monotone with m, we define the approximation class
As = As ((Sm)m≥1) as the set of all probability measures ρ for which the following
semi-norm is finite

|ρ|As := sup
m≥1

msam(ρ) .

These approximation classes depend on how the families Sm are defined. In [1]
the building of Sm is based on dyadic subdivision in which each element of the
current partition is subdivided into 2d subsets. Starting from the set X itself,
one can perform k ≤ m such subdivisions to get a partition, split each element
of the partition by an arbitrary hyperplane, and then choose any collection of the
resulting subsets to form one set of the family Sm. While the number of elements
of Sm is infinite, it is proven in [1] that its VC dimension is limited by m times a
constant depending only on d.

The classification algorithm is based on a model selection procedure. For this
purpose we split the draw z into two independent equal parts and then use the first
one to find the sets Ω̄m ∈ Sm for m ≥ 1 that maximize the empirical counterpart
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of ηΩ̄m
. Then find the index m∗ which maximizes the empirical quantity ηΩ̄m

for

m ≥ 1 but this time based on the second part of the draw and set Ω̂ = Ω̄m∗. Note
that to determine the hyperplane for the hyperplane split, it is computationally
more efficient to use a local plug-in estimator.

The performance of the above algorithm is given by the following result (see
[1], Theorem 6.3).

Theorem (i) For any r > 0, there is a constant c > 0 such that the following
holds. If ρ ∈ As, s > 0, and ρ satisfies the margin condition (1), then with
probability greater than 1− cn−r+1, we have

R(Ω̂(z))−R(Ω∗) ≤ C

(

logn

n

)

(1+α)s
(2+α)s+1+α

with C depending only on d, r, |ρ|As and the constant Cα in (1).
(ii) If η ∈ Bβ

∞(Lp(X)) with 0 < β ≤ 2 and p > d/β and if ρ satisfies the margin
condition (1), then with probability greater than 1− cn−r+1, we have

R(Ω̂(z))−R(Ω∗) ≤ C

(

logn

n

)

(1+α)β
(2+α)β+d

,

with C depending only on d, r, |η|Bβ
∞(Lp(X)) and the constant Cα in (1).

Extensions of this result could come from improving the family Sm. One possi-
ble way is the replacement of the hyperplane split at the end with a partitioning
by a higher order polynomial surface. While this will increase the upper bound for
β in (ii), the implementation of such a procedure is a demanding task and such a
method does not seem practical. Another possibility is to revisit the adaptive par-
titioning procedure before the hyperplane splits. This procedure is equivalent to
building a decision tree for the elements of the partition to be further subdivided.
For large dimension d the practical solution is to consider only the nodes of the
tree (aka elements of the partition) that contain data points, hence consideration
of occupancy trees.

In going further, we consider binary trees instead of dyadic ones, replacing
each dyadic split with a binary subtree that is a full binary tree with d levels,
and then trim based on occupancy. This could give slight improvement of the
computational efficiency but the major benefit comes from the better ways to
handle sparsity when dealing with binary trees.

It is often the case in occupancy trees that a node has only one descendant
for several generations, although going to the next generation is counted as a
subdivision despite the fact that one of the elements is not occupied. We can
therefore decrease significantly the complexity count m of the tree by introducing
the notion of sparse occupancy trees, see [2], in which the sequences of nodes with
a single descendant are collapsed to one node in the sparse occupancy tree.

In order to align the sparse occupancy with the probabilistic setup, we have to
declare “unoccupied” sets S that have probability measure below some threshold
t > 0. Note that t should be significantly larger than 1

n , n being the sample size,
in order to have an integer τ > 0 such that if the number of sample points in a
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given set S is less than τ , then with high probability
∫

S drX < t, while if this

number is at least τ , then
∫

S drX ≥ t
2 with high probability. Next, we create

a partition by subdividing all the elements with at least τ sample points and
build a sparse occupancy tree trimming all the nodes with less than τ sample
points. Unfortunately, this process can create a sequence of imbedded elements
S0 ⊃ S1 ⊃ ... ⊃ Sk such that each of the sets Sj\Sj+1 has less than τ sample points
but the cumulative set S0 \ Sk could contain much more than τ sample points. In
such a case, we can create a lacunary sequence of indices i0 = 0 < i1 < i2 < ...
such that each set Sij \ Sij+1 has between, say, τ and 3τ sample points. We
then declare these sets elements of the partition and insert them as nodes in
the sparse occupancy tree to create an augmented sparse occupancy tree with m
terminal nodes and the property that the subsets ofX , not covered by the elements
corresponding to these nodes, have combined measure less than mt. We consider
these augmented sparse occupancy trees as the building blocks of the family Sm.

The part (i) of the Theorem holds for the approximation classes As correspond-
ing to the new sequence of families (Sm)m≥1. These new classes are much richer
than the Besov spaces featured in (ii).
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Sparse approximation by Prony’s method and AAK theory

Gerlind Plonka

(joint work with Vlada Pototskaia)

In signal processing and system theory, we consider the problem of sparse approx-
imation of structured signals. Let us assume that a discrete signal f := (fk)

∞
k=0

can be represented by a linear combination of N exponentials,

(1) fk := f(k) =

N
∑

j=1

aj z
k
j ,

where aj ∈ C \ {0} and zj ∈ D := {z ∈ C : 0 < |z| < 1}. If a suitable number of
signal values f(ℓ), ℓ = 0, 1, . . . ,M with M ≥ 2N − 1 is given, then the parameters
aj and zj can be uniquely determined by applying Prony’s method, see e.g. [6].
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Our goal is now to find a new signal f̃ := (f̃k)
∞
k=0 of the form

(2) f̃k := f̃(k) =

n
∑

j=1

ãj z̃
k
j

with ãj ∈ C \ {0} and z̃j ∈ D such that n < N and ‖f − f̃‖ℓ2 ≤ ǫ.
Problems of this type have been considered already in [3] and [2]. In these

papers, an approach using the theory of Adamjan, Arov and Krein [1] has been
employed. Furthermore the above approximation problem is strongly related to
the problem of structured low rank approximation for Hankel matrices, see e.g.
[4]. However, it has been still not completely understood, how to construct the

new sequence f̃ in an optimal way.
To solve the above problem, we also employ the AAK theory and consider for

the signal of the form (1) the infinite Hankel matrix

Γf :=











f0 f1 f2 . . .
f1 f2 f3 . . .
f2 f3 f4 . . .
...

...
...

. . .











= (fk+j)
∞
k,j=0.

Then, it can be simply shown that Γf possesses rank N , and we can order the
singular values σ0 ≥ σ1 ≥ . . . ≥ σN−1 > σN = . . . = σ∞ = 0. In particular,
Γf defines a compact operator on ℓ2(N0). For the considered case, a theorem of
Adamjan, Arov and Krein [1] states the following.

Theorem 1 (see [1]). Let f be given as in (1). Further, let (σn, u
(n)) with

u(n) = (u
(n)
k )∞k=0 ∈ ℓ2(N0) be a fixed singular pair of Γf with σn 6= σk for n 6= k

and σn 6= 0. Then the series

Pu(n)(z) :=

∞
∑

k=0

u
(n)
k zk

has exactly n zeros z̃1, . . . , z̃n in D, repeated according to their multiplicity. More-
over, if z̃1, . . . , z̃n are pairwise different, then there exist coefficients ã1, . . . , ãn ∈ C

such that for

f̃ = (f̃j)
∞
j=0 =

(

n
∑

k=1

ãkz̃
j
k

)∞

j=0

we have

‖Γf − Γf̃‖ = σn.

The theory behind the above theorem is presented in details in [5]. Note that

due to the required structure of f̃ the Hankel matrix Γf̃ has rank n. Therefore
the theorem presents an approach for low rank Hankel approximation, standing
in contrast with the approximation by usual singular value decomposition, which
doesn’t preserve the Hankel structure.
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We want to apply this theorem to our sparse approximation problem and will
answer the following questions. How ist the operator norm of the Hankel matrix Γf

related to ‖f‖ℓ2? How to compute the singular pairs (σn, u
(n)) for n = 0, . . . , N−1

numerically? How to find all zeros of the expansion Pu(n)(z) lying inside D ? How
to obtain the optimal coefficients ãk?

Using the sequence e1 := (1, 0, 0, . . .)T ∈ ℓ2(N0), it follows that

‖f‖ℓ2 =





∞
∑

j=0

|fj |2




1/2

= ‖Γfe1‖ℓ2 ≤ sup
‖u‖ℓ2=1

‖Γfu‖ℓ2 = ‖Γf‖.

Therefore we have for two sequences f, f̃ ∈ ℓ2(N0) that ‖f − f̃‖ℓ2 ≤ ‖Γf − Γf̃‖.
In order to compute the singular pairs of Γf we show the following theorem on

the structure of singular vectors resp. con-eigenvectors of Γf .

Theorem 2. Let f be of the form (1). Then the con-eigenvectors u(l) = (u
(l)
k )∞k=0,

l = 0, . . . , N − 1, corresponding to the nonzero con-eigenvalues σ0 ≥ . . . ≥ σN−1 >
0 of Γf are of the form

u
(l)
k =

1

σl

N
∑

j=1

ajPu(l)(zj)z
k
j , k ∈ N0,

where the vectors (Pu(l)(zj))
N
j=1 = (Pu(l)(zj))

N
j=1, l = 0, . . . , N − 1, are determined

by the con-eigenvectors of the finite eigenvalue problem

σl(Pu(l)(zj))
N
j=1 = ANZN (Pu(l)(zj))

N
j=1

with

AN :=











a1 0
a2

. . .

0 aN











, ZN :=













1
1−|z1|2

1
1−z1z̄2

· · · 1
1−z1z̄N

1
1−z̄1z2

1
1−|z2|2

· · · 1
1−z2z̄N

...
...

. . .
...

1
1−z̄1zN

1
1−z̄2zN

· · · 1
1−|zN |2













.

Proof. Since Γf is symmetric, a singular pair (σ, u) of Γf with u = (uk)
∞
k=0 is also

a con-eigenpair satisfying Γfu = σ u. Denoting Pu(z) :=
∑∞

k=0 ukz
k it follows by

(1) that

(3) σuk = (Γfu)k =
∞
∑

r=0

fk+rur =
∞
∑

r=0

N
∑

j=1

aj z
k+r
j ur =

N
∑

j=1

aj Pu(zj) z
k
j .

The assertion of the theorem is now a consequence of (3) and

σlPu(l)(z) = σl

∞
∑

r=0

u(l)r zr =

∞
∑

r=0

N
∑

j=1

ajPu(l)(zj)z
r
j z

r =

N
∑

j=1

ajPu(l)(zj)

1− zjz

for z ∈ D by inserting z = z̄k, k = 1, . . . , N . �
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From the last equality we observe that Pu(n)(z) is a rational function with a
numerator being a polynomial of degree at most N − 1, which enables to compute
the zeros of Pu(n) . Thus the complete algorithm reads as follows.

Algorithm for sparse approximation of exponential sums.

Input: samples fk, k = 0, . . . ,M for sufficiently large M ≥ 2N − 1.
target approximation error ǫ

(1) Find the parameters zj ∈ D and aj , j = 1, . . . , N of the exponential
representation of f in (1) using a Prony-like method.

(2) Solve the con-eigenproblem for the matrix ANZN and determine the
largest singular value σn with σn < ǫ.

(3) Compute the n zeros z̃j ∈ D of the con-eigenpolynomial Pu(n)(z) of Γf

using its rational representation.
(4) Compute the coefficients ãj by solving the minimization problem

min
ã1,...,ãn

‖f − f̃‖2ℓ2 = min
ã1,...,ãn

∞
∑

k=0

|fj −
n
∑

j=1

ãj z̃
k
j |2.

Output: sequence f̃ of the form (2) such that ‖f − f̃‖ℓ2 ≤ σn < ǫ.
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Multiscale radial basis functions: Recent results

Holger Wendland

Radial basis functions are a popular meshfree method. They are used in various
areas comprising, for example, scattered data approximation, computer graphics,
machine learning, engineering and the geosciences.

Multiscale radial basis functions differ from classical radial basis functions since
they do not only use shifts by scattered centres but also different scales. To be more
precise, assume that Φ : Rd → R is a radial basis function with Φ(x) = φ(‖x‖2),
x ∈ Rd, where φ : R → R is an even function with compact support [−1, 1].
Suppose further that we are given a sequence of data setsX1, X2, . . . , Xn ⊆ Ω ⊆ Rd
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with decreasing mesh norms hj := supx∈Ωminxj∈Xj
‖x − xj‖2 and a sequence of

decreasing support radii δ1 ≥ δ2 ≥ . . . ≥ δn. Then, we can define local kernels

Φj(x, y) = δ−d
j Φ((x− y)/δj).

and local approximation spaces

Wj = span{Φj(·, x) : x ∈ Xj}.
to define global or multiscale approximation spaces

Vn :=W1 + . . .+Wn.

While multiscale RBFs have been used for quite some time for pure function
reconstruction, but also in the context of solving partial differential equations by
collocation, no proofs have been given until very recently.

In my talk, I have addressed recent results on multiscale RBF approximation
orders by giving error estimates for a multilevel interpolant. The most recent
result states the following.

Assume that Φ is a reproducing kernel of the Sobolev space Hσ(Rd) with σ >
d/2. Assume further that the fill distances and support radii satisfy hj+1 = µhj
and δj = νhj with µ ∈ (0, 1) and 1/h1 ≥ ν ≥ γ/µ with γ > 0 fixed. Then, for
every ǫ > 0 there are constants C > 0 and µ0 = µ0(ǫ) such that

inf
fn∈Vn

‖f − fn‖L2(Ω) ≤ Chσ−ǫ
n ‖f‖Hσ(Ω) for all f ∈ Hσ(Ω),

provided µ ≤ µ0.
I have discussed a typical residual correction algorithm for computing the multi-

scale RBF approximation fn and variations including data compression and adap-
tivity by showing both theoretical results and examples. Next, I have discussed
matrix-valued kernels, which lead to divergence-free approximation spaces and
their multiscale extensions. Again, I have discussed convergence orders and gave
examples. Finally, I have addressed the topic of using kernel based methods to
solve semi-linear parabolic problems on closed, compact, smooth manifolds.

This talk is based on joint work with Quoc Thong Le Gia and Ian Sloan (Uni-
versity of New South Wales, Australia), with Patricio Farrell (WIAS, Germany)
and Kathryn Gillow (Oxford University, UK) and on the literature quoted below.
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Interpolation with multiquadrics without added constant

Martin Buhmann

(joint work with O. Davydov)

Radial basis function interpolation (and quasi-interpolation) is a useful tool to
approximate (at a minimum) continuous real-valued functions f on d-dimensional
real space by shifts of translates of a single, radially symmetric function φ(‖ · ‖),
the norm being usually Euclidean. There are generalisations too to vector- or even
matrix-valued functions f .

Apart from the unique existence of such interpolants for all f and distinct
interpolations points (so-called “centres”), many different radial functions φ and
largely independent of the spatial dimension d – which is in itself a highly useful
feature – their attractive approximation properties and accuracies even for large
d render this approach flexible, useful and suitable for several applications. But
while it was noted by Rolland Hardy and proved in a famous paper by Charles A.
Micchelli that radial basis function interpolants

s(x) =
∑

j

λjφ(‖x− xj‖)

exist uniquely specifically for arbitrary real parameters c and the multiquadric
radial function φ(r) =

√
r2 + c2 in question, as soon as the (at least two) afore-

mentioned centres are pairwise distinct, the achieved error bounds for f(x)− s(x)
for this interpolation problem always demanded an added real constant, call it c,
to s.

To make up for this extra degree of freedom, the coefficients λj were required
to sum to zero. By using Pontryagin native spaces, we obtain attractive error
bounds that no longer require this additional real constant expression c and the
extra condition on the sum of coefficients; they therefore apply to the original
formulation of the interpolants. Some further remarks on quasi-interpolation (joint
work with Feng Dai) are added as well.
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Causal and statistical learning

Bernhard Schölkopf

(joint work with Dominik Janzing and David Lopez-Paz)

In standard machine learning, the basic object is a joint distribution P (X) gener-
ating the observable data. Here, X is a random vector, and we are usually given
a dataset x1, . . . , xn sampled i.i.d. from P . We are often interested in estimating
properties of conditionals of some components of X given others, e.g., a classifier
(which may be obtained by thresholding a conditional at 0.5). This is a nontrivial
inverse problem, giving rise to statistical learning theory.

In causal learning in the sense considered here, the basic object is a structural
causal model (SCM; also called structure equation model or functional causal
model) [2]. In an (acyclic) SCM, the components X1, . . . , Xd of X are identified
with vertices of a direct acyclic graph whose arrows represent direct causal influ-
ences, and there is a noise variable Ni for each vertex, along with a function fi
which computes Xi from its graph parents Pa(Xi) and Ni, i.e.,

(1) Xi = fi(Pa(Xi), Ni).

The noisesNi are assumed to be jointly independent. The graph connectivity along
with the functions then create nontrivial dependences between the observables;
moreover, they describe how the system behaves under interventions: by replacing
functions (e.g., with constant functions), we can compute the effect of setting some
variables to specific values.

The distributions of the noises imply a unique joint distribution of the observ-
ables, but since an SCM contains additional information (e.g., about the effect of
interventions), the other direction (inferring an SCM from the joint distribution
of the observables) is not unique.
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In causal structure inference, we seek to infer properties of graph and functions
from data. It turns out that subject to certain assumptions, conditional inde-
pendences among the Xi contain some information about the graph [7]. We have
recently shown that assuming a certain type of independence between mechanisms
lets us handle some cases that were previously unsolvable [1]; it also has nontrivial
implications for machine learning tasks such as semi-supervised learning, covariate
shift adaptation and transfer learning [6]. Alternatively, assumptions on the form
of the functions, such as additive dependence on the noise, allow us to solve some
such cases as well [3].

As mentioned, the SCM description contains more detail; it also allows us to
reason about relationships between distributions in more structured ways. If we
view an SCM as the underlying generative model for our data, rather than just a
joint distribution, then this can have implications for machine learning tasks [5].
We briefly mention some open problems and ideas.

1. Learning multiple tasks in multiple environments. It may be the case
that some components of an SCM remain invariant between different learning
settings, while others change [6, 4]. This means that even though the settings
or environments differ in the joint distributions, some of the components of the
distributions’ causal factorizations are stable. It is desirable to develop means to
identify those components from data [4].

More generally, the different settings may also differ in which predictors are
available, and which target variables we are trying to predict. If the settings are
deemed related, it would still be desirable to view them as instantiations of different
learning problems associated with the same underlying SCM. This is connected to
the problem below.

Finally, it may be the case that there is no clear correspondence between pre-
dictors in different settings. In this case, one may still be able to train a system
(e.g., a neural network) whose components compete for data, get trained on those
data where they work best, and thus gradually specialize on different (sub-)tasks,
while certain components are shared across tasks.

2. Learning using “privileged information.” Whenever we observe data,
we think of this as observing a subset of the vertices of an SCM. E.g., we see a
histological image x, and we are provided the information y whether there is cancer
or not. There are many variables that in reality lie “in between” that we do not see.
Sometimes, we get additional features of the image x∗ (this is Vapnik’s “second
space” [8]), possibly computed by a “generator” (or teacher) p(x∗|x), that will
make it easier to predict x. “Easier” here could mean that the finite sample error
is lower, since by using x∗ we get away with a smaller/simpler or more natural
function class. Vapnik provides the following example of a generator p(x∗|x):
a pathologist who sees the histological image might add the value “aggressive
proliferation” for x∗. This kind of metaphorical reasoning is potentially powerful
since by this translation we tap into a rich world of shared culture and meaning,
assisting us in choosing function classes and generalizing. In the SCM view, we
may have seen a lot of data for the mechanism p(x∗|x), but only little data for



1898 Oberwolfach Report 33/2016

p(y|x), and little data for p(y|x∗). In this setting, p(y|x∗) could be easier to learn
than p(y|x) if we get away with a simpler function class.

More generally, rather than a teacher p(x∗|x), we might have functions that
have been trained on another task, trained on prior data (which is not available
for the present task) and evaluated on the current data. For instance, this could be
another function in an SCM. Note that in such a setting (where we have different
training sets depending on which covariates and which learning task we consider),
it may be the case that not only the Markov blanket of the targets should be used
for prediction.

3. A compression view of SCMs. In general, there are multiple ways of
factorizing a joint distribution into products of conditionals. Different SCMs, be
it for all variables or only for subsets, possibly learnt for different (but related)
tasks, may or may not share some of those conditionals.

The causal factorization is the one that contains a conditional corresponding
to each structural assignment (1). We hypothesize that the causal factorization
should permit the most compact overall representation of a collection of SCMs
(or of a collection of related training sets), since it will have the largest set of
shared conditionals. This may lead to ways of learning causal graphs from multiple
datasets and tasks.

Interestingly, this also points to the usefulness of multiple tasks, and more
generally:

4. The use of data that is not identically distributed. While traditionally,
data that is not i.i.d. has been considered a nuisance, the above indicates that
it can be helpful provided the tasks are related (e.g., in a way such that certain
conditionals agree). This suggests formalizing such learning tasks. Suppose that
we are given an overall set of data points (x1, . . . , xn) (where each xi could for
instance be a pair of inputs and a target); in addition, suppose we have a similarity
measure k(xi, xj) taking the value 1 if xi and xj come from the same distribution,
and (close to) 0 if the distributions are very different. How would we best exploit
this information to learn an overall set of SCMs?
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Learning with primal and dual model representations: New extensions

Johan A.K. Suykens

Support vector machines and kernel-based models have been successful for a wide
range of problems in supervised and unsupervised learning, and beyond. However,
recent developments in deep learning, networks, sparsity and big data are posing
new challenges towards a unified understanding, generically applicable methodolo-
gies, scalability and new mathematical foundations.

Learning with primal and dual model representations may offer a unifying pic-
ture at this point. Primal representations are expressed in terms of the feature
map, while dual representations in the kernel function. As previously shown, such
characterizations are relevant with respect to sparsity, robustness, out-of-sample
extensions, model selection and large scale problems.

In this context, we highlight the following recent extensions:

- Multilevel hierarchical kernel spectral clustering for large scale net-
works [1]: In kernel spectral clustering a model-based approach is taken to spec-
tral clustering with primal and dual model representations within an optimization
problem formulation. One can work with representative subgraphs in a multilevel
hierarchical fashion, completing the network through kernel-based out-of-sample
extensions. This approach reveals good quality clusters at many scales on real-life
networks in comparison with other state-of-the-art methods. For directed net-
works deformed Laplacians are proposed in [2].

- Generalized support vector regression with tensor-kernel represen-
tations [3]: Support vector regression is studied in Banach function spaces using
Fenchel-Rockafellar duality. As a result tensor-kernel representations are obtained.
This setting of generalized support vector regression admits a larger family of reg-
ularization schemes, approaching ℓ1 regularization, instead of the ℓ2 regularization
that is commonly used in support vector machines.

- New variational principle and nonlinear extensions to singular value
decomposition [4]: Matrix singular value decomposition is interpreted within a
kernel-based setting with primal and dual model representations. The row and
column vectors serve as data sources for which compatible feature maps are con-
sidered. The dual problem in the Lagrange multipliers is linked to Lanczos’ de-
composition theorem. New nonlinear extensions are obtained with general kernels.
In the special case of a square symmetric matrix it reduces to a kernel principal
component analysis with a Mercer kernel.
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- Deep learning using restricted kernel machines and conjugate feature
duality [5]: A principle of so-called conjugate feature duality is proposed, which
is based on a quadratic form property, proven by the Schur complement. This
enables to obtain an interpretation of visible and hidden units for a class of kernel
machines (including least squares support vector machines for classification and
regression, kernel PCA, matrix SVD, and Parzen-type models), with a dual rep-
resentation expressed in terms of the hidden features. In this way a connection is
made with restricted Boltzmann machines (restricted means here that there are
no hidden-to-hidden connections). Deep architectures are obtained by coupling
the restricted kernel machines over different levels.
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Structured high-dimensional estimation

Alexandre Tsybakov

(joint work with Yu Lu, Olga Klopp, Harrison Zhou)

Suppose that we observe a matrix Y satisfying

(1) Y = θ∗ +W.

Here θ∗ = (θij) ∈ R
n×m is the unknown matrix of interest andW = (Wij) ∈ R

n×m

is the noise matrix. We assume that the signal matrix θ∗ is ”structured”, that is,
it can be factorized using sparse factors. Specifically, we assume that

θ∗ = (θij) ∈ Θ ⊂ R
n×m
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where the class of matrices Θ is defined as

Θ = {θ = XBZT : X ∈ Asn , B ∈ R
kn×km , Z ∈ Asm , ‖B‖∞ ≤ Bmax}(2)

for some 0 ≤ sn ≤ kn and 0 ≤ sm ≤ km, where for r ∈ {n,m}, we denote by Asr

either the set containing only the identity r × r matrix, or

Asr = {A ∈ Dr×kr
r , ‖Ai·‖0 ≤ sr, for all i ∈ {1, . . . , r}, ‖A‖∞ ≤ L},

or

Asr = {A ∈ Dr×kr
r , ‖Ai·‖0 = sr, for all i ∈ {1, . . . , r}, ‖A‖∞ ≤ L}.

Here, the set Dr is a subset of R called an alphabet, the values n,m, kn, km, sn, sm
are integers, and Bmax, L are constants. The notation Ai· stands for the ith row
of matrix A, ‖b‖0 denotes the number of non-zero components of vector b, and
‖A‖∞ is the maximum of components norm of matrix A.

We assume that the noise variablesWij are independent centered sub-Gaussian
random variables, i.e., there exists σ > 0 such that for any i ∈ {1, . . . , n}, j ∈
{1, . . . ,m} we have

E exp (λWij) ≤ exp(λ2σ2/2), ∀λ > 0.

Along with (1), we consider a more general model, which is the matrix comple-
tion model. Let N ≤ nm be an integer and set p = N

mn . We suppose that each
entry of Y is observed independently of the other entries with probability p. Let
ηij be independent Bernoulli variables with parameter p. Then, the observations
are of the form

(3) Yij = ηij (θij +Wij) .

Denote by Y = (Yij) the matrix of observations. The expectation of the number
of observed entries is equal to N . This includes as a particular case model (1),
which corresponds to p = 1 (we observe all entries of Y ).

We study the optimal rates of convergence in the Frobenius norm (denoted by
|| · ||F ) of estimators of matrix θ∗ in a mimimax sense on the class of matrices (2).

This framework is quite general; in specific cases, we obtain several models
studied in the literature. Some interesting examples of the corresponding classes
Θ are as follows.

• Gaussian mixture:

ΘGM = {θ ∈ R
n×m : θ = BZT , for some B ∈ R

n×k, ‖B‖∞ ≤ Bmax,

and Z ∈ {0, 1}m×k with ‖Zi·‖0 = 1}.
• Sparse Dictionary learning:

ΘDict = {θ ∈ R
n×m : θ = BZT , for some B ∈ R

n×k, ‖B‖∞ ≤ Bmax,

and Z ∈ R
m×k with ‖Zi·‖0 ≤ s, ‖Z‖∞ ≤ L}.

• Stochastic Block Model (SBM):

ΘSBM = {θ ∈ R
n×n : θ = ZBZT , for some B ∈ [0, 1]k×k,

and Z ∈ {0, 1}n×k with ‖Zi·‖0 = 1}.
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Let Pθ denote the distribution of Y satisfying model (3) and let Eθ be the expec-
tation with respect to Pθ. The next theorem gives a minimax lower bound.

Theorem 1. Let Wij be i.i.d. Gaussian N (0, σ2) random variables, and let Θ be
a class defined in (2). Then there exists a universal constant c > 0 such that

inf
θ̂
sup
θ∈Θ

Pθ

{

||θ̂ − θ||2F ≥ cσ2

p
(RX +RB + RZ)

}

≥ 0.7,

and

inf
θ̂
sup
θ∈Θ

Eθ||θ̂ − θ||2F ≥ cσ2

p
(RX +RB +RZ) ,

where RX = nrm∧nsn log ekn

sn
, RB = rnrm, RZ = mrn∧msm log ekm

sm
, rn = n∧kn

and rm = m∧km provided neither of the sets Asn and Asm reduces to the identity
matrix. If one of them reduces to the identity matrix, the corresponding term RX

or RZ disappears from the rate. Here, inf θ̂ denotes the infimum over all estimators.

We conjecture that the lower bound of Theorem 1 gives the minimax rate of
convergence for the considered problem. We prove this fact for some specific cases
by constructing estimators of θ that achieve this rate. The next theorem shows
that the least squares estimator

θ̂LS ∈ argmin
θ∈Θ

||Y − θ||2F

is minimax optimal if p = 1 and the alphabets Dn and Dm are finite.

Theorem 2. Let Wij be i.i.d. sub-Gaussian random variables, and let Θ be a
class defined in (2) such that Dn and Dm are finite sets. Assume that kn ≤ n and
km ≤ m, and p = 1. Then, there exists a constant C > 0 depending only on σ, L
and Bmax such that

sup
θ∈Θ

Eθ||θ̂LS − θ||2F ≤ C

(

knkm + nsn log
ekn
sn

+msm log
ekm
sm

)

provided neither of the sets Asn and Asm reduces to the identity matrix. If one
of them reduces to the identity matrix, the corresponding term nsn log

ekn

sn
or

msm log ekm

sm
disappears from the rate.

As a consequence of Theorems 1 and 2, we obtain the optimal rates of conver-
gence for the Gaussian mixture and SBM models, for which the sets Dn and Dm

have cardinality 2.

Corollary 1. Let Wij be i.i.d. Gaussian N (0, σ2) random variables, and p = 1.
Then,

inf
θ̂

sup
θ∈ΘGM

Eθ||θ̂ − θ||2F ≍ nk +m log k,

inf
θ̂

sup
θ∈ΘSBM

Eθ||θ̂ − θ||2F ≍ k2 + n log k,

provided that k ≤ m for ΘGM and k ≤ n for ΘSBM .
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For the general scheme of matrix completion, we obtain the following upper
bound, which departs from the lower bound of Theorem 1 by a logarithmic factor.

Theorem 3. Let Wij be i.i.d. sub-Gaussian random variables, and let Θ be a
class defined in (2). Assume that there exists a constant 0 < c′ < 1 such that
log(sn) ≤ c′ log(kn) and log(sm) ≤ c′ log(km). Then there exists a constant C > 0
depending only on σ, L and Bmax such that

sup
θ∈Θ

Eθ||θ̂LS − θ||2F ≤ C log(m ∨ n)
p

(RX +RB +RZ) ,

provided neither of the sets Asn and Asm reduces to the identity matrix. If one of
them reduces to the identity matrix, the corresponding term RX or RZ disappears
from the rate.

Iterative multiplicative filters for data labeling

Gabriele Steidl

(joint work with Ronny Bergmann, Jan Henrik Fitschen and Johannes Persch)

Data labeling is a basic problem which appears in many applications. In particular
it can be used for image partitioning and segmentation, which is an important pre-
processing step for many state-of-the-art algorithms used for performing high-level
computer vision tasks. A huge number of different methods has been developed
for this purpose and no single technique works best for all cases.

Recently, Åström, Petra, Schmitzer, and Schnörr [1] suggested an interesting
supervised geometric approach to the labeling problem. The objective function to
minimize is defined on the manifold of stochastic matrices and a minimizing algo-
rithm via the corresponding Riemannian gradient ascent flow is considered. In the
numerical part the authors apply several simplifications, in particular lifting maps
which finally lead to a simple iterative procedure. Unlike the continuous Riemann-
ian gradient flow that is shown in [1] to converge to unambiguous labelings, the
authors merely showed that the simplified numerical scheme closely approximates
this flow, but did not prove its convergence. This proof is implied by our results
reported in the present paper.

We propose a simple algorithm that can be seen as an iterative multiplicative
filtering of a label assignment matrix which can be used to assign K labels to
n≫ K data points. Then the i-th rowWT

i of a label assignment matrixW ∈ Rn,K

contains a vector in the probability simplex whose k-th entry gives the probability
that the i-th data point belongs to label k ∈ {1, . . . ,K}. We start the iterations
with a label assignment matrix containing the averaged distances between the
prior data and the observed ones. Here the data and their priors may lie in any
metric space, which makes the method highly flexible. Then this label assignment
matrix is iterated in a multiplicative way. We prove that under mild conditions
the iterates in each row converge to unit vectors in RK , i.e., to vertices of the
probability simplex. This enables a unique label assignment. Clearly, our filters
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are no smoothing filters, but in contrary force the rows of the label assignment
matrix to move to the vertices of the probability simplex and therefore to minimize
their entropy. We show that from another point of view each iteration can be
understood as finding weighted barycenters of the previous iterates with respect
of the Kullback-Leibler distance on the probability simplex. Our filters can be also
of non-local nature, but are geometric means instead of arithmetic ones.

A modification of our algorithm resembles the original idea of Åström, Petra,
Schmitzer, and Schnörr [1]. Since the relation is not immediately clear, we provide
the corresponding details. Further, we add a convergence result for the modified
method.

Numerical results demonstrate the very good performance of our algorithm. In
particular we apply the method for the partitioning of manifold-valued images as
SO(3) valued EBSD data, see also [2]. For more information we refer to [3]
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Preprint 1603.05285, 2016.

[2] R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, and G. Steidl. Restoration of manifold-
valued images by half-quadratic minimization. Inverse Problems in Imaging 10(2), 281–304,
2016.

[3] R. Bergmann, J. H. Fitschen, J. Persch and G. Steidl. Iterative multiplicative filters for data
labeling. ArXiv Preprint 1604.08714, 2016.

Learning action potential dynamics for preclinical drug safety testing

Philipp Kügler

The term action potential (AP) refers to the characteristic membrane voltage re-
sponse of excitable cells such as cardiomyocytes to a superthreshold electric stim-
ulus. Cardiac APs underly the contraction of the myocardium and are regulated
by a subtle interplay of various ion channels that control the in- and outflow of
ions across the membrane. If this interplay is perturbed by pharmaceutical com-
pounds, the AP gets impaired and arrhythmias such as early afterdepolarizations
(EADs) may arise. These pathological voltage oscillations may synchronize at the
tissue level and trigger potentially lethal ventricular fibrillation.

While drug cardiotoxicity is of major concern both to the pharmaceutical indus-
try and regulatory agencies, the current preclinical in vitro and animal assays for
predicting proarrhythmic risk are recognized deterrents to drug development due
to lack of specificity. As a consequence, the US FDA recently triggered the CiPA
initiative for a radical overhaul of the drug safety paradigm. Therein, breakthrough
is expected from a combination of human stem cell technology with mathematical
modelling of cardiac action potentials.

Cardiac action potentials are mathematically described by means of coupled
systems of nonlinear ODEs that consider the cellular membrane as an electrical
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circuit consisting of a capacitative current in parallel with several transmembrane
ionic currents. Therein, the voltage equation

(1) C
dV

dt
= −

∑

ion

Iion + Isti

is complemented by additional ODEs for channel gating variables that describe
the voltage dependent activation and deactivation of the ionic currents. This
modelling approach dates back to the work of Denis Noble [2] and forms the basis
of all modern models for animal, human adult and human pluripotent stem cell
derived cardiomyocytes. For studying the impact of pharmaceutical compounds on
the action potential, (1) then is extended by models of drug-ion channel interaction
[4].

Applying multiple time scale analysis and bifurcation theory to cardiac action
potential models (1), early afterdepolarizations have been attributed with different
bifurcations of equilibria in the fast AP subdynamics [1], [5]. Likewise, arrhythmic
behaviour can be associated with bifurcations of limit cycles in full time scale AP
models in which corresponding bifurcation parameters can be interpreted in terms
of drug action. Consequently, distances to bifurcations can be utilized as safety
margin for preclinical drug cardiotoxicity testing and offer a promising supplement
to non-mechanistic logistic regression based risk estimation.

In that regard, one challenge is that experimentally validated drug-AP mod-
els are not readily available at the early stages of drug development. Both the
heterogeneity of cardiomyocytes even of the same type and the lack of a full phar-
macological characterization of a new compound to be tested hamper the use of
only slightly adapted drug-AP models from the shelf. On the other hand, the
limited amount of experimental and computational efforts that can be devoted at
the preclinical stage to a single compound the repetition of otherwise in principle
straightforward model building and validation steps.

Against this background we suggest the use of learning algorithms [6] for de-
riving parsimonious AP model equations directly from experimental data, that is
to identify the vector valued function f in

dz

dt
= f(z).

Collecting time series data of z and ż as

Z =











z1(t1) z2(t1) . . . zn(t1)
z1(t2) z2(t2) . . . zn(t2)

...
...

. . .
...

z1(tm) z2(tm) . . . zn(tm)











, Ż =











ż1(t1) ż2(t1) . . . żn(t1)
ż1(t2) ż2(t2) . . . żn(t2)

...
...

. . .
...

ż1(tm) ż2(tm) . . . żn(tm)











,

and constructing a library Θ(Z) of candidate functions of the columns of Z, e.g.,

Θ(Z) =
[

1 |Z |ZP2 | · · · | sin(Z) | · · ·
]
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Figure 1. Sparse reconstruction of action potential dynamics

with

ZP2 =











z21(t1) z1(t1)z2(t1) . . . z22(t1) . . . z2n(t1)
z21(t2) z1(t2)z2(t2) . . . z22(t2) . . . z2n(t2)

...
...

. . .
...
...

. . .
...

z21(tm) z1(tm)z2(tm) . . . z22(tm) . . . z2n(tm)











,

the goal is to determine the vectors of coefficients

Q = [q1 q2 · · · qn]

in

Ż = Θ(Z)Q.

Under the assumption that only a few relevant terms define the dynamics (such
that f is sparse in a high-dimensional nonlinear functions space), sparse regression
can be used for solving the inverse problem. With Θ(zT) as vector of symbolic
functions, the identified model then is

(2)
dz

dt
= f(z) = QT(Θ(zT))T

In context of preclinical drug cardiotoxicity testing, our suggestion/goal is to derive
a parsimonious drug-AP model (2) in an automated manner for a test compound
at hand and subsequently determine its distance from the closest bifurcation as-
sociated with arrhythmic behaviour.

In a first step, we tested the reconstruction of the action potential dynamics
of a polynomial approximation [3] to the original Noble model. The Figure 1
displays the sparse reconstruction of the transmembrane voltage using a candidate
library of 120 mulitvariate monomials of degree ≤ 7, where only 25 out of 360
model parameters were determined to be non-zero. Future challenges include
the consideration of noisy data, partial state observations and the use of non-
polynomial basis functions possibly more appropriate for the description of AP
dynamics.
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Distributed learning algorithms

Ding-Xuan Zhou

Distributed learning based on a divide-and-conquer approach has the advantages
of reducing the memory and computing costs to handle big data. This method has
been observed to be very successful in many practical applications. A distributed
learning algorithm consists of three steps: partitioning the data into disjoint sub-
sets, applying a learning algorithm implemented in an individual machine or pro-
cessor to each data subset to produce an individual output, and synthesizing a
global output by utilizing some average of the individual outputs. In this talk
we discuss error analysis of some distributed learning algorithms including least
squares regularization schemes and spectral algorithms.

Let X be a compact metric space (input space), Y = R (output space) and
ρ be a probability measure on X × Y . Take a random sample D = {(xi, yi)}Ni=1

independently drawn from ρ. The regression function fρ is defined by fρ(x) =
∫

Y
ydρ(y|x) where ρ(·|x) is the conditional distribution of ρ at x ∈ X .
We consider learning for regression based on a Mercer kernel K : X ×X → R

which is a continuous, symmetric and positive semi-definite function generating
a reproducing kernel Hilbert space (RKHS) (HK , ‖ · ‖K) by functions {Kx =
K(·, x) : x ∈ X}. The approximation ability of the RKHS for kernel methods
may be measured by the range of Lr

K , the r-th power with r > 0 of the integral
operator LK on L2

ρX
defined by

LK(f)(x) =

∫

X

K(x, y)f(y)dρX(y), x ∈ X,

where ρX is the marginal distribution of ρ on X . The complexity of the RKHS
may be measured by the effective dimension defined as the trace of the operator
(LK + λI)−1LK

N (λ) = Tr
(

(LK + λI)−1LK

)

=
∑

i

λi
λi + λ

, λ > 0,
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where λi is the i-th eigenvalue of LK .
The first algorithm we discuss [1, 2] is distributed learning with the least squares

regularization scheme defined by

(1) fD,λ = arg min
f∈HK

{

1

N

N
∑

i=1

(f(xi)− yi)
2 + λ‖f‖2K

}

, λ > 0.

If we divide the sampleD = {(xi, yi)}Ni=1 of input-output pairs into disjoint subsets
{Dj}mj=1, applying a learning algorithm to the much smaller data subset Dj gives

an output fDj
, and the global output might be fD = 1

m

∑m
j=1 fDj

. Here fDj
=

fDj ,λ and fD = fD,λ.

Theorem 1. Assume |y| ≤M almost surely and fρ = Lr
K(gρ) for some 0 ≤ r ≤ 1

2

and gρ ∈ L2
ρX

. If N (λ) = O(λ−
1
2α ) for some α > 0, |Dj| = N

m for j = 1, . . . ,m,

and m ≤ Nmin{ 12αr+1
5(4αr+2α+1)

, 4αr
4αr+2α+1}, then by taking λ = N− 2α

4αr+1 , we have

E

[

∥

∥fD,λ − fρ
∥

∥

L2
ρX

]

= O
(

N− α+2αr
2α+4αr+1

)

.

If fρ ∈ HK and m ≤ N
1

4+6α , the choice λ =
(

m
N

)
2α

2α+1 yields

E

[

∥

∥fD,λ − fD,λ

∥

∥

L2
ρX

]

= O
(

N− α
2α+1m− 1

4α+2

)

and

E
[

∥

∥fD,λ − fD,λ

∥

∥

K

]

= O

(

1√
m

)

.

The second algorithm we discuss [3] is distributed learning with spectral algo-
rithms

fD,λ = gλ(LK,D)
1

N

N
∑

i=1

yiKxi

induced by a filter function gλ : [0, κ2] → R with a parameter λ > 0 and the
empirical integral operator LK,D associated with the kernel K and the input data
D(x) = {x1, · · · , xN} defined on HK as

LK,D(f) =
1

N

N
∑

i=1

f(xi)Kxi
=

1

N

N
∑

i=1

〈f,Kxi
〉KKxi

.

Here κ = maxx∈X

√

K(x, x) and gλ(LK,D) is a linear operator on HK defined by
spectral calculus: if {(σx

i , φ
x

i )i} is a set of normalized eigenpairs of LK,D, then
gλ(LK,D) =

∑

i gλ(σ
x

i )φ
x

i ⊗ φxi =
∑

i gλ(σ
x

i )〈·, φxi 〉Kφxi . Spectral algorithms have
been well developed in the literature of inverse problems and learning theory [4, 5].
Examples include Landweber iteration, spectral cut-off, and accelerated Landwe-
ber iteration. The least squares regularization is a special spectral algorithm with
gλ(σ) = (σ + λ)−1. It has a saturation phenomenon in the sense that its ap-
proximation ability does not increase when the regularity of the approximated
function goes beyond certain level. Spectral algorithms can be used to overcome
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the saturation when the filter function gλ : [0, κ2] → R with 0 < λ ≤ κ2 has a
large qualification defined as a positive number νg such that there exists a positive
constant b independent of λ satisfying

sup
0<σ≤κ2

|gλ(σ)| ≤
b

λ
, sup

0<σ≤κ2

|gλ(σ)σ| ≤ b,

and

sup
0<σ≤κ2

|1− gλ(σ)σ|σν ≤ γνλ
ν , ∀ 0 < ν ≤ νg,

where γν > 0 is a constant depending only on ν ∈ (0, νg].

Theorem 2. Assume |y| ≤M almost surely and the filter function gλ : [0, κ2] → R

with 0 < λ ≤ κ2 has a qualification νg ≥ 1
2 . If fρ = Lr

K(gρ) for some 1
2 ≤ r ≤ νg

and gρ ∈ L2
ρX

, N (λ) = O(λ−β) for some β > 0, |Dj | = N
m for j = 1, . . . ,m,

λ = N− 1
2r+β , and

m ≤ Nmin{ 2
2r+β

, 2r−1
2r+β},

then

E[‖fD,λ − fρ‖2L2
ρX

] = O
(

N− 2r
2r+β

)

.
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Learning with hierarchical kernels

Ingo Steinwart

(joint work with Philipp Thomann)

Although kernel methods such as support vector machines are one of the state-
of-the-art methods when it comes to fully automated learning, see e.g. the recent
independent comparison [2], the recent years have shown that on complex datasets
such as image, speech and video data, they clearly fall short compared to deep
neural networks.

One possible explanation for this superior behavior is certainly their deep archi-
tecture that makes it possible to represent highly complex functions with relatively
few parameters. In particular, it is possible to amplify or surpress certain dimen-
sions or features of the input data, or to combine features to new, more abstract
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features. Compared to this, standard kernels such as the popular Gaussian ker-
nels simply treat every feature equally. In addition, most users of kernel machines
probably stick to the very few standard kernels, often simply because there is in
most cases no principled way for finding problem specific kernels. In contrast to
this, deep neural networks offer yet another order of freedom to the user by making
it easy to choose among many different architectures and other design decisions.
This discussion shows that the class of deep neural networks offers potentially
much more functions that may fit well to the problem at hand than classical ker-
nel methods do. Therefore, if the training algorithms are able to find these good
hypotheses while simultaneously controlling the inherent danger of overfitting (and
the user picked a good design), then the recent success of deep networks does not
seem to be so surprising after all. In particular, this may be an explanation for
the types of data mentioned above, for which an equal and un-preprocessed use of
all features may really not be the best idea. Moreover, the recent success of deep
networks indicates that these ‘ifs’ can nowadays much better be controlled than
20 to 30 years ago. This naturally raises the question, whether and how certain
aspects of deep neural networks can be translated into the kernel world without
sacrificing the benefits of kernel-based learning, namely less ‘knobs’ an unexpe-
rienced user can play with, the danger of getting stuck in poor local minima, or
more principled statistical understanding, and last but not least, their success in
situations in which no human expert is in the loop.

Of course, the limitations of using simple single kernels have been recognized
before. Probably the first attempts in this direction are multiple kernel learning
algorithms, see [3], which, in a nutshell, replace a single kernel by a weighted sum
of kernels. The advantage of this approch is that finding these weights can again
be formulated as a convex objective, while the disadvantage is the limited gain
in expressive power unless the used dictionary of kernels is really huge. A more
recent approach for increasing the expressive power is to construct complex kernels
from simple ones by composing their feature maps in some form. Probably the
first result in this direction can be found in [1], in which the authors described
the general setup and considered some particular constructions. Moreover, this
idea was adopted in [4], where the authors considered sums of kernels in each
composition step and established bounds on the Rademacher chaos complexities.
Similarly, [7] considered such sums in the decomposition step, but they mostly re-
strict their considerations to a single decomposition step, for which they establish
a generalization bound based on the pseudo-dimension. Furthermore, [6] investi-
gate compositions, in which the initial map is not a kernel feature map, but the
map induced by a deep network. All these articles also present some experimental
results indicating the benefits of the more expressive kernels. Finally, [5] reports
some experiments with a linear support vector machine (SVM) as the top layer of
a deep network.

In this talk we also adopt the idea of iteratively composing weighted sums of
kernels in each layer. Unlike the papers mentioned above, however, we focus on
sums of Gaussian kernels composed with Gaussian kernels. To be more precise,
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consider a kernel of the form

(1) kγ,X,H(x, x′) := exp
(

−γ−2||Φ(x) − Φ(x′)||2H
)

, x, x′ ∈ X ,

where X ⊂ Rd, H is a Hilbert space, and Φ : X → H is some map. Now note that
k(x, x′) := 〈Φ(x),Φ(x′)〉 defines a kernel, and since we have ||Φ(x)− Φ(x′)||2H =
k(x, x)− 2k(x, x′) + k(x′, x′), we can also express (1) by the kernel k. This obser-
vation in particular applies to kernels k of the form

(2) k(x, x′) :=

l
∑

i=1

w2
i ki
(

xIi , x
′
Ii

)

, x, x′ ∈ XI .

where I1, . . . , Il ⊂ {1, . . . , d}, xIi := (xj)j∈Ii denotes a projected vector, ki are
kernels on XIi := {xIi : x ∈ X} and w1, . . . , wl > 0 are weights. This leads to:

Definition Let k be a kernel of the form (2) and H be its reproducing kernel
Hilbert space (RKHS). Then the resulting kernel kγ,XI ,H is said to be a hierarchical
Gaussian kernel

(1) of depth 1, if all kernels k1, . . . , kl in (2) are linear kernels.
(2) of depth m > 1, if all k1, . . . , kl in (2) are hierarchical Gaussian kernels of

depth m− 1.

Besides an illustrative interpretation of the construction, which highlights the
similarities to deep architectures, we show the following approximation result:

Theorem Let X ⊂ Rd be compact and I = {1, . . . , d}. Then every hierarchical
Gaussian kernel kγ,XI ,H of some depth is universal, i.e. its RKHS is dense in
C(X).

Based on this result we further show that the corresponding SVMs become uni-
versally consistent. We then describe an optimization algorithm for finding the
kernel weights, and last but not least we report results from extensive experiments
comparing different architectures against each other and against a vanilla SVM
with Gaussian kernel. It turns out that even with very moderately sized networks
such as depth 2 kernels with four or eight kernels k1, . . . , kl in (2) the standard
SVM can consistently be outperformed, sometimes with very significant improve-
ments. In addition, we investigate empirically, whether the learned kernel can also
be used for other purposes.
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Learning dynamical systems

Sayan Mukherjee

(joint work with Kevin McGoff, Andrew Nobel, Natesh Pillai)

We consider the asymptotic consistency of maximum likelihood parameter esti-
mation for dynamical systems observed with noise. Under suitable conditions on
the dynamical systems and the observations, we show that maximum likelihood
parameter estimation is consistent. Our proof involves ideas from both informa-
tion theory and dynamical systems. Furthermore, we show how some well-studied
properties of dynamical systems imply the general statistical properties related to
maximum likelihood estimation. Finally, we exhibit classical families of dynam-
ical systems for which maximum likelihood estimation is consistent. Examples
include shifts of finite type with Gibbs measures and Axiom A attractors with
SRB measures.

We also develop a relative version of the thermodynamic formalism and inves-
tigate its connections to Bayesian inference.We consider Bayesian inference pro-
cedures in the setting of ergodic observations. By developing a general theory for
the asymptotic analysis of such procedures, we will generalize the classical thermo-
dynamic formalism to the relative setting. Then we will we apply our theoretical
tools to establish rigorous results on the consistency of common Bayesian inference
procedures involving Gibbs measures.

References

[1] K. McGoff, S. Mukherjee, A. Nobel, N. Pillai, Consistency of maximum likelihood estimation
for some dynamical systems, Annals of Statistics 43:1 (2015), 1–29.

Robust pairwise learning with kernels

Andreas Christmann

(joint work with Ding-Xuan Zhou)

Regularized empirical risk minimization plays an important role in machine learn-
ing theory. A broad class of regularized pairwise learning (RPL) methods based
on kernels is investigated. One example is regularized minimization of the error
entropy loss which has recently attracted quite some interest from the viewpoint
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of consistency and learning rates. We show that such RPL methods have addi-
tionally good statistical robustness properties, if the loss function and the kernel
are chosen appropriately. The talk is based on [2].

Let (X ,A) be a measurable space, Y ⊂ R be closed, BY the Borel σ-algebra
on Y, and P be a probability measure on (A ⊗ BY). Then a function L : (X ×
Y)2×R2 → [0,∞) is called a pairwise loss function, if it is measurable. A pairwise
loss function L is called separately Lipschitz continuous, if there exists a constant
|L|1 ∈ [0,∞) such that, for all t, t̃, t′, t̃′ ∈ R,

sup
x,x̃∈X ,y,ỹ∈Y

∣

∣L(x, y, x̃, ỹ, t, t̃)− L(x, y, x̃, ỹ, t′, t̃′)
∣

∣ ≤ |L|1
(

|t− t′|+ |t̃− t̃′|
)

.

is satisfied. If L is a pairwise loss function, then L⋆ := L − L(·, ·, ·, ·, 0, 0) is
called shifted pairwise loss function. To consider shifted loss functions is essential
for robustness considerations to reduce moment conditions. If L is a separately
Lipschitz pairwise loss functions, no moment conditions on P at all are needed
for our results. Hence, even heavy tailed probability measures are allowed, e.g.
Cauchy distribution, stable distributions, or mixtures of Gaussian distributions
with Cauchy distributions. This is not possible e.g. for the least squares pairwise
loss function.

Let k : X × X → R be a kernel with reproducing kernel Hilbert space H and
Φ(x) := k(·, x), x ∈ X , its reproducing kernel Hilbert space. The RPL operator S
maps any Borel probability measure P on (X × Y,BX×Y) to

S(P) := fL⋆,P,λ := arg inf
f∈H

EP⊗PL
⋆(X,Y, X̃, Ỹ , f(X), f(X̃)) + λ‖f‖2H

and the RPL estimator is defined by

Sn((X1, Y1), . . . , (Xn, Yn)) = S(Pn),

where Pn denotes the empirical measure.
We first derive results on existence and uniqueness. Our main tool for our

robustness results is a new representer theorem, which covers convex and non-
convex pairwise loss functions.

If the pairwise loss function is bounded and non-convex, then we derive an
upper bound for the maximum bias of the regularized risk in total variation or
contamination neighborhoods. This upper bound increases at most linearly in the
radius ε, uniformly for all probability measures P.

If the pairwise loss function is convex and separately continuous, then we show
that the RPL operator fL⋆,P,λ has a bounded Gâteaux-derivative if a bounded
and continuous kernel is used. As a special case we obtain a bounded influence
function.

We also show that the sequence of RPL estimators (fL⋆,Pn,λ)n∈N is qualitatively
robust for all probabiity measures P, if the pairwise loss function is convex, sepa-
rately Lipschitz continuous with uniformly bounded partial derivatives up to order
2 and if the kernel is continuous and bounded.

Assume that all pairs of random variables (Xi, Yi)
i.i.d.∼ P and denote the dis-

tribution of the RPL estimator fL⋆,Pn,λ by Ln(S; P). Of course, this distribution
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is unknown, because P is unknown in machine learning. To estimate this un-
known probability measure, we use Efron’s empirical bootstrap and replace P by
the empirical distribution Pn to obtain Ln(S;Pn) where the random variables

(X∗
i , Y

∗
i )

i.i.d.∼ Pn. Note that Ln(S;Pn) is a probability kernel, i.e. it can be con-
sidered as a random probability measure, but it can also be considered as a random
variable in an abstract space. If X ×Y is even a compact separable metric space,
we show that then even the sequence

(

Ln(S;Pn)
)

n∈N
of bootstrap approxima-

tions is qualitatively robust for all probability measures P, provided the pairwise
loss function L is convex, separately Lipschitz continuous with uniformly bounded
partial derivatives up to order 2 and if the kernel is continuous and bounded.

The results are given in more detail in [2].
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Analysis of sparse and low rank recovery via Mendelson’s small ball
method

Holger Rauhut

Compressive sensing [3] considers the recovery of (approximately) sparse vectors
(signals, images etc.) from incomplete linear measurements via efficient algo-
rithms. An extension of this theory replaces the sparsity assumption by a low rank
assumption of a matrix to be recovered [11]. All provably optimal constructions
of measurement matrices (modeling the process of taking measurements) known
so far involve randomness. A recent method for estimating minima of certain
stochastic processes from below due to Mendelson [10, 7] allows to significantly
relax assumptions on the distribution of the measurement matrices and to study
scenarios that were previously inaccessible with other methods.

In mathematical terms, we aim at reconstructing x ∈ RN from

y = Ax, A ∈ R
m×N ,
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where m≪ N . Without further assumptions reconstruction is apparently impos-
sible and compressive sensing supposes that x is sparse, i.e.,

‖x‖0 = #{ℓ : xℓ 6= 0} ≤ s

for some s < m ≪ N , or that it can at least be well-approximated by a sparse
vector. Similarly, the low rank matrix recovery problem consists in reconstructing
a matrix X ∈ Rn1×n2 of rank at most r from

y = A(X),

where A : Rn1×n2 → Rm is a linear map with m ≪ n1n2. While the recovery
approaches of ℓ0-minimization and rank-minimization are NP-hard, tractable al-
gorithms for the recovery have been developed, most notably ℓ1-minimization and
nuclear norm minimization which consist in finding the minimizer of

min
z:Az=y

‖z‖1 and, respectively, min
Z:A(Z)=y

‖Z‖∗,

where ‖z‖1 =
∑N

ℓ=1 |zℓ| and ‖Z‖∗ =
∑min{n1,n2}

j=1 σj(Z) is the nuclear norm with

σj(Z) being the singular values of Z. Standard results [3] state that for a random
draw A ∈ Rm×N of a Gaussian matrix, i.e., the entries of A being independent
mean-zero, variance one, Gaussian variables, ℓ1-minimization is able to reconstruct
s-sparse vectors x exactly from y = Ax with high probability provided

(1) m ≥ Cs log(eN/s).

Similarly, nuclear norm minimization reconstructs rank-r matrices X from y =
A(X) with A being a Gaussian random map with high probability provided m ≥
Cr(n1 + n2), see e.g. [11, 1].

Versions of the so-called null space property (NSP) characterize sparse and low
rank recovery [3]. For 1 ≤ p ≤ ∞ the ℓp-robust null space property of order s with
constants ρ ∈ (0, 1) and τ > 0 requires that

‖vS‖2 ≤ ρ√
s
‖vSc‖1 + τ‖Av‖p for all v ∈ R

N , S ⊂ {1, . . . , N},#S ≤ s,(2)

where Sc = {1, 2, . . . , N}\S denotes the complement of S, and vS is the restriction
of v to S. In fact, if this property holds, then for noisy measurements y = Ax+ e
with ‖e‖p ≤ η, the minimizer x♯ of ‖z‖1 subject to ‖Az − y‖p ≤ η satisfies

‖x− x♯‖2 ≤ C
σs(x)1√

s
+Dτη,

where σs(x)1 = min{‖x− z‖1 : ‖z‖0 ≤ s} denotes the error of best s-term approx-
imation in ℓ1. While for p = 2, the ℓ2-robust null space property is implied by the
well-known restricted isometry property (RIP) [3], checking the version for p 6= 2
via variants of the RIP leads to highly suboptimal bounds on the required number
of measurements, see e.g. the discussion in [2]. Therefore, a direct analysis of the
NSP is conducted in [2], which also allows to relax assumptions on the distribution
of the entries of the random matrix. Introducing the set

Tρ,s = {v ∈ RN : ‖vS‖2 ≥ ρ√
s
‖vSc‖1 for some S with #S ≤ s},
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the NSP (2) is ensured by the condition [6, 2]

(3) inf
x∈Tρ,S ,‖x‖2=1

‖Ax‖p ≥ τ−1.

This reformulation allows an analysis by Mendelson’s small ball method [10, 7]
(first introduced in the context of learning theory), which provides a general tool
for bounding infima over quantities like ‖Ax‖p for random A under rather weak
assumptions.

Carrying through this analysis [2, 9] essentially shows that a random matrix
with independent mean zero, variance one, and log(N)-finite moments is able
to recover (approximately) s-sparse vectors from noisy measurements with ℓp-
bounded noise via ℓp-constrained ℓ1-minimization with the optimal number (1) of
measurements.

A similar condition like (3) implies stable and robust recovery of rank r matrices
X from y = A(X) via nuclear norm minimization. Using the small ball method,
it is shown in [5] that random measurement maps with independent, mean-zero,
variance one and four finite moments, successfully recover rank r matrices provided
that m ≥ Cr(n1 + n2). Robustness under ℓp-bounded noise on the measurements
holds as well.

For the application of low rank matrix recovery in quantum tomography [4, 8],
it is of interest to study the recovery from rank-one projections generated from
randomly chosen elements of a so-called complex projective t-design. Exploiting
again Mendelson’s small ball method, it is shown in [8, 5] that m ≥ Crn log(n)
random measurements of an Hermitian rank r matrix X ∈ Cn×n, generated by an
(approximate) 4-design, are sufficient for robust recovery with high probability.
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Nonnegative subdivision revisited

Kurt Jetter

It is well-known that uniform convergence of stationary d-variate subdivision with
finite mask can be analyzed through left convergence of products of certain ma-
trices from a finite alphabet. In case a = (a(α))α∈Zd is the mask – assumed to be
finitely supported, w.l.o.g., in a cube

supp a =: I ⊆ RN = {0, 1, . . . , N1} × {0, 1, . . . , N2} × · · · × {0, 1, . . . , Nd} ⊂ Z
d

where N1, . . . , Nd are positive integers – the subdivision operator is given by

Sa : ℓ∞(Zd) → ℓ∞(Zd) , c 7→ Sa c ,

with
(Sa c)(α) :=

∑

β∈Zd

a(α − 2β) c(β) , α ∈ Z
d .

Upon iteration we get the (stationary) subdivision scheme

c(k+1) := Sa c(k) , k = 0, 1, · · · ,
initialized with the starting sequence c = c(0) ∈ ℓ∞(Zd). Uniform convergence of
the scheme refers to the following property of the so-called iterated masks

a(1) = a , a(k+1) = Sa a(k) , k ≥ 1 ,

viz., the existence of a continuous d-variate function φ 6= 0 such that

lim
k→∞

sup
α∈Zd

∣

∣

∣φ
( α

2k

)

− a(k)(α)
∣

∣

∣ = 0 .

In terms of the matrix A =
(

a(−α+ 2β)
)

α,β∈RN

, and of the system of subma-

trices (our alphabet)

Aδ =
(

a(−(α + δ) + 2(β + δ)
)

α,β∈Γ
, δ ∈ Ed := {0, 1}d ,

where

Γ = RN−1 = {0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} × · · · × {0, 1, . . . , Nd − 1} ,
we look at words from this alphabet of length k, i.e., products of k factors from
our alphabet. Since for given δ1, δ2, . . . , δk ∈ Ed and λ := δ1 + 2δ2 + · · ·+ 2k−1δk
we have

Aδ1Aδ2 · · ·Aδk(α, β) = a(k)(−α+ λ+ 2kβ) , α, β ∈ RN−1 ,

we can relate all non-zero coefficients of the iterated masks to the entries of finite
words from our alphabet, and uniform convergence means

lim
k→∞

∣

∣

∣

∣

∣

φ

(

− α

2k
+

k
∑

i=1

ǫi
2i

+ β

)

−AǫkAǫk−1
· · ·Aǫ1(α, β)

∣

∣

∣

∣

∣

= 0 for α, β ∈ RN−1 .



1918 Oberwolfach Report 33/2016

In the limit, as k → ∞, we have

− α

2k
+

k
∑

i=1

ǫi
2i

→
∞
∑

i=1

ǫi
2i

=: x ∈ [0, 1]d for α ∈ RN−1 .

Thus, uniform convergence means that the matrix product AǫkAǫk−1
· · ·Aǫ1 , for

a given sequence ǫ1, ǫ2, · · · of ’multi-bits’ from E, is left convergent to a rank-one
matrix with equal rows of type

(· · ·φ(x+ β) · · · )β∈RN−1
,

where x ∈ [0, 1]d has the dyadic expansion x =
∑∞

i=1
ǫi
2i .

In the case of nonnegative subdivision, where the mask and hence our alphabet
of matrices is nonnegative, the necessary condition for convergence (the so-called
sum rule) tells that the matrices Aδ must be row stochastic. Therefore, the con-
vergence problem can be described in terms of a nonhomogeneous finite Markov
chain with the system {Aδ : δ ∈ Ed} as transition matrices. Convergence of such
processes has been intensively studied in the past, and in our talk we refer to the
convergence result in [1] which is based on Wolfowitz’ [7] notion of SIA matrices,
Hajnal’s [3] notion of scrambling power

γ(P) := min
i1,i2

∑

j

min{ pi1,j , pi2,j },

for any square row stochastic matrixP, and the notion of the corresponding ergodic
coefficient

τ(P) := 1− γ(P) .

In this way, one can see that uniform convergence of nonnegative subdivision is
equivalent to the fact that each word from our alphabet is SIA, and equivalently,
each word of sufficient length must have the scrambling property (its ergodic co-
efficient must be less than one), or even must have a strictly positive column. The
latter two properties refer to sign patterns of row stochastic matrices, and suffi-
cient length just means that the length is at most equal to the number of possible
sign patterns of such matrices.

An account of this approach to convergence of nonnegative subdivision refering
to an nonhomogeneous Markov process is given in [4], where also a characterization
in terms of directed graphs is presented. There also a slight extension of the
Ren and Beard [6] partial characterization of the SIA property in terms of a tree
property of the graph can be found.

Recent research on convergence of nonnegative subdivision has focused on prop-
erties of the support of the mask which can be checked in a faster way than checking
all possible patterns for words. In univariate subdivision, the convergence problem
was finally characterized by Xinlong Zhou, cf. [8, 9], who has shown that uniform
convergence is equivalent to the greatest common divisor property for the indices
from the support of the mask, subject that the sum rule being satisfied. A similar
simple characterization in the multivariate case is still far from being available,
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although some progress can be seen in work of Neumann [5], and the recent work
of Li Cheng [2].
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Recovery of sparse exponential sums and sparse polynomials in several
variables

Tomas Sauer

The goal is to reconstruct exponential functions of the form

(1) f(x) =
∑

ω∈Ω

fω e
ωTx, Ω ⊂ R

s + iTs, T := R/2πZ,

or polynomials

(2) f(x) =
∑

α∈A

fα x
α, A ⊂ N

s
0,

from finitely many samples on the multiinteger grid Zs. The main assumption is
that Ω and A are sparse sets, i.e., that they are of small cardinality, and that all
the coefficients are different from zero so that the sums are “efficient”. There is,
however, no restriction on the size of the frequencies in (1) or the degree of the
polynomial in (2). It is easy to see that (2) can be reduced to (1): if recovery of
sparse exponentials from integer samples is possible, just choose an nonsingular
matrix Ξ ∈ Cs×s and consider f(eΞ·) which recovers the coefficients fα and the
frequencies ωα = ΞTα, α ∈ A, from which A can be be obtained by setting α =
rd
(

Ξ−Tωα

)

, where the rounding even has a stabilizing effect and the frequencies
can be computed by fast numerical methods as in [5], in contrast to applying
univariate Prony to symbolic polynomials like in [2].

Recovery of sparse exponentials as in (1) is called Prony’s problem and was
stated and solved (at least in principle) as early as 1795 in [3]. The case of
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several variables, however, attracted attention only very recently, for example in
the context of “superresolution”. Like in the univariate case, the solution is based
on considering Hankel matrices of the type

FA,B =

[

f(α+ β) :
α ∈ A
β ∈ B

]

∈ C
A×B, A,B ⊂ N

s
0.

Defining XΩ := {eω : ω ∈ Ω} ⊂ Cs and the monomial Vandermonde matrix

V (X,A) =

[

xα :
x ∈ X
α ∈ A

]

, X ⊂ C
s, A ⊂ N

s
0, we get the two fundamental identi-

ties

FA,B = V (XΩ, A)
T FΩ V (XΩ, B)(3)

FA,B p = V (XΩ, A)
T FΩ p(XΩ),(4)

where FΩ = diag [fω : ω ∈ Ω] and we identify a polynomial

p(x) =
∑

β∈B

pβ x
β

with its coefficient vector [pβ : β ∈ B] ∈ Cs. These factorizations quite readily
yield information on the possibility to reconstruct Ω from measurements:

(1) the diagonal coefficient matrix FΩ can be reconstructed from FA,B if and
only if both Vandermonde matrices in (3) have rank ≥ #Ω.

(2) if the rank of V (XΩ, A) exceeds #Ω, then the rank of FA,Γn
, Γn := {α ∈

Ns
0 : |α| = n}, is the affine Hilbert function of the ideal IΩ = {p ∈

C[x1, . . . , xS ] : p(XΩ) = 0}.
Taking into account these two observations, good choices for A are index sets
such that ΠA = span {(·)α : α ∈ A} is a universal interpolation space of order
#Ω, i.e., a space that allows for (non unique!) interpolation at any subset of
Cs of cardinality ≤ #Ω. If one request (total) degree reduction of the respective
interpolation operator in addition, then the minimal index set A of order N can
be identified as the hyperbolic cross

ΥN :=







α ∈ N
s
0 :

s
∏

j=1

(αj + 1) ≤ N







.

Based on this knowledge, it is possible to compute a basis of the ideal IΩ by
successively adding columns of the matrix FA,B with a nested sequence of B which
can be equipped with a simple termination condition based on the rank of FA,B .
Two canonical choices are to build B by adding simple monomials, leading to a
symbolic method and a Gröbner basis for IΩ, the second way is to update by blocks
of total degree which results in a term order free H–basis that can be determined
entirely by orthogonal projections and QR–decompositions from Numerical Linear
Algebra which allows for computation in a floating point environment.

Once this Prony ideal is known, the frequencies can be determined by eigenvalue
methods analogous to Frobenius companion matrices, cf. [1] and the coefficients
by solving yet another Vandermonde system.
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Adaptive compression against countable alphabets

Stéphane Boucheron

(joint work with Anna Ben-Hamou, Elisabeth Gassiat)

We study the problem of lossless universal source coding for stationary memoryless
sources on a countably infinite alphabet (X = N). Lossless compression consists
of mapping messages (finite sequences of symbols from X ) to codewords (binary
strings). The mapping has to be not only one-to-one but also uniquely decodable:
any binary string should be parsed in at most one way into a sequence of codewords.
The first aim of compression is to minimize the expected length of codewords.

If a single source (that is a probability distribution P over infinite sequences
of symbols from X ) has to be handled, Shannon’s first theorem asserts that
the minimum expected length of codewords when encoding messages of length
n is not smaller than the Shannon entropy of Pn (the trace of P over Xn):
−∑x∈Xn Pn(x) logPn(x). Up to an additive constant, this lower bound is achiev-
able by well understood techniques. The most relevant to our work is arithmetic
coding. This method takes advantage of a correspondence between uniquely de-
codable codes and probability distributions that is established thanks to the Kraft-
McMillan inequality [11]. Indeed, if a uniquely decodable code is identified with a
probability distribution Qn over Xn, the length of the codeword associated with
x ∈ Xn, is not larger than 1 − logQn(x). The performance of a probability Qn

(henceforth called a coding probability) with respect to a sampling probability Pn

is quantified by the redundancy, that is the expected difference between the ideal
codeword length − logPn(x) and the actual codeword length:

∑

x∈Xn

Pn(x) log
Pn(x)

Qn(x)

which is also the relative entropy D(Pn | Qn) between the sampling probability
and the coding probability.
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The problem of universal coding arises when handling a collection C of sources.
Universal coding aims at building a single probability distribution Qn that per-
forms well with respect to the whole class. The performance is measured by worst
case redundancy

R(Qn, Cn) := max
P∈C

D(Pn | Qn) .

The minimax redundancy

R(Cn) := min
Qn

max
P∈C

D(Pn | Qn)

quantifies the difficulty of universal coding with respect to class Cn. When the
alphabet is finite, universal coding is well understood and may be spectacularly
successful: if C consists of all stationary memoryless sources over an alphabet of
size k, then

R(Cn) =
k − 1

2
log

n

2πe
+Ok(1) ,

see [3, 18, 19] and references therein.
If the considered collection of sources is too large, minimax redundancy may

turn out to be trivial (scale linearly with message length). In other settings, the
source class may be the union of smaller classes with widely differing minimax
redundancy rates (for example sources defined by finite context trees over a finite
alphabet have redundancy rates that depend on the shape of the context tree).
Adaptive coding then considers an appropriate, more general setting. Assume that
the excessively large collection of sources is the union of smaller subclasses and
that, for each subclass, minimax redundancy rate is non trivial and a good uni-
versal coder is available. Is it then possible to engineer a single coding method
that performs well over all subclasses in the collection? This problem is related to
competitive estimation, it could be called competitive coding. Adaptive coding is
also known as twice-universal coding. We conform to the conventions and defini-
tions of mathematical statistics. Context-Tree-Weighting [2] provides an example
of an adaptive code with respect to sources with bounded or unbounded memory
over finite alphabets.

Let (C(α)) be a collection of source classes indexed by α ∈ A. A sequence
(Qn)n≥1 of coding probabilities is said to be asymptotically adaptive with respect
to a collection (C(α))α∈A of source classes if for all α ∈ A

(1) R(Qn, C(α)n) = sup
P∈C(α)

D(Pn, Qn) ≤ (1 + oα(1))R(C(α)n)

as n tends to infinity. If the inequality (1) holds with a factor other than (1+oα(1))
(that may depend on α) larger than 1 to the right, then we say that there is
adaptivity within this factor. Note that Qn cannot depend on α or else the problem
is simply one of universality.

When the alphabet is countably infinite, even if we focus on stationary memory-
less sources, universal coding is not achievable [14]. Several competing approaches
to this problem have been considered.
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(1) [15] separate the description of strings over large alphabets into two parts:
description of the symbols appearing in the string, and of their pattern,
the order in which the symbols appear. They redefine the performance
criterion by focusing on compressing the message’s pattern [15];

(2) investigating the redundancy on smaller source classes that satisfy Kief-
fer’s condition. The so-called envelope classes investigated in [8] form an
example of such classes [1, 17].

In pattern coding, each symbol is replaced by the rank of its first occurrence. For
instance, the pattern of the message abracadabra is

12314151231 .

By setting aside the actual value of symbols, pattern coding focuses on the struc-
ture of messages. When the source is stationary and memoryless, all the relevant
information on the pattern is contained in the profile of the sample, recording
the number of symbols occurring once, twice... [16, 15] have shown (among other
things) that a variant of Shtarkov’s normalized maximum likelihood (nml) coder
achieves a non-trivial redundancy of the collection of pattern distributions induced
by stationary memoryless sources over a countable alphabet.

This paper pursues both lines of research: we deal with collection of so-called
envelope classes, but the adaptive code we introduce and investigate will turn
out to be a pattern encoder. In contrast with [15], we attempt to handle both
dictionary and pattern encoding, that is to interleave dictionary encoding and
pattern coding.

Let f be a non-increasing mapping from N∗ := N \ {0} to (0, 1], with 1 <
∑

j∈N∗

f(j) < ∞. The envelope class C(f) defined by the function f is the col-

lection of distributions which are dominated by f : C(f) :=
{

P : ∀j ∈ N∗, pj ≤
f(j)

}

. Define ℓf = min
{

ℓ ≥ 1,
∑+∞

j=ℓ f(j) ≤ 1
}

. The associated envelope dis-

tribution F is defined as F (k) := 1 −∑j>k f(j) if k + 1 ≥ ℓf , and F (k) := 0
otherwise.

Envelope classes provide a framework where the search for adaptive coding
strategies is feasible. In previous papers on adaptive coding against envelope
classes, envelopes were defined by assuming some conditions on the decay of the
envelope survival function (1 − F ) or equivalently on the envelope quantile func-
tion. In this paper, where we are interested in the full range of regularly varying
envelope classes, we find it convenient to introduce the unifying framework pro-
posed by Karlin in [13]. This framework has recently received attention in random
combinatorics and stochastic processes theory, see [12] for a survey.

A probability mass function (pj)j≥1 defines a counting measure ν defined by
ν(dx) =

∑

j≥1 δpj
(dx) , where δp is the Dirac mass at p. Let the counting function

~ν(·) be the right tail of ν, that is for all x ∈ (0, 1],

~ν(x) = ν[x,∞[= |{j ≥ 1, pj ≥ x}| .
In the text, we denote by νf , ~νf , ν1,f the corresponding quantities when the
underlying distribution is given by the envelope frequencies (fj)j≥1.
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Karlin’s setting proves illuminating. We revisit the tight redundancy bounds
derived in [1]. If the envelope f satisfies a so-called regular variation condition
(~ν(1/·) ∈ rvα, α ∈ [0, 1)), the minimax redundancy rate R(Λn

f ) scales like

Rf (n) := log(e)

∫ n

1

~νf (1/t)

2t
dt .

This characterization is a powerful generalization of the tight bounds that have
been established for memoryless sources over finite alphabets. The latter can be
regarded as envelope classes where ~νf (x) = k for some k and all small enough

x. Indeed k−1
2 log n scales like log(e)

∫ n

1
~νf (1/t)

2t dt with respect to both k and n.
The integral of the counting function also provides an equivalent of the mini-
max redundancy for envelope classes defined by log-concave envelopes (such that
f(k)f(k + 2)/f(k + 1)2 ≤ 1 for all k ≥ 1) that was characterized in [7]. Up to a
constant factor, the integral of the counting function also provides an equivalent
of the minimax redundancy for envelope classes defined by envelopes with positive
regular variation indexes as investigated in [10].

Revisiting the bounds on minimax redundancy rates from [1] using Karlin’s
setting also suggests a universal coding strategy for each envelope class. In words,
when encoding the nth symbol in the message, it seems sensible to handle symbols
with probability larger than 1/n (frequent symbols) differently from symbols with
probability smaller than 1/n (rare symbols). The probability of frequent symbols
can be relatively faithfully estimated while the probability of rare symbols can
barely be estimated from the message. The censoring code approach described in
[8] explores that kind of path but cutoffs are built from conservative upper bounds
on minimax redundancy rates. The adaptive censoring code approach described
in [6, 7] implement this method in serendipitous way: with high probability, the
sample maximum approximates the suggested cutoff.

In this paper, we combine pattern coding and censoring so as to manufacture
a simple encoder that achieves adaptivity within a log logn factor with respect to
all envelope classes with regular variation index in [0, 1). This leads to the Pattern
Censoring Code.

The main result is the next theorem.

Theorem 1. Let (Qn)n be the sequence of coding distributions associated with the
Pattern Censoring Code. For all α ∈ [0, 1[, for every envelope function f with
~νf (1/·) ∈ rvα, there exists constants af , bf > 0 such that

(af + of (1)) ≤
R(Cn(f))

Rf (n)
≤ R(Qn, Cn(f)

Rf (n)
≤ (bf + of (1)) log logn .

In particular, the Pattern Censoring Code is adaptive, within a log logn factor,
with respect to the collection

{

C(f) : f ∈ rvα, α ∈ [0, 1[
}

.
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Online learning with pairwise loss functions

Yiming Ying

Pairwise learning usually refers to a learning task which involves a loss function
depending on pairs of instances. That is, the loss function depends on a pair of
instances which, for any (x, y) and (x′, y′), can be expressed by ℓ(f(x, x′), y, y′) for
a hypothesis function f : X ×X → R. Most notable examples of pairwise learning
include bipartite ranking [3], metric learning [5], minimum entropy error principle
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[6] and AUC maximization [7]. Assume the data {zi = (xi, yi) : i = 1, . . . , T } is
i.i.d. drawn from an unknown distribution ρ on X × Y. A unified formulation for
such pairwise learning methods can be formulated as

(1) min
f∈HK

{ 1

T (T − 1)

T
∑

i,j=1,i6=j

ℓ(f(xi, xj), yi, yj) +
λ

2
‖f‖2K

}

,

where K : X 2 × X 2 → R is a reproducing kernel and HK is the corresponding
RKHS on X 2 with norm ‖ · ‖K . Statistical analysis for (1) in the batch learning
setting was established in terms of algorithmic stability [1], robustness [2], and
U-statistics [3].

Online learning algorithms are widely used in practice to deal with the large
scale (streaming) data. However, most of such algorithms focused on the pointwise
learning problems in classification and regression. There are a number of specific
challenges in developing and analyzing online pairwise learning algorithms: 1) the
objective function is usually defined over pairs of instances which is quadratic
in the number of individual instances; 2) pairwise learning involves statistically
dependent pairs of instances, which is fundamentally different from the i.i.d. as-
sumption in classification and regression. Our main purpose is to develop online
pairwise learning algorithms which are, in both algorithmic implementation and
theoretical analysis, on a par with online algorithms in classification.

We start with a general online learning algorithm for pairwise learning in an
unconstrained setting of a reproducing kernel Hilbert space (RKHS) which is given
as follows:
Online Pairwise Learning Algorithm: Given λ ≥ 0, initialize f1 = f2 = 0 and
repeat, for any 2 ≤ t ≤ T ,

(2) ft+1 = ft − γt

[ 1

t− 1

t−1
∑

j=1

ℓ′(ft(xt, xj), yt, yj)K(xt,xj) + λft

]

,

where {γt > 0 : t ∈ N} is called step sizes.
We establish convergence analysis of the last iterate fT+1 for the above online

algorithm in both regularized (λ > 0) and un-regularized (λ = 0) settings. In
particular, for the regularized case with the hinge loss, we show, by properly
choosing the step sizes, that the convergence rates are the same as the pointwise
learning setting. For the un-regularized case, we focus on the least square loss
and show that the excess generalization error is bounded by an K-functional in
approximation theory plus a small error term. This convergence result shows that
the properly chosen step sizes implicitly play the role of regularization.

The above general online algorithms require to store the previous instances
{z1, . . . , zt} at iteration t which is not memory efficient. For the notable example
of pairwise learning called AUC maximization, we can develop a truly online al-
gorithm for which the space and per-iteration complexities only depend linearly
on one datum. The key idea behind this is a novel formulation of AUC maximiza-
tion as a stochastic saddle point problem (SPP). A stochastic online algorithm for
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AUC maximization is then proposed and its convergence analysis is established.
Experiments on various datasets show encouraging performance of the proposed
algorithm.

The talk is based on the recent work [4, 8, 9] jointly with my collaborators:
Prof. Ding-Xuan Zhou from City University of Hong Kong, Dr. Zheng-Chu Guo
from Zhejiang University, Prof. Siwei Lyu and Dr. Longyin Wen from SUNY
Albany.
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Some learning algorithms for quantile regression

Dao-Hong Xiang

(joint work with Jia Cai, Ting Hu, and Ding-Xuan Zhou)

Quantile regression is a classical statistical method which results in estimates ap-
proximating either the median or other quantiles of the response variable. Com-
pared with the least squares regression, quantile regression provides richer infor-
mation about response variables such as stretching or compressing tails. We study
three learning algorithms for quantile regression, which include: quantile regres-
sion with varying Gaussians, coefficient-based conditional quantile regression and
learning with varying ǫ-insensitive pinball loss.

Allowing varying Gaussian kernels in the algorithms improves learning rates
measured by regularization error and sample error. Special structures of Gauss-
ian kernels enable us to construct, by a nice approximation scheme with a Fourier
analysis technique, uniformly bounded regularizing functions achieving polynomial
decays of the regularization error under a Sobolev smoothness condition. The sam-
ple error is estimated by using a projection operator and a tight bound for the
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covering numbers of reproducing kernel Hilbert spaces generated by Gaussian ker-
nels. Since pinball loss in the quantile regression setting has no strong convexity, we
would not expect a variance-expectation bound for a general distribution. Hence,
some kind of noise assumption on the distribution (see [1, 2]) plays an important
role in our analysis. For more details, please see [4].

The original motivation of coefficient-based regularization schemes comes from
the linear programming SVMs [3]. Among these algorithms, the hypothesis space
is data dependent and the regularization term is the ℓq(1 ≤ q ≤ 2) norm of
coefficients. In particular, the ℓ1 norm plays an essential role in the Lasso algorithm
in statistics and in the literature of compressed sensing, since ℓ1-regularization
usually leads to sparse solutions. In our error analysis, the main difficulty lies in the
lack of a proper characterization of approximation error. We use a stepping stone
technique to construct a function approximating the target function by means of
integral operator. Fast learning rates are achieved in a general setting under mild
conditions. For more details, please see [6].

We study the learning algorithms with varying ǫ-insensitive pinball loss which
is motivated by the ǫ-insensitive loss for support vector regression and the pinball
loss for quantile regression. The original motivation [3] for the insensitive param-
eter ǫ is that for balancing the approximation and sparsity of the algorithm, ǫ
should change with the sample size. We solve the mathematical analysis for this
original algorithms by studying a general learning algorithm. The learning rates
are explicitly derived under a priori condition on approximation and capacity of
the reproducing kernel Hilbert space. For more details, please see [5].

The work by D. H. Xiang is supported by the National Natural Science Founda-
tion of China under Grant 11471292 and the Alexander von Humboldt Foundation
of Germany.
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On the convergence of randomized Kaczmarz algorithm in Hilbert
space

Xin Guo

(joint work with Junhong Lin, Ding-Xuan Zhou)

The classical Kaczmarz algorithm, designed to solve linear equation systems Ax =
y of finite dimension, was introduced by Kaczmarz in 1937. The algorithm it-
eratively uses the rows of the matrix A as measures, and in each step, projects
the error vector onto the hyperplane perpendicular to the row vector selected.
The convergence is well understood. It is observed that the speed of conver-
gence strongly depends on the order how the rows of the matrix A are arranged.
To remove this dependence, randomized Kaczmarz algorithm was introduced. In
[Strohmer and Vershynin 2009], by defining the probabilities of the rows of the
matrix A according to the squares of their norms, exponential convergence was
obtained. For general distributions of measure vectors, exponential convergence
was given by [Chen and Powell 2012]. Relaxed randomized Kaczmarz algorithm
was introduced for noisy observations. In particular, [Needell 2010] shows that
without the help of relaxation, randomized Kaczmarz algorithm will not converge
with the presence of observational noise. Using the learning theory approaches,
[Lin and Zhou 2015] gives a sufficient and necessary condition on the step sizes
for the relaxed randomized Kaczmarz algorithm to converge, as well as an upper
bound of the converging rate.

In the existing analysis of randomized Kaczmarz algorithms under the setting
of no noise, most of the results give an exponential speed of decay of expected
error. However, the base of such exponential rate is very close to one, with a
small gap roughly proportional to the square of the smallest singular value of the
coefficient matrix A. This problem restricts the application of the analysis in at
least two aspects. First, for applications, especially when the coefficient matrix
is large which is typically the scenario where the Kaczmarz algorithm is useful
compared with traditional linear equation solvers, the smallest singular value of
the coefficient matrix could be very close to zero, making the analysis not so useful.
Second, it is impossible to generalize the analysis to Hilbert space, which covers
many useful applications in learning theory and functional data analysis.

In the presented work, we develop the convergence analysis of the randomized
Kaczmarz algorithm in Hilbert space. We show that the nature of the convergence
is indeed a weak convergence with a polynomial rate. We give a concrete exam-
ple which demonstrates that as long as there is observational noise with positive
variance, no matter how small the variance is, the expected strong norm of the
error vector can diverge to infinity if the step sizes are set to be a constant. On
one hand, this shows that one should not, in general, expect randomized Kacz-
marz algorithm to converge in the sense of expected norm. On the other hand,
weak convergence is widely used in learning theory because it well corresponds
to the strong convergence in the L2 norm sense which is usually good enough for
applications.
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Real algebraic geometry for the construction of tight wavelet frames

Joachim Stöckler

(joint work with Maria Charina, Mihai Putinar, Claus Scheiderer)

We combine methods of real algebraic geometry, linear system theory and har-
monic analysis for the construction and parameterization of classes of tight wavelet
frames.

The construction of tight wavelet frames is often divided into two steps. First
one picks a “nice” function φ ∈ L2(Rd), the scaling function of a multiresolution
analysis, which has compact support, desirable smoothness and approximation
properties and satisfies a refinement relation

φ(x) =
∑

k∈Zd

pkφ(2x− k)

with finitely many non-zero coefficients pk. Secondly, one finds the framelets (or
frame-generators)

ψℓ(x) =
∑

k∈Zd

qℓ,kφ(2x− k), 1 ≤ ℓ ≤ L,

by specifying their coefficient sequences (qℓ,k)k∈Zd , such that the triple-indexed
family

Ψ = {2jd/2ψℓ(2
j · −k) : j ∈ Z, k ∈ Z

d, ℓ = 1, . . . , L}
is a tight frame of L2(Rd); this means that

‖f‖2L2(Rd) =
∑

g∈Ψ

| 〈f, g〉 |2

holds for all functions f ∈ L2(Rd). Tight wavelet frames were used by Zhang et
al. [4] as multiscale kernels in Learning Theory.

Common criteria for obtaining suitable sequences (qℓ,k) are specified in terms
of the trigonometric polynomials P (ξ) =

∑

k pke
2πikξ and Qℓ alike. Leaving out

some technical details, which are not essential for this presentation, we arrive
at the Unitary Extension Principle (UEP) which finds Qℓ by solving a matrix
factorization problem

(1) I − F (ξ)F (ξ)∗ = G(ξ)G(ξ)∗.

Here, F is a column vector of trigonometric polynomials, which is easily obtained
from P and such that I − FF ∗ is positive semi-definite for all ξ ∈ Rd. A more
comprehensive approach to tight wavelet frames is the Oblique Extension Principle
(OEP) which is based on the matrix factorization problem

(2) K(ξ)− F (ξ)L(ξ)F (ξ)∗ = G(ξ)G(ξ)∗.

Here, an additional positive definite matrix K and positive scalar L are chosen
based on “vanishing moment properties” of the desired framelets.

Both factorization problems (1) and (2) are related to Hilbert’s 17th problem in
real algebraic geometry. Whereas solutions for the 1-dimensional case (d = 1) are
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easily obtained from the Riesz-Fejer lemma, the situation is much more difficult
for higher dimensions. Existence of solutions for d = 2 follows from a much
more general result of C. Scheiderer [3], non-existence of trigonometric polynomial
matrices G in (1) for d = 3 and for particular choices of P was shown in [1]. The
results of our recent work can be summarized as follows:

1. The matrix factorization in (1) exists with trigonometric polynomial ma-
trix G if and only if the “adjoint” scalar factorization

1− F (ξ)∗F (ξ) = H(ξ)∗H(ξ)

exists with a vector H of trigonometric polynomials. Passing from H to
G is constructive, and was already described in [2].

2. The matrix factorization in (2) exists with rational trigonometric matrix
G if and only if the “adjoint” scalar factorization

1

L(ξ)
− F (ξ)∗K(ξ)−1F (ξ) = H(ξ)∗H(ξ)

exists with a vector H of rational trigonometric functions. Passing from
H to G is constructive.

Regardless of the dimension, the factorization in (1) can be explicitly specified if
φ is a multivariate box-spline.

A complementary method for constructing the matrix G in (1) was described in
[1]. It defines F to be a complex polynomial vector on the polydisc Dd. As part of
the quite recent theory of multidimensional linear systems, the factorization with a
polynomial matrix G in (1) exists if and only if F is an element of the Schur-Agler
class of holomorphic functions. For d = 1 and d = 2, there are known algorithms
for finding the representation of F as the transfer function of a linear system,

F (z) = A+BZ(I −DZ)−1C,

where Z = z1In1 ⊕ · · · ⊕ zdInd
is a diagonal matrix of monomials z1, . . . , zd,

A,B,C,D are complex matrices and
(

A B
C D

)

is a contraction.

This connection to linear system theory was used in [1] in order to improve all
previously known constructions of a tight wavelet frame of linear 2-dimensional
box-splines as it achieves the smallest number of generators L = 5. The extension
of this method to OEP constructions is under current investigation.
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System theory: Learning orthogonal multi-wavelets

Maria Charina

(joint work with Costanza Conti, Mariantonia Cotronei)

One of the classical problems of approximation theory studies the existence and
approximation properties of compactly supported wavelets and vector- or matrix-
valued orthogonal multi-wavelets. Usually, wavelets or multi-wavelets are gener-
ated by a function ψ : R → Cn×m, n ≤ m, which is a finite linear combination

ψ =

s
∑

k=0

φ(2 · −k)qk, qk ∈ C
m×m,

of scaled integer shifts of the corresponding refinable function

φ : R → C
n×m, φ =

s
∑

k=0

φ(2 · −k)pk, pk ∈ C
m×m.

The mathematical challenge is to determine the classes of all masks p = {pk}sk=0

and q = {qk}sk=0 that guarantee the existence of such square-integrable φ and
ψ = (ψ1, . . . , ψm) for which the set

{2j/2ψℓ(2
j · −k) : j, k ∈ Z, ℓ = 1, . . . ,m}

is an orthonormal basis of Ln
2 (R). In the case n = m = 1, the elegant construction

by Daubechies [3] yields such masks p and q with optimal approximation property:
polynomials of degree less or equal to s − 2 are in the span of the integer shifts
of φ. For all other constellations of n ≤ m, the problem has resisted to be fully
understood for 30+ years.

We show that there is no conceptual difference between wavelet (n = m = 1)
and multi-wavelet constructions and provide their complete and unifying charac-
terization. This characterization is based on classical results from system theory.

The link between wavelet and multi-wavelet constructions and system theory
is offered by the so-called Unitary Extension Principle [5]. In contrast to [2], we
do not assume that p is given and our goal is to construct all appropriate masks p
and q simultaneously. The Unitary Extension Principle requires that the matrix
polynomial

F : C → C
2m×2m, F (z) =

d
∑

k=0

Fkz
k, d = ⌊s/2⌋,

with matrix coefficients

Fk =

(

p2k q2k
p2k+1 q2k+1

)

, k = 0, . . . , d,
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is unitary on the unit circle. The unitarity of F and the maximum principle imply
that F (z) is contractive for any |z| < 1. Such holomorphic functions F , by [1, 6],
belong to the Schur-Agler class, i.e. they are of the form

F (z) = A+Bz(I −Dz)−1 C, |z| < 1,

with the unitary block matrix

(

A B
C D

)

:
C2m C2m

⊕ → ⊕
C2md C2md.

Our main result characterizes the structure of all appropriate F (z). We show that
the corresponding ABCD-matrix is the product



















F0 Fd . . . . . . F1

F1 F0 Fd
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... F1

. . .
. . .

...
...

. . .
. . . Fd

Fd Fd−1 . . . F1 F0



















(

I 0
0 U

)

of a block circulant matrix and a unitary matrix with

U =













F ∗
0 + F ∗

d F ∗
1 . . . F ∗

d−1

F ∗
d−1

. . .
. . .

...
...

. . .
. . . F ∗

1

F ∗
1 . . . F ∗

d−1 F ∗
0 + F ∗

d













.

Moreover, the blocks B, C and D satisfy BDd = 0 and










BC
BDC

...
BDd−1C











= C.

The structure of U∗ is advantageous for imposing appropriate approximation prop-
erties (sum rules [4]) on the elements of the masks p and q. The unitarity of both
U and the ABCD-matrix lead to parametrizations of all p and q of interest in
terms of few real parameters. The corresponding classes of the masks p and q
include all known univariate wavelet and multi-wavelet masks.

All our results generalize easily to the case of a general dilation factor.
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Density of sampling and interpolation in reproducing kernel Hilbert
spaces

Karlheinz Gröchenig

(joint work with Hartmut Führ, Antti Haimi, Andreas Klotz, José Luis Romero)

How many samples of a function f are necessary to completely recover f in a given
space? The first answer is the sampling theorem of Whittaker, Kotelnikov, Shan-
non, and others, the decisive mathematical theorems were derived by Landau [2]
who gave a precise meaning of the concept of a Nyquist rate for bandlimited func-
tions. To this day, Landau’s theorem is the prototype of a density theorem, it
has inspired several hundred papers on sampling. Landau’s necessary conditions
have been transferred, modified, and adapted to dozens of similar situations, such
as sampling in spaces of analytic functions, density conditions of Gabor frames
(this topic alone has attracted about hundred papers [1]), sampling in spaces of
bandlimited functions on Lie groups, or the density of frames in the orbit of an
irreducible unitary representation of a homogeneous nilpotent Lie group.

All these density theorems treat certain Hilbert spaces with a reproducing ker-
nel. This fact and the similarity of all proofs raises the question of a universal
density theorem in reproducing kernel Hilbert spaces. This point of view leads
immediately to the following questions: What is the relevant density concept in
a reproducing kernel Hilbert space? Is there a critical density in a reproducing
kernel Hilbert space that separates sets of sampling from sets of interpolation?

In our contribution we attempt to give an answer and formulate a general
density theorem for functions in a reproducing kernel Hilbert space. A simplified
version of our main result can be stated as follows.

Theorem 1. Let X be a metric measure space with a metric d and a measure
µ. Furthermore, let H ⊆ L2(X,µ) be a reproducing kernel Hilbert space with a
reproducing kernel kx(y) = k(y, x), such that f(x) = 〈f, kx〉 for f ∈ H and x ∈ X.
We impose the following geometric conditions on (X, d, µ):
• µ is non-degenerate, i.e., infx µ(Br(x)) > 0 for some r > 0,

• µ is locally doubling, i.e., supx∈X
µ(B2r(x))
µ(Br(x))

<∞ for every r > 0,

• µ satisfies the weak annular decay property, i.e.,

lim
r→∞

sup
x∈X

µ(Br(x) \Br−1(x))

µ(Br(x))
= 0.
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• Compatibility of metric and measure: we have

lim
r→∞

sup
x∈X

∫

Br(x)c
d(x, y)−2σdµ(y) = 0

for some σ > 0.
We impose the following off-diagonal decay condition on the reproducing kernel

k (with the same σ):

(1) |k(x, y)| ≤ C
(

1 + d(x, y)
)−σ

for all x, y ∈ X .

Then the following version of Landau’s theorem holds:
(i) Necessary conditions for sampling: If for Λ ⊂ X there exist A,B > 0 such

that

(2) A‖f‖2 ≤
∑

λ∈Λ

|f(λ)|2 ≤ B‖f‖2 for all f ∈ H ,

then

D−(Λ) := lim inf
r→∞

inf
x∈X

#(Λ ∩Br(x))

µ(Br(x))
≥ lim inf

r→∞
inf
x∈X

1

µ(Br(x))

∫

Br(x)

k(y, y)dµ(y) .

(ii) Necessary conditions for interpolation: Likewise, if for every sequence a =
(aλ)λ∈Λ ∈ ℓ2(Λ) there exists f ∈ H, such that f(λ) = aλ, ∀λ ∈ Λ, then

D+(Λ) := lim sup
r→∞

sup
x∈X

#(Λ ∩Br(x))

µ(Br(x))
≤ lim sup

r→∞
sup
x∈X

1

µ(Br(x))

∫

Br(x)

k(y, y)dµ(y) .

Following established terminology, a set Λ ⊆ X satisfying (2) is called a set of
(stable) sampling.

The densities D−(Λ) and D+(Λ) are the obvious generalizations of the lower
and upper Beurling density to metric spaces.

The principal merit of Theorem 1 is the clarification of the main notions that
go into a density theorem. To prove a density theorem, one needs

(i) geometric data and the compatibility of metric and measure, and
(ii) estimates for the reproducing kernel.
The verification of these properties is by no means trivial. Indeed, kernel esti-

mates (Bergman, Bargmann, and other reproducing kernels) constitute a deep and
rich area of analysis. Theorem 1 shifts the emphasis in proofs of density theorems:
it is important to understand the geometry and the reproducing kernel, but it is
no longer necessary to prove a “new” density theorem from scratch with tedious
modifications of known techniques.

Many known density theorems in the literature can be understood as an example
of the general density theorem in reproducing kernel Hilbert spaces. To demon-
strate the wide applicability of Theorem 1 we rederive some of the fundamental
density theorems in several areas of analysis.

(i) Signal analysis : as already indicated, Theorem 1 implies Landau’s necessary
density conditions for bandlimited functions.
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(ii) Complex analysis (in several variables): we will deduce Lindholm’s density
conditions [3] for generalized Fock spaces.

(iii) Harmonic analysis : We will derive a necessary condition for the density of
a frame in the orbit of a square-integrable, unitary representation of a group of
polynomial growth. A special case of this result is the density theorem for Gabor
frames.

Theorem 1 is definitely not the end of density theorems. The weak annular
decay property of the measure is not always satisfied, as it is tied to the growth
of balls in X . Thus Theorem 1 excludes a number of very interesting examples,
for instance, density theorems in Bergman spaces [5] and the density of wavelet
frames. However, in these cases the Beurling density is not the correct density,
and to this date it is an open problem whether a critical density even exists in this
context.
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Durrmeyer type operators with respect to arbitrary measure

Elena E. Berdysheva

Let Sd := {x = (x1, . . . , xd) ∈ Rd : 0 ≤ x1, . . . , xd ≤ 1, x1 + · · · + xd ≤ 1}
be the standard simplex in Rd. We will use the barycentric coordinates x =
(x0, x1, . . . , xd), x0 := 1−x1−· · ·−xd. The d-variate Bernstein basis polynomials

of degree n are defined by

Bα(x) :=

(

n

α

)

xα =
n!

α0!α1! . . . αd!
xα0
0 xα1

1 · · ·xαd

d ,

where α = (α0, α1, . . . , αd) ∈ N
d+1
0 with |α| := α0+α1+ · · ·+αd = n. Clearly, Bα

are non-negative on Sd and
∑

|α|=nBα(x) = 1. Moreover, {Bα}|α|=n constitute a

basis of the space of d-variate algebraic polynomials of total degree at most n.
The famous Bernstein operator is defined for f ∈ C(Sd) by

(

Bn f
)

(x) :=
∑

|α|=n

f
(α

n

)

Bα(x).

This is a positive linear operator that reproduces linear functions; Bn f is the
sequence of polynomials of degree n that converges to f uniformly on Sd for
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all f ∈ C(Sd). This operator, in the one-dimensional case, was introduced by
S.N. Bernstein in 1912 to provide a constructive proof of the Weierstraß Approxi-
mation Theorem; this operator and its variants and modifications were studied in
hundreds of papers.

One – and probably the most interesting – of the modifications of the Bernstein
operator for integrable functions is the so-called Bernstein-Durrmeyer operator

defined for f ∈ Lq(Sd), 1 ≤ q <∞, or f ∈ C(Sd) by

(

Mn f
)

(x) :=
∑

|α|=n

∫

Sd
f(y) Bα(y) dy
∫

Sd
Bα(y) dy

Bα(x).

Mn is a positive linear operator that reproduces constant functions, Mn f con-
vergence to f in Lq(Sd), 1 ≤ q <∞, or in C(Sd), respectively. This operator was
introduced by Durrmeyer (1967) and, independently, by Lupaş (1972) and became
known due to Derriennic (starting from 1981). Also the Bernstein-Durrmeyer
operator with Jacobi weights was studied by a number of authors.

Here we consider the following generalization of this operator. Let ρ be a non-
negative bounded (regular) Borel measure on S

d such that supp ρ \ (∂Sd) 6= ∅.
The Bernstein-Durrmeyer operator with respect to the measure ρ is defined for
f ∈ Lq

ρ(S
d), 1 ≤ q ≤ ∞, by

(Mn,ρ f)(x) :=
∑

|α|=n

∫

Sd
f(y) Bα(y) dρ(y)
∫

Sd
Bα(y) dρ(y)

Bα(x).

Mn,ρ is a positive linear operator that reproduces constant functions. It was for
the first time systematically investigated in [1], to our knowledge. The motivation
for this generalization came from learning theory. Our starting point was paper
[2] by D.-X. Zhou and K. Jetter; they considered the univariate Mn,ρ and used
it for estimates for support vector machine classifiers with polynomial kernels.
Later on, B.-Z. Li [3] used the multivariate operators Mn,ρ to obtain estimates for
learning rates of least-square regularized regression with polynomial kernels. Note
that Mn,ρ is a compact self-adjoint integral operator in L2(Sd, ρ), and its kernel
is Mercer kernel. Some properties of this kernel were studied in [1].

The main topic of this talk is convergence of the operator. The results on
pointwise and uniform convergence were obtained by the author in [4], [5].

Theorem. Let x ∈ supp ρ. Let f be bounded on supp ρ and continuous at x.
Then

lim
n→∞

|f(x)−Mn,ρ f(x)| = 0.

Theorem. Let A be a compact set, A ⊂ (supp ρ)◦. Let f be bounded on supp ρ
and continuous on A. Then

lim
n→∞

‖f −M[c]
n,ρ f‖C(A) = 0.

Convergence in the weighted Lq-spaces was proved by B.-Z. Li [3].
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Theorem. Let 1 ≤ q <∞. Then

lim
n→∞

‖f −Mn,ρ f‖Lq(Sd,ρ) = 0

for every f ∈ Lq(Sd, ρ).

She also gave estimates for the rate of convergence ofMn,ρ in the space Lq(Sd, ρ)
in terms of certain K-functional. These estimates were improved in [6]; they play
a role in studying the learning rates in the corresponding applications in learning
theory.

The construction and the results can be carried over to the Szász-Mirakjan-
Favard operator and the Baskakov operator [7].

Finally, in joint work in progress with K. Baumann and M. Heilmann, we con-
sider a further generalization of the operator Mn,ρ which makes it possible to
include into the same construction further operators like the Bernstein operator
Bn, the Kantorovich operator, etc., together with the Bernstein-Durrmeyer oper-
ator. Therefore, we allow the measure ρ to be different in different terms. Let
ρ = {ρα}|α|=n,n∈N be a collection of non-negative bounded (regular) Borel mea-

sures on S
d such that supp ρα \ (∂Sd) 6= ∅. The Bernstein-Durrmeyer operator

with respect to the collection of measures ρ is defined by

(Mn,ρ f)(x) :=
∑

|α|=n

∫

Sd
f(y) Bα(y) dρα(y)
∫

Sd
Bα(y) dρα(y)

Bα(x).

We make our first steps in understanding assumptions on ρ and f that guarantee
convergence of the operator.
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