Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

Summary

- ▶ optimal experimental design for continuous random variables with unknown causal structure
- ► allow for non-linear functional relationships modelled with Gaussian process priors
- ► Bayesian active learning approach to perform maximally informative experiments for causal structure
- ► Bayesian optimisation to efficiently maximise a Monte Carlo estimate of expected information gain

Motivation

Humans learn causal models not just from large amounts of observational or interventional data. Rather, we constantly interact with our environment: conducting experiments to test hypotheses and updating our beliefs based on the outcomes \rightarrow "child as a scientist".

Assume a structural causal model (SCM) over $\mathbf{X} = \{X_1, ..., X_d\},\$

where **both** G^* and the (possibly) **nonlinear** f_i are **unknown**.

Goal: maximise the information gain in G w.r.t. the expected outcome of the experiment, subject to current beliefs.

 $G \in \mathcal{G}$

Problem: intractable due to integration over θ_G and \mathbf{x}_{-i} .

 $j \in$

Approximate arg max over continuous $x \in \mathcal{X}_i$ in (1) using 3. Bayesian optimisation

Julius von Kügelgen^{1,2}, Paul K. Rubenstein^{1,2}, Bernhard Schölkopf¹, Adrian Weller^{2,3} ¹Max Planck Institute for Intelligent Systems, ²University of Cambridge, ³The Alan Turing Institute

Problem setting

 $X_i := f_i(\mathbf{Pa}_i^{G^*}) + \epsilon_i, \qquad \epsilon_i \sim \mathcal{N}(0, \sigma_i^2), \qquad (i = 1, ..., d),$

Q: Which intervention $do(X_i = x)$ should we try next to learn G^* ?

Active Bayesian causal discovery

Given: prior beliefs about DAGs and their associated parameters, $P(G)P(\theta_G|G)$; likelihood function, $P(\mathbf{D}|\theta_G, G)$.

$$P(G) \int P(\mathbf{x}_{-j}|G, do(X_j = x)) \log P(G|\mathbf{x}_{-j}, do(X_j = x)) d\mathbf{x}_{-j}$$

Approach: 1. Gaussian process priors over $f_i \sim \mathcal{GP}(0, k_i)$

 \implies predictive posterior $P(\mathbf{x}_{-j}|G, do(X_j = x))$ and marginal likelihood $P(\mathbf{D}|G)$ available in closed form

2. Monte Carlo estimate using M sampled outcomes $\mathbf{x}_{-i}^{(m)}$

$$\underset{\{1,\dots,d\},x\in\mathcal{X}_{j}}{\operatorname{arg\,max}}\sum_{G\in\mathcal{G}}P(G)\frac{1}{M}\sum_{m=1}^{M}\log P\left(G|\mathbf{x}_{-j}^{(m)},do(X_{j}=x)\right)$$
(1)

Nonlinear functional relationships introduce additional uncertainty and complicate causal discovery–even from experimental data!

Phenotype 10

Inter p(y|a)p(x|

Contrast to linear setting

[Figure from Peters et al. (2017)]

Bivariate example

vention	$G_1: X \to Y$	$G_2: Y \to X$
do(x)) do(y))	$p(y x) \ p(x)$	$p(y) \ p(x y)$