
An Introduction to Random Forests for
Multi-class Object Detection

?Juergen Gall1,2, Nima Razavi1, and Luc Van Gool1,3

1 Computer Vision Laboratory, ETH Zurich,
{gall,nrazavi,vangool}@vision.ee.ethz.ch
2 Max Planck Institute for Intelligent Systems
3 ESAT/IBBT, Katholieke Universiteit Leuven

Abstract. Object detection in large-scale real-world scenes requires effi-
cient multi-class detection approaches. Random forests have been shown
to handle large training datasets and many classes for object detection
efficiently. The most prominent example is the commercial application
of random forests for gaming [37]. In this paper, we describe the general
framework of random forests for multi-class object detection in images
and give an overview of recent developments and implementation details
that are relevant for practitioners.

Keywords: multi-class object detection, Hough forest, regression forest,
random forest

1 Introduction

Object detection for real-world applications is still a challenging problem. While
recent research datasets like PASCAL VOC [12], ImageNet [10], or the Caltech
Pedestrian Dataset [11] increase the amount of training and testing examples to
get closer to real-world problems, the ability of detectors to process large data
sets in reasonable time becomes another important issue besides accuracy. It is
not only the number of training examples that matters, but also the number of
classes.

A family of methods that can handle large amount of training data efficiently
and that are inherently suited for multi-class problems are based on random
forests [1, 5]. Random forests are ensembles of randomized decision trees that
can be applied for regression [8, 13, 19], classification tasks [26, 28, 30, 6, 40, 4, 35,
38, 37], and even both at the same time [16, 31, 39, 18, 14]. The most prominent
application of random forest is the detection of human body parts from depth
data [37]. The method was trained on 900k training examples to detect 31 body
parts (classes) and runs at around 200 frames per second on the Xbox GPU.
This commercial application demonstrates the practicability of random forests
for large-scale real-world computer vision problems.

? This work has been partially funded by the EU projects IURO (FP7-ICT-248314)
and RADHAR (FP7-ICT-248873). The paper contains content that has been previ-
ously published in [18, 32, 33].

2 Juergen Gall, Nima Razavi, and Luc Van Gool

Fig. 1. A random forest consists of a set of trees that map an image patch to a distri-
bution stored at each leaf. The disks indicate split nodes that evaluate the appearance
of a patch and pass it to the right or left child until a leaf is reached.

The scope of this paper is to give an introduction to random forests in the
context of multi-class object detection and to give an overview of recent develop-
ments. For a more general discussion on random forests, we refer to the book [5]
and the tutorial [7]. Rather than providing a detailed experimental evaluation
which has been already presented in the referenced works, the paper serves more
as a guide for practitioners.

2 Random Forests for Object Detection

A random forest consists of a set of trees Tt where each tree consists of split
nodes and leaves as illustrated in Figure 1. The split nodes evaluate each arriving
image patch and, depending on the appearance of the patch, pass it to the left
or right child. Each leaf L stores the statistics of the image patches that arrived
during training. For a classification task, it is the probability for each class c,
denoted by p(c|L). For a regression task, it is a distribution over the continuous
parameter x ∈ RH that one wants to estimate. While image segmentation is a
typical classification task where one wants to estimate the class label for each
image patch, object localization can be regarded as a regression problem where
each patch of the object predicts the location of the object in the image. Since
object detection involves both classifying patches belonging to an object and
using them to regress the location and scale of the object, random forests for
object detection need to be trained to satisfy both objectives.

An Introduction to Random Forests for Multi-class Object Detection 3

Fig. 2. For training, a subset of image patches is taken from the entire training set. In
the simplest case, there are only two classes; one containing negative or background
examples (blue) and another containing positive examples (red). While the class labels
are required to distinguish object patches from background patches (classification),
additional offset vectors of the positive patches to the center of the object are stored
(green). The offset vectors will be used to predict the location of the object (regression).

2.1 Training

For training, a set of images is collected where each object is annotated by a
bounding box and the class label c. The background images are only annotated
by the class label. In order to handle large amount of training data and to
avoid overfitting, randomness is introduced by training each tree on a randomly
sampled subset of the training data [5]. For object detection, this means to
randomly select a subset of training images for each class. From the selected
images, only a subset of image patches is then sampled and used for training
as illustrated in Figure 2. For each sampled patch Pi that does not belong to
the background, the offset to a reference point of the object di is stored. Ideally,
the reference point is always the same for all training instances of a class, e.g.,
the head of a pedestrian. However, taking the center of the bounding box as
reference point is usually a more practical choice. In general, the reference point
does not need to be the center of the object, but it should be as consistent
as possible among training examples. Scale is handled during testing and the
positive examples are scaled to a unit size su. A good choice for object detection
has been to use image patches of size 16×16 pixels and scale the images such that
the longest spatial dimension of the bounding box is about 100 pixels [16]. In
this setting, a patch covers meaningful parts like a wheel of a car or the head of a
human as shown in Figures 2 and 4. In case of tight bounding boxes around the
objects, it is beneficial to consider all patches for sampling that have the patch
center inside of a bounding box. In this way, important boundary information
can be better captured [9].

In summary, we have a set of training patches {Pi = (Ii, ci,di)} that are
randomly sampled from the examples where,

Ii are the extracted image features of the patch,
ci is the class label for the exemplar, the patch is sampled from,
di is a offset vector from the patch center to the reference point.

Patches sampled from background images have a pseudo offset, i.e., di = 0. We
denote the set of randomly sampled training patches for a tree Tt by A = {Pi}.

4 Juergen Gall, Nima Razavi, and Luc Van Gool

In order to train a tree that can be used for object detection, one has to find
a split function

fφ(P) ∈ {0, 1} (1)

for each non-leaf node that separates the training patches in an optimal way. The
split functions are therefore also termed as weak learners [7]. The split function
evaluates one or more image features of the patch P and sends it to the left
(fφ(P) = 0) or right child (fφ(P) = 1) of the node; see Figure 1. The split
functions are parametrized by a set of parameters φ that need to be optimized
during training.

Each tree can be trained in parallel using the general random forest frame-
work [5]. Starting at the root node with the training set Anode = A, a tree grows
recursively:

1. Generate a random set of parameters Φ = {φk}.
2. Divide the set of patches Anode into two subset AL and AR for each φ ∈ Φ:

AL (φ) = {P ∈ Anode|fφ(P) = 0} (2)

AR (φ) = {P ∈ Anode|fφ(P) = 1} (3)

3. Select the split parameters φ∗ that maximize a gain function g:

φ∗ = argmax
φ∈Φ

g (φ,Anode) (4)

where

g (φ,Anode) = H (Anode)−
∑

S∈{L,R}

|AS (φ) |
|Anode|

H (AS (φ)) . (5)

Depending on the task, H(A) is chosen such that g measures the gain of the
classification or regression performance of the children in comparison to the
current node.

4. Continue growing with the training subsets AL and AR if some predefined
stopping criteria are not satisfied; otherwise, create a leaf node and store the
statistics of the training data Anode.

Step 1 is another source of randomness that reduces training time whereas eval-
uating all parameters φ would be infeasible in many cases. While the family of
split functions fφ, the measure H, and the stopping criteria will be discussed in
Section 3, we continue with the prediction model stored at each leaf L.

In the context of object detection, we are interested in the class probability
and the spatial distribution of the training patches for each class. The class
probability p(c|L) can be estimated by

p(c|L) =
|ALc | · rc∑
c (|ALc | · rc)

; rc =
|A|
|Ac|

(6)

An Introduction to Random Forests for Multi-class Object Detection 5

Fig. 3. Visualization of some leaves of a tree for detecting cars (side-view; two classes).
Each leaf node L stores the probability of a patch belonging to the object class p(c|L),
estimated by the proportion of patches from the positive (red) and negative examples
(blue) reaching the leaf during training. For the positive class, the offset vectors d ∈ DL

c

are shown (green). The underlying distribution p(d|c, L) is multimodal. The positive
training examples falling inside each of the first three leaves can be associated with
different parts of a car. The last leaf contains only negative patches. The image has
been taken from [18].

where AL is the set of training patches reaching the leaf L after training, A
the entire training set used for training the tree, and Ac the patches in A with
class label c. The factor rc compensates for the sample bias that might have
been introduced when the number of training examples is not well distributed
among classes. The spatial distribution for each class, p(d|c, L), is obtained by
estimating the continuous distribution from the offset samples d ∈ DL

c of the
patches ALc . While more details will be given in Section 3, the statistics of a few
example leaves are shown in Figure 3.

2.2 Detection

For detecting an object, image patches are sampled from a test image and passed
through the trees as shown in Figure 1. The image patches can be densely sam-
pled or subsampled as for training. Each patch P(y) sampled from image location
y ends in a leaf Lt(y) for each tree Tt. In order to locate an object in the image,
we evaluate the probability of an object hypothesis h(c,x, s), i.e., the probability
of an object belonging to class c with size s and its reference point at x. Besides
of scale, additional parameters of the object like depth [39], viewpoint [32], or
aspect ratio [16] can be estimated.

The probability p(h|Lt(y))4 for a single patch and a single tree is then given
by

p(h(c,x, s)|Lt(y)) = p (d(x,y, s)|c, Lt(y)) p (c|Lt(y)) (7)

where

d(x,y, s) =
su(y − x)

s
. (8)

The term d(x,y, s) is basically the offset between y and x given the hypothesis
size s. Note that the unit size su and the two probabilities p(d|c, Lt(y)) and
p(c|Lt(y)), cf. Equation (6), are known from training as explained in Section 2.1.
The derivation of Equation (7) is straightforward and given in [18]. While random

4 We abbreviate h(c,x, s) to h and d(x,y, s) to d.

6 Juergen Gall, Nima Razavi, and Luc Van Gool

(a) (b) (c) (d)

Fig. 4. For each of the three patches emphasized in (a), the random forest trained on
pedestrians casts weighted votes about the possible location of a pedestrian (b) (each
color channel corresponds to the vote of a sample patch). Note the weakness of the vote
from the background patch (green). After the votes from all patches are aggregated (c)
(white corresponds to a high value), the pedestrian can be detected (d) by searching
the mode of (c). The images have been taken from [18].

regression forests or classification forests model only one of the two terms in
Equation (7), the distribution p(h|Lt(y)) combines both the regression and the
classification objective.

The distribution p(d|c, Lt(y)) can be modeled by a set of votes d ∈ DLt(y)
c .

In this case, Equation (7) becomes

p(h(c,x, s)|Lt(y)) =
1∣∣∣DLt(y)
c

∣∣∣
 ∑

d∈DLt(y)
c

δd

(
su(y − x)

s

) p (c|Lt(y)) , (9)

where δ is a Dirac measure. Since the distribution can be regarded as weighted

votes d ∈ DLt(y)
c to be cast into a Hough space, regression trees are also termed

Hough forests [16] in the context of object detection. Figures 4 (a) and (b) show
the votes or distribution of three patches. While the head (red) patch yields a
distribution with one strong mode, the patch of the right feet (blue) is similar
to the left feet in appearance and thus yielding a distribution with two modes.
The impact of the class probability can be observed for the background patch
(green). Since the probability of this patch belonging to the object is close to
zero, the votes are barely visible.

While Equation (7) models the probability for a single tree, the probabilities
of all trees are averaged, i.e.,

p(h(c,x, s)|P(y)) =
1

|{Tt}|
∑
t

p(h(c,x, s)|Lt(y)). (10)

Alternatively, the probabilities can also be multiplied but averaging is more
efficient [7]. Similarly, the distributions over all image patches can be either
accumulated as in [18]:

p(h(c,x, s)|I) =
1

|Ω|
∑
y∈Ω

p(h(c,x, s)|P(y)); (11)

An Introduction to Random Forests for Multi-class Object Detection 7

(a) (b)

Fig. 5. In order to detect objects at different scales (a), the original image is scaled
by the inverse expected sizes (b). The modes are detected in the joint space of image
location and scale (white corresponds to a high value). The small car yields a peak on
the two left images and the large car yields a peak on the right images.

or multiplied as in [2]. An example using Equation (11) for a single scale is
shown in Figure 4 (c). Multiple scales can be handled by processing the image
at different scales as shown in Figure 5. In order to detect an object of size
s, giving the training size su, the image is scaled by su

s . In this way, the scale
factor in Equation (8) is already taken into account. Object detection can then
be performed by using mean shift to detect the modes of Equation (11); see
Figures 4 and 5.

3 Implementation Details

So far, the general framework has been described. In this section, we discuss
variations and implementation details that are relevant for applications.

3.1 Features and Binary Tests

Actually any kind of image feature can be used that is useful for object detection.
This includes sparse features like SIFT [27] or SURF [3], but usually one relies
on low-level features like color, gradients, or Gabor filters that can be efficiently
computed. In contrast to manual designed feature descriptors, the random forest
selects a split function (1) at each non-leaf node during training. All patches
ending in one leaf are therefore described by the split functions from the root to
the leaf. The split functions, however, can be directly optimized for the task of
object detection.

A set of features obtained from simple pixel tests using intensity and first-
order gradients are shown in Figure 3. The used pixel tests are defined by:

fφ(P) =

{
0 if If (p)− If (q) < τ

1 otherwise.
(12)

where the parameters φ = {p, q, f, τ} comprise two pixel locations within the
patch, a low-level image feature If of the patch, and a threshold τ . The pixel
differences introduce invariance with respect to a constant change of the image
features If . In [28], only a pixel value is thresholded, i.e., If (p) < τ . More

8 Juergen Gall, Nima Razavi, and Luc Van Gool

general tests than (12) have been used in [8, 13], where the feature values over
two regions Q and P are averaged:

fφ(P) =

{
0 if 1

|P |
∑

p∈P I
f (p)− 1

|Q|
∑

q∈Q I
f (q) < τ

1 otherwise.
(13)

The regions are rectangles within the patch such that the average can be ef-
ficiently computed by integral images. In general, several features can be also
combined for a single test:

fφ(P) =

{
0 if τ1 <

∑
f wf

(
1
|Pf |

∑
p∈Pf

If (p)
)
< τ2

1 otherwise,
(14)

where wf is a weight between the features, e.g., wf ∈ {−1, 0, 1}, and τ1 is
an additional threshold [7]. While more complex split functions allow a better
separation at each node, they also involve more parameters to estimate and
increase the chance of overfitting [7]. Even for Equation (12) the patch size has
an impact on the detection performance although it is not very sensitive to the
exact size [18].

In practice, split tests of type (12) or (13) have shown to give a good perfor-
mance for object detection. While in case of depth data, using only depth data
already gives good results [19, 37], 32 image features have been used in [18] for
object detection. Similarly to the number of parameters φ, the number of image
features can result in overfitting, i.e., a random forest trained with less image
features might perform better than a forest with many features.

To increase the robustness of features, one can introduce some variance to the
patches by transforming them. For instance, patches of various sizes and orienta-
tions are used in the context of classification [28]. In [24], additional patches are
tracked in video clips and added to the training data as temporal pairs. When
measuring the goodness of a split, one can enforce that temporal pairs are not
split. In this way, one can introduce some robustness of the features with respect
to small appearance changes over time. Measuring the goodness of a split will
be discussed in the next section.

In order to make the evaluation of the random set of parameters Φ more
efficient, one generates the parameters of a split function φ without a threshold
τ . The real-valued function fφ\τ is then applied to all patches Pi ∈ A, which are
sorted such that fφ\τ (Pi) ≤ fφ\τ (Pj) for i ≤ j. In this way, many thresholds can
be efficiently evaluated for the split function fφ. In [18], 10 randomly generated
thresholds are generated for each of the 2000 functions fφ\τ , yielding 20k split
functions for Φ in total.

3.2 Goodness of Split

Having defined a family of split functions, one has to measure the quality of a
split (5) by defining H(A). Depending on the task, one can define a classification

An Introduction to Random Forests for Multi-class Object Detection 9

(a) (b) (c)

Fig. 6. (a) Each split function separates the training data at a node. (b) The classifi-
cation objective aims to separate patches with different class labels. (c) The regression
objective aims to maximize the localization accuracy of the offsets.

or regression functional; see Figure 6. An entropy-based classification functional
can be computed by

Hc (A) = −
∑
c

p (c|A) log (p (c|A)) , (15)

where p(c|A) is computed as in Equation (6). The functional tends to separate
patches with different class labels in order to get leaves with low uncertainty for
p(c|L).

As in [7], one can also define a regression functional in a similar way by:

Hr (A) = −
∑
c

1

|A|
∑
P∈A

∫
d

p (d|c,P) log (p (d|c,P)) dd, (16)

to obtain leaves with a low uncertainty for p(d|c, L). While Hr(A) can be ef-
ficiently computed under the assumption that p (d|c,P) are Gaussian distri-
butions, the functional becomes too expensive for more general distributions.
In [18], a functional that is more efficient to compute has been used for regres-
sion:

Hr (A) =
∑
c

 ∑
d∈DA

c

∥∥∥∥∥∥d− 1

|DA
c |

∑
d′∈DA

c

d′

∥∥∥∥∥∥
2
 . (17)

Using functional (16) with a Gaussian assumption or functional (17) is not opti-
mal since both functionals assume a unimodal distribution of the offsets, which
is not correct for object detection as illustrated in Figure 3. In practice, these
approximations are, however, preferred due to training efficiency.

For object detection, one is interested in minimizing the uncertainties for
p(c|L) and p(d|c, L). Therefore, one searches for a split function fφ that maxi-
mizes the gain (5) using Hc and Hr, denoted by gc(φ,A) and gr(φ,A), respec-
tively. While the objective is randomly selected at each node in [18], [31] uses a
weighted combination of gc(φ,A) and gr(φ,A):

gcr(φ,A) = gc(φ,A) + w(A)gr(φ,A). (18)

10 Juergen Gall, Nima Razavi, and Luc Van Gool

In [31], w(A) is only defined for a two class problem with a positive and a negative
class:

w(A) = αmax
(
p(cpos|A)− tp, 0

)
. (19)

In general, the measure gcr(φ,A) tries to separate patches with different class
labels first. If the purity of positive patches exceeds a given threshold tp, the im-
pact of the regression functional gr(φ,A), weighted by the constant α, increases.
In [14], several weights for combining gc and gr based on the depth of the node
and including (19) have been evaluated in the context of head pose estimation.
They showed that a random approach as in [18] gives very similar performance
to weighting schemes with optimized parameters. The random approach, how-
ever, does not require additional parameters and is more efficient since only one
functional needs to be evaluated at each node.

While combining the classification term with the regression term improved
the performance for object detection in [18], the classification term gave the best
performance in the context of body part detection [19]. Body part detection is a
special case since all classes are spatially connected and it seems that enforcing
a local separation based on body part labels seems to be more appropriate than
making a unimodal approximation of the spatial distributions.

To avoid overfitting, the parameters of the split functions can be regular-
ized. For instance, the weights wf of the split functions (14) can be regularized
by g(φ,A) − λ

∑
f ‖wf‖2 [29]. In [24], pairs of patches (P1,P2) are used for

regularization:

−λ

 1

|Bpos|
∑
Bpos

I
(
fφ(P1) 6=fφ(P2)

)
+

1

|Bneg|
∑
Bneg

I
(
fφ(P1)=fφ(P2)

) , (20)

where I is an indicator function. The regularizer enforces that patches that are
similar under certain transformations, i.e., (P1,P2) ∈ Bpos, are not separated
while patches that are dissimilar, Bneg, are separated. The regularizer can be
used to introduce some robustness of the features with respect to specific trans-
formations. In contrast to the training data A, the pairs in B do not contain class
labels and can be collected from other sources. For instance, tracked patches in
arbitrary video sequences were used in [24] to build pairs for regularization in
the context of object detection and tracking.

Equation (20) relates to semi-supervised learning that can be implemented
in an iterative approach as in [25] or by computing the unsupervised gain gu
that prefers to cluster patches of similar appearance [7]. Since the unsupervised
gain does not depend on labels, it can be computed over the union of the labeled
set A and an additional unlabeled set B. The supervised and unsupervised gain
can be combined by:

g(φ,A) + λgu(φ,A ∪B) (21)

where gu is defined by using

Hu (A ∪B) = −
∫
I
p (I|A ∪B) log (p (I|A ∪B)) dI (22)

An Introduction to Random Forests for Multi-class Object Detection 11

in Equation (5). As Equation (16), the term Hu can be efficiently computed
under the assumption that the appearance of the patches of the set A ∪ B can
be approximated by a Gaussian distribution p(I|A∪B); otherwise the evaluation
becomes too expensive.

Regularizers and semi-supervised learning are important when the set of
labeled training data is rather small to avoid overfitting. In case of large amount
of labeled training data, the set of patches does not fit in the memory and on-line
learning [36] or subsampling strategies [36, 19] can be used. These strategies can
be easily implemented using only a subset of the training data A′ ⊂ A for training
a tree until a certain size. For the next step, another subset A′′ ⊂ A is sampled
and passed through the previously learned tree. The training is then continued
until the tree has reached a final size. After the parameters of the split functions
at the non-leaf nodes have been optimized, the distributions at the leaves can
be computed from the full training set A by passing all patches through the
tree and updating the offsets DL

c and the histograms of the class labels |Alc| at
the leaves. On-line learning or updating the leaf statistics is also performed for
object tracking [17, 36, 20] where the training examples arrive sequentially over
time.

3.3 Stopping Criteria

There are three main criteria for stopping the growing of a tree. The maximum
depth of a tree, a minimum number of samples arriving at a node during training
|Anode|, and a threshold based on the gain measure g(φ∗, Anode) (5). While the
gain should be always strictly positive, i.e., g(φ∗, Anode) > 0, finding a good
threshold is difficult. Therefore, limiting the tree depth and the minimum number
of samples are more practical criteria. In the context of on-line learning [36],
it has been shown that |Anode| > ε is a sufficient criteria and an additional
thresholding of the gain is not necessary. The optimal depth, however, depends on
the amount of training data. For instance, the optimal performance for detecting
organs in CT scans has been achieved by training 12 trees with depth 7 on the
available 55 training examples [8]. In [19], 3 trees with depth 20 trained on 300k
training examples performed well. While the number of trees is less critical since
the performance does not decrease with more trees, trees that are too deep can
have a negative impact on the performance due to overfitting [8].

3.4 Leaf Prediction Model

While p(c|L) is defined in (6), there are several choices for modeling the spatial
distributions p(d|c, L) at the leaf L. In [16], a Parzen estimate with a Gaussian
kernel K is used to reconstruct the distribution from the samples:

p(d|c, L) =
1

|DL
c |

 ∑
d′∈DL

c

K(d′ − d)

 . (23)

12 Juergen Gall, Nima Razavi, and Luc Van Gool

Fig. 7. Object detection with backprojection. From left to right: After passing the
patches of the test image through the trees, the votes are collected. The mode of
the distribution the votes are sampled from is detected by mean shift. The votes are
backprojected to the image showing the image patches that voted for the object. The
backprojection mask visualizes the support from the wheels of the car. Note that the
occluding pedestrian is not part of the backprojection mask. The image has been taken
from [32].

Although the non-parametric approach is very general, it does not scale with
the number of offsets per class |DL

c |. For many training examples, it is therefore
recommended to approximate the distributions by a Gaussian mixture model
as in [19, 21]. Since in both cases a multimodal regression functional (16) is
too expansive to evaluate for training, it is therefore approximated by a more
simple, unimodal measure. In case of pose estimation [8, 13], p(d|c, L) is even
approximated by a single Gaussian. Although this makes the testing very effi-
cient, it is not an appropriate choice for object detection as indicated by the leaf
distributions shown in Figure 3.

3.5 Bounding Box Estimation

For getting object hypotheses, the modes of p(h|I) (11) can be searched by mean
shift [23, 19] or by smoothing the voting space and searching for local maxima in
a greedy manner [16]. In both cases, the bandwidth of the used kernel needs to
be large enough to detect objects where the votes do not aggregate in the exact
spot. This is illustrated in Figure 7.

The computation of p(h|I) can be drastically reduced by sampling not all
patches from the test image, but using only a subset a patches. As long as the
average overlap between two nearest sampled patches is greater than 50%, the
loss in detection performance is acceptable in comparison to the gain in runtime
performance [16, 18]. In addition, one can discard leaves that are very uncertain
as in [8, 13, 14, 19], i.e., if p(c|L) is low or if the variance of p(d|c, L) is high. This
can be achieved by using a predefined threshold or taking a fix number of the
most certain leaves per image.

Having a hypothesis h(c,x, s), the enclosing bounding box can be estimated
by taking the average bounding box of the training examples of class c, after
rescaling to the unit size su, and multiplying it by the estimated size s

su
. The

position of the bounding box is defined by x.
In some cases, the aspect ratios vary widely within a single class such that

the average bounding box of the training images scaled and translated to the

An Introduction to Random Forests for Multi-class Object Detection 13

Fig. 8. Computing the bounding box based on the backprojection. Left: annotated
bounding box (blue) and estimated bounding box (green). Right: Superimposed back-
projection mask and estimated bounding box.

detection center is not precise enough. Alternatively, one can compute the back-
projection of the supporting image patches for a hypothesis h(c,x, s) [23, 32].
One approach to compute the backprojection mask extracts the maximum ex-
tent of a possible support, i.e., the largest bounding box of the training images
scaled and translated to the detection center. Within the bounding box, the
image patches are collected and passed again through the trees. Every time a
patch votes for the hypothesis, the contribution weight of the patch P(y) for h
is given by

π(h(c,x, s),y) =
1

|{Tt}|
∑
t

 ∑
d∈DLt(y)

c

p (c|Lt(y))∣∣∣DLt(y)
c

∣∣∣ K
(
d− su(y − x)

s

) , (24)

where K is the kernel used for mode detection. An obtained backprojection
mask π(h,y) is shown in Figure 7. To obtain the bounding box, the mask can
be thresholded to estimate the tightest bounding box encompassing the binary
mask. In [32], the threshold is defined by 1

2 maxy π(h,y). Two examples are
shown in Figure 8. In [23, 34], the backprojection has been additionally aug-

14 Juergen Gall, Nima Razavi, and Luc Van Gool

Fig. 9. Two object hypotheses and their top ten nearest training examples (ordered
from left to right). The detected pedestrians are the same as in Figure 8. For each hy-
pothesis, the top row shows the training examples that contribute most to the hypoth-
esis. The bottom row shows the backprojection mask superimposed on each training
example. The images have been taken from [32].

mented by segmentation masks obtained from segmented training data. The
segmentation mask can also be used for verification.

In order to detect multiple instances in a single image, one can use a greedy
approach. Starting with the hypothesis with the highest score p(h|I), the im-
age patches that support the hypothesis are removed and the detection process
continues until a maximum number of hypotheses have been extracted from the
image or the remaining hypotheses have a score below a given threshold. How-
ever, there are more principled ways to detect multiple instances. In [23, 2, 34],
optimization procedures for non-maximum suppression, for instance, based on
the minimum description length (MDL) principle are used. These methods han-
dle instances that occlude each other better since they aim at solving an optimal
assignment of the votes to competing hypotheses.

The backprojection can also be used to obtain a link between a hypothesis
and the training data [32]. For instance, Equation (24) can be modified by taking

only offsets D
Lt(y)
c (θ) into account that were sampled from a specific training

example θ. The contribution of a training example for a hypothesis is then mea-
sured by

∑
y π(h,y, θ). Figure 9 shows the training examples that contribute

most to the detections shown in Figure 8.

An Introduction to Random Forests for Multi-class Object Detection 15

More general, the similarity between two hypotheses h1 and h2 of the same
class c can be defined by

S(h1,h2) =

∑
t

∑
Lt

∑
d∈DLt

c

p(c|Lt)

|DLt
c | I (d,h1) I (d,h2)∑

t

∑
Lt

∑
d∈DLt

c

p(c|Lt)

|DLt
c | I (d,h1)

(25)

where

I (d,h) =

{
0 if maxy π(h,y,d) = 0,

1 otherwise.
(26)

The indicator function I(d,h) is basically 1 if an offset d contributes to a hy-
pothesis h, which is measured by π(h,y,d), i.e., Equation (24) computed for a
single offset d instead of

∑
d∈DLt(y)

c
.

Having a similarity measure, one can retrieve the nearest neighbors from the
training set and transfer attributes from them to the detection hypothesis. For
instance, the viewpoint of a detected car is estimated using Equation (25) in [32].
The most interesting property of the similarity measure based on the support of
two hypotheses is the robustness to occlusions as shown in Figure 10.

3.6 Feature Sharing

The advantage of using one multi-class detector compared to having a detector
for each positive class is the ability of sharing features among classes, which
reduces the memory requirements and also the testing time. The sharing and the
performance of a random forest for multi-class object detection on the PASCAL
VOC 2006 and 2007 datasets [12] have been investigated in [33].

The sharing among classes is illustrated in Figure 11. Since each leaf contains
patches from several classes, one can compute the amount of sharing among
classes [33] by

T (ci, cj) ∝
∑
t

∑
Lt

(∣∣DLt
ci

∣∣ · p (cj |Lt)
)
, (27)

where T (ci, cj) is normalized such that
∑
j T (ci, cj) = 1. The obtained sharing

matrix T among the positive classes for the two datasets PASCAL VOC 2006 and
2007 are shown in Figure 12. For PASCAL VOC 2006, many features are shared
between the pairs bus-car, cat-dog, motorbike-bicycle, and cow-sheep since these
categories are also similar in appearance and shape. For dissimilar categories like
bus and cow, the sharing is marginal.

Based on the sharing matrix T , one can derive a taxonomy of classes by clus-
tering the symmetric dissimilarity matrix D = 1− 1

2 (T+TT). The automatically
derived taxonomies are also plotted in Figure 12. The taxonomies show that the
feature sharing within a multi-class random forest is meaningful. The close sim-
ilarity between cow and sheep can be explained by the typical green background
of the training images of the two classes. Since the forest is trained on bounding
boxes, many patches with class labels for cow and sheep contain mainly grass

16 Juergen Gall, Nima Razavi, and Luc Van Gool

(a) (b) (c)

Fig. 10. Viewpoint retrieval on the Leuven car dataset [22]; some examples are shown
in the top row (blue - ground truth, green - correct detection, red - incorrect detection).
(a) Confusion matrix. Most of the confusions appear between neighboring viewpoints.
(b-c) The viewpoint retrieval performance with respect to the amount of occlusion.
Although the detection performance deteriorates with an increasing amount of occlu-
sion (b), the viewpoint retrieval performance is affected very little (c), which shows
the robustness of the similarity measure to occlusions. The images have been taken
from [32].

from the background. The sharing, however, depends on the image features that
are used for the split functions. For instance, potted plant and dinning table
are measured as similar for PASCAL VOC 2007. Since potted plants are not
well described by the used histogram of gradients features, the location of the
category in the taxonomy is not very meaningful.

Figure 13 shows the effect of sharing of a multi-class random forest in com-
parison to training a random forest for each positive class (one-vs-the-rest). Not
only the number of leaves is reduced, yielding less memory requirements, but
also the votes to be cast for detection is lower. This is achieved by casting only
votes if p (cj |Lt) > 1

C , where C is the number of classes. Based on the taxonomy,
one can even adjust the thresholds for the classes to reduce the number of cast
votes further [33].

The multi-class forest can also be used to generate class hypotheses that are
verified with a more sophisticated classifier or detector. In [33], the verification
detector [15] has been used for re-scoring each hypothesis. The performance
on PASCAL VOC 2006 is shown in Table 1. The multi-class random forest
(MC) and the taxonomy (T) perform similar or better than many one-vs-the-

An Introduction to Random Forests for Multi-class Object Detection 17

(a) (b)

Fig. 11. Patches clustered in two leaves of a multi-class detector trained on PASCAL
VOC 2006. The first leaf shares features of similar appearance among the classes person,
sheep, and dog. The second example shares features among the classes cat, motorbike,
and bicycle. The images have been taken from [33].

(a) PASCAL VOC 2006 (b) PASCAL VOC 2007

Fig. 12. Sharing matrices and their corresponding taxonomies which are automatically
obtained by clustering the sharing matrices. The images have been taken from [33].

rest (OvA) random forests even after the verification step. While the number of
verifications scales well with the number of classes as shown in Table 2, there
is no loss in detection performance compared to [15]. As reported in [33], the
system requires 35 seconds per image for detecting one positive class, but only
100 seconds for detecting all 20 classes. Comparing these numbers with the
fast verification detector [15], which requires 7 seconds per image and per class
and 134 seconds per image for 20 classes, there is already a benefit for less
than 20 classes. Although it is clear that 100 seconds are still not satisfying,
optimizing the random forest for multi-class object detection as in [19] or using
the approximations mentioned in this paper might give a significant reduction
of the detection time.

18 Juergen Gall, Nima Razavi, and Luc Van Gool

(a) (b)

Fig. 13. Both the number of leaves (a) and the number of votes (b) of a multi-class
random forest grow sublinearly with respect to the number of classes. In contrast,
one-vs-the-rest approaches grow linearly. The difference between the blue and the red
curve in (a) indicates the amount of sharing that is happening. In (b), the derived
taxonomy can be used to further reduce the number of votes. The images have been
taken from [33].

4 Discussion and Conclusion

In this paper, we have described a general random forest framework for multi-
class object detection and discussed several implementation variations. In this
context, object detection is formulated as a combined regression and classifi-
cation problem. While the detection problem becomes a distribution estima-
tion problem, the random forests allow to learn features and descriptors that
are optimal for estimating the distributions with low uncertainty. The theoreti-
cal framework, however, has the shortcoming that general distributions become
too expensive for large datasets. Therefore, several approximations have been
discussed to improve the efficiency. The approximations range from restricting
the type of distributions to Gaussians or Gaussian mixture models to using an
approximation of the spatial distribution for measuring the gain or using sub-
sampling strategies during training and testing. Although many approximations
are very intuitive and the basic algorithm is straightforward to implement, it
requires some engineering to find an optimal trade-off between accuracy and
runtime performance. The most crucial parameter for the detection accuracy,
however, is the amount of training data. Random forests are not designed to
generalize from small training sets, but to handle large amount of training data
efficiently. For datasets with limited training data and large intra-class variation
like PASCAL VOC 2007, they do not achieve the best detection accuracy without
an additional verification step [18, 33]. However, using semi-supervised learning
and regularizers that exploit large amount of unlabeled data as described in

An Introduction to Random Forests for Multi-class Object Detection 19

Method bic. bus car cat cow dog hrs. m.bi. pers. shp. avg

OvA .16 .13 .07 .04 .18 .03 .15 .16 .11 .12 .114
MC .37 .12 .11 .02 .14 .05 .08 .21 .05 .12 .127

MC+T. .38 .13 .12 .05 .15 .03 .11 .12 .05 .12 .132

[15] .64 .62 .634 .23 .46 .14 .45 .61 .38 .45 .459
OvA+vrf. .67 .62 .62 .23 .46 .14 .46 .62 .35 .43 .461
MC+vrf. .68 .64 .65 .20 .47 .14 .44 .64 .38 .43 .465

MC+T.+vrf. .66 .64 .66 .22 .47 .14 .44 .64 .36 .42 .463

Table 1. Performance comparison of a multi-class method (MC) with some base-
lines in average-precision for the PASCAL VOC 2006 dataset. The first block shows
the detection without verification and without non-maxima suppression. MC outper-
forms one-vs-the-rest (OvA). The taxonomy not only reduces the amount of voting
(Figure 13), it also gives a slight improvement. In the second block, verification is per-
formed with [15]. By using a two-stage method, there is no loss in accuracy compared
to [15]. The number of performed verifications is given in Table 2.

Method #windows #verifications

MC-VOC’06 (10 cat.) 1321 1321
MC-VOC’07 (20 cat.) 1778 1778
[15]-VOC’07(20 cat.) 42278 833141

Table 2. The multi-class random forest (MC) reduces the number of windows for
verification per image. Since the hypotheses already have a class label, each hypothesis
or window needs to be verified only once. It is important that the reduction is achieved
without compromising accuracy; see Table 1.

this paper might overcome the overfitting problem of random forests partially.
Due to its relation to implicit shape models [23], the detection approach shares
advantages and limitations of this type of models. While techniques like back-
projection and feature sharing allow to reason about object hypotheses and the
similarity of categories, which goes beyond black box classifiers, the independent
assumption of the image patches is a weakness of these models that needs to be
addressed in the future. Nevertheless, random forests have a strong potential
for applications where many labeled examples are available. For instance, pose
or body part estimation from depth data [13, 19] are examples where accurate
results can be obtained in real-time. The work [19] also shows the benefit of
engineering where a fine tuned version of [18] resulted in a speed-up by a factor
of 3200.

References

1. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees.
Neural Computation 9(7), 1545–1588 (1997)

2. Barinova, O., Lempitsky, V., Kohli, P.: On the detection of multiple object in-
stances using hough transforms. In: IEEE Conf. Computer Vision and Pattern
Recognition (2010)

20 Juergen Gall, Nima Razavi, and Luc Van Gool

3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf).
Computer Vision and Image Understanding 110(3), 346 – 359 (2008)

4. Bosch, A., Zisserman, A., Muñoz, X.: Image classification using random forests
and ferns. In: Int’l Conf. Computer Vision (2007)

5. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

6. Chen, H., Liu, T., Fuh, C.: Segmenting highly articulated video objects with weak-
prior randomforests. In: European Conf. Computer Vision. pp. 373–385 (2006)

7. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, re-
gression, density estimation, manifold learning and semi-supervised learning. Tech.
Rep. MSR-TR-2011-114, Microsoft Research, Cambridge (2011)

8. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for
efficient anatomy detection and localization in ct studies. In: Medical Computer
Vision Workshop (2010)

9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Conf. Computer Vision and Pattern Recognition. pp. 886–893 (2005)

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: IEEE Conf. Computer Vision and Pattern
Recognition (2009)

11. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation
of the state of the art. IEEE Trans. Pattern Analysis and Machine Intelligence
(2012)

12. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. International Journal of Computer Vision
88(2), 303–338 (2010)

13. Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random
regression forests. In: IEEE Conf. Computer Vision and Pattern Recognition (2011)

14. Fanelli, G., Weise, T., Gall, J., Van Gool, L.: Real time head pose estimation from
consumer depth cameras. In: Pattern Recognition, pp. 101–110 (2011)

15. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. IEEE Trans. Pattern Analysis
and Machine Intelligence 32, 1627–1645 (2010)

16. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: IEEE
Conf. Computer Vision and Pattern Recognition (2009)

17. Gall, J., Razavi, N., Van Gool, L.: On-line adaption of class-specific codebooks for
instance tracking. In: British Machine Vision Conf. (2010)

18. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object
detection, tracking, and action recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence 33, 2188–2202 (2011)

19. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient re-
gression of general-activity human poses from depth images. Int’l Conf. Computer
Vision (2011)

20. Godec, M., Roth, P., Bischof, H.: Hough-based tracking of non-rigid objects. In:
Int’l Conf. Computer Vision (2011)

21. Lehmann, A., Leibe, B., Van Gool, L.: Fast prism: Branch and bound hough trans-
form for object class detection. Int’l J. Computer Vision 94, 175–197 (2011)

22. Leibe, B., Cornelis, N., Cornelis, K., Van Gool, L.: Dynamic 3d scene analysis from
a moving vehicle. In: IEEE Conf. Computer Vision and Pattern Recognition (2007)

23. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved
categorization and segmentation. Int’l J. Computer Vision 77(1-3), 259–289 (2008)

An Introduction to Random Forests for Multi-class Object Detection 21

24. Leistner, C., Godec, M., Schulter, S., Saffari, A., Werlberger, M., Bischof, H.: Im-
proving classifiers with unlabeled weakly-related videos. In: IEEE Conf. Computer
Vision and Pattern Recognition (2011)

25. Leistner, C., Saffari, A., Santner, J., Bischof, H.: Semi-supervised random forests.
In: Int’l Conf. Computer Vision. pp. 506–513 (2009)

26. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recog-
nition. In: IEEE Conf. Computer Vision and Pattern Recognition. pp. 775–781
(2005)

27. Lowe, D.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), 91 (2004)

28. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust
image classification. In: IEEE Conf. Computer Vision and Pattern Recognition.
pp. 34–40 (2005)

29. Menze, B., Kelm, B., Splitthoff, D., Koethe, U., Hamprecht, F.: On oblique random
forests. In: Machine Learning and Knowledge Discovery in Databases, pp. 453–469
(2011)

30. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using
randomized clustering forests. In: Neural Information Processing Systems (2006)

31. Okada, R.: Discriminative generalized hough transform for object dectection. In:
Int’l Conf. Computer Vision (2009)

32. Razavi, N., Gall, J., Van Gool, L.: Backprojection revisited: Scalable multi-view
object detection and similarity metrics for detections. In: European Conf. Com-
puter Vision (2010)

33. Razavi, N., Gall, J., Van Gool, L.: Scalable multi-class object detection. In: IEEE
Conf. Computer Vision and Pattern Recognition. pp. 1505–1512 (2011)

34. Rematas, K., Leibe, B.: Efficient object detection and segmentation with a cas-
caded hough forest ism. In: IEEE Workshop on Challenges and Opportunities in
Robot Perception (2011)

35. Schroff, F., Criminisi, A., Zisserman, A.: Object class segmentation using random
forests. In: British Machine Vision Conf. (2008)

36. Schulter, S., Leistner, C., Roth, P., Bischof, H., Van Gool, L.: On-line hough forests.
In: British Machine Vision Conf. (2011)

37. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-
man, A., Blake, A.: Real-time human pose recognition in parts from single depth
images. In: IEEE Conf. Computer Vision and Pattern Recognition (2011)

38. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categoriza-
tion and segmentation. In: IEEE Conf. Computer Vision and Pattern Recognition
(2008)

39. Sun, M., Bradski, G., Xu, B.X., Savarese, S.: Depth-encoded hough voting for
coherent object detection, pose estimation, and shape recovery. In: European Conf.
Computer Vision (2010)

40. Winn, J., Shotton, J.: The layout consistent random field for recognizing and seg-
menting partially occluded objects. In: IEEE Conf. Computer Vision and Pattern
Recognition. pp. 37–44 (2006)

