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Abstract

Tracking multiple persons in a monocular video of a

crowded scene is a challenging task. Humans can master it

even if they loose track of a person locally by re-identifying

the same person based on their appearance. Care must be

taken across long distances, as similar-looking persons need

not be identical. In this work, we propose a novel graph-

based formulation that links and clusters person hypotheses

over time by solving an instance of a minimum cost lifted

multicut problem. Our model generalizes previous works by

introducing a mechanism for adding long-range attractive

connections between nodes in the graph without modifying

the original set of feasible solutions. This allows us to re-

ward tracks that assign detections of similar appearance

to the same person in a way that does not introduce im-

plausible solutions. To effectively match hypotheses over

longer temporal gaps we develop new deep architectures for

re-identification of people. They combine holistic represen-

tations extracted with deep networks and body pose layout

obtained with a state-of-the-art pose estimation model. We

demonstrate the effectiveness of our formulation by report-

ing a new state-of-the-art for the MOT16 benchmark. The

code and pre-trained models are publicly available1.

1. Introduction

Multiple people tracking has improved considerably in

the last two years, driven also by the MOT challenges

[18, 20]. One trend in this area of research is to develop

CNN-based feature representations for people appearance to

effectively model relations between detections [14, 17]. This

trend has two advantages: Firstly, representations of people

appearance can be learned for varying camera positions and

motion, a goal less easy to achieve with simple motion mod-

els, especially for monocular video due to the complexity

of motion under perspective projection. Secondly, appear-

ance facilitates the re-identification of people across long

∗This work was done while S. Tang was at Max Planck Institute for

Informatics.
1http://mpi-inf.mpg.de/multicut_tracking

Figure 1. Qualitative results on the MOT16 benchmark. The solid

line under each bounding box indicates the life time of the track.

The lifted multicut tracking model is able to link people through

occlusions and produces persistent long-lived tracks.

distances, unlike motion models that become asymptotically

uncorrelated. Yet, incorporating long-range re-identification

into algorithms for tracking remains challenging. One rea-

son is the simple fact that similar looking people are not

necessarily identical. To address these challenges, in this

paper, we generalize the mathematical model of [28] so as

to express the fact that similar looking people are considered

as the same person only if they are connected by at least one

feasible track (possibly skipping occlusion). More specifi-

cally, every detection is represented by a node in a graph;

edges connect detections within and across time frames, and

costs assigned to the edges can be positive, to encourage

the incident nodes to be in the same track, or negative, to

encourage the incident nodes to be in distinct tracks. Such

mathematical abstraction has several advantages. Firstly, the

number of persons is not fixed or biased by the definition of

the problem, but is estimated in an unbiased fashion from

the video sequence and is determined by the solution of the

problem. Secondly, multiple detections of the same person

in the same frame are effectively clustered, which eliminates

the need for heuristic non-maxima suppression. In order to

avoid that distinct but similar looking people are assigned

to the same track, a distinction must be made between the

edges that define possible connections (i.e., a feasible set)

and the edges that define the costs or rewards for assigning
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the incident nodes to distinct tracks (i.e., an objective func-

tion). We achieve this, while maintaining the advantages

of [28], by casting the multi-person tracking problem as a

minimum cost lifted multicut problem [1].

Specifically, we make three contributions:

Firstly, we design and train deep networks for re-

identifying persons by fusing human pose information. This

provides a mechanism for associating person hypotheses that

are temporally distant and allows to obtain correspondence

before and after occlusion.

Secondly, we propose to cast multi-person tracking as the

minimum cost lifted multicut problem. We introduce two

types of edges (regular and lifted edges) for the tracking

graph. The regular edges define the set of feasible solutions

in the graph, namely, which pair of nodes can be joint/cut.

The lifted edges add additional long range information to the

objective on which node should be joint/cut without modi-

fying the set of feasible solutions. Our formulation encodes

long-range information, yet penalizes long-term false joints

(e.g., similar looking people) by forcing valid paths in the

feasible solution in a unified and rigorous manner.

Thirdly, we show that the tracks defined by local optima

of this optimization problem define a new state-of-the-art for

the MOT16 benchmark [20].

Related Work. Recent works on multi-person tracking fo-

cus on the tracking-by-detection approach [21, 36, 35, 29,

30]. Tracking is performed either directly on people detec-

tions [21, 23, 34], or on a set of confident tracklets, which

are obtained by first grouping detections [6, 27, 33]. Intro-

ducing tracklets can reduce the state space; however, such

approaches need a separate tracklet generation step, and any

mistakes introduced by the tracklet generation are likely to

be propagated to the final solution. In this work, our model

takes detection as input. As the detections are clustered

jointly in space and time, our model is able to handle multi-

ple detection hypotheses of the same target on each frame.

One common formulation for multi-person tracking are

network flow-based methods [3, 7, 31]. [3] proposes to

model all potential locations over time and find trajectories

that produce the minimum cost. [31] extends the work [3] to

track interacting objects simultaneously by using intertwined

flow and imposing linear flow constraints. [23] shows that

their network flow formulation can be solved in polynomial

time by a successive shortest path algorithm. A maximum

weight independent set formulation followed by hierarchical

merging and linking is proposed for the tracking task in [5].

Recently, minimum cost multicut formulation has been

proposed to address multi person tracking [13, 27, 28, 25,

15]. [27, 28] propose to jointly cluster detections over space

and time. The optimal number of people as well as the clus-

ter of each person are obtained by partitioning the graph

with attractive and repulsive terms. [15] proposes to parti-

tion the detection graph by considering point tracks, speed,

appearance and trajectory straightness. The optimization is

performed by a combination of message passing and move-

making algorithms. [25] proposes to solve the minimum cost

multicut problem by a multi-stage cascade with a temporal

sliding window. Our work is different from the previous

multicut based works; our lifted multicut formulation intro-

duces additional edges in the graph to incorporate long-range

information into the tracking formulation.

Many works have been proposed to exploit appearance in-

formation. [14] proposes a target-specific appearance model

which integrates long-term information and utilizes features

from a generic deep convolutional neural network. [34]

proposes to formulate tracking as a Markov decision pro-

cess with a policy estimated on the labeled training data

and presents novel appearance representations that rely on

the temporal evolution in appearance of the tracked target.

Recently, [17] proposes to model the similarity between

pairs of detections by CNNs. Several architectures have

been explored and they present similar findings to our work,

that forming a stacked input to CNNs performs the best.

Our work additionally incorporates human pose information,

which improves the similarity measures by a notable margin.

There are several multi person tracking works that aim

to recover people tracks by incorporating longer-range con-

nections between detection hypotheses [35, 21, 7, 33]. [21]

employs a simple color appearance model and proposes a

continuous formulation, where mutual occlusions, dynamics

and long-range trajectory continuity are effectively modeled.

[35] proposes a generalized minimum clique formulation

which is solved by a greedy iterative optimization scheme

that finds one track at a time. In [7], their target appear-

ance model is learned online, and it relies on a heuristic

procedure to determine which track segment is valid and the

creation/termination of tracks. [33] relies on first grouping

detections into tracklets, and then in the subsequent stage

into long-range tracks with a greedy heuristic approach. In

our approach, frame-to-frame and long-range similarity is

incorporated into the objective function in a unified manner.

2. Model

We now turn to our mathematical abstraction of multiple

people tracking as a minimum cost lifted multicut problem

(LMP). The LMP is an optimization problem whose feasible

solutions can be identified with decomposition of a graph.

The minimum cost multicut problem (MP) [28] is defined

w.r.t. a graph whose edges define possibilities of joining

nodes directly into the same track. The LMP is defined,

in addition, w.r.t. additional lifted edges that do not define

possibilities of directly joining nodes.

Our motivation for modeling the lifted edges comes from

the simple fact that persons of similar appearance are not

necessarily identical. Given two detections that are far apart

in time and similar in appearance, it is more likely that they
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Figure 2. Comparison between Multicut Problem (MP) and Lifted

Multicut Problem (LMP). Ground truth track of each person is de-

picted in gray. Regular edges are depicted in black, lifted edges are

in green. Solid lines indicate joints, dotted lines indicate cuts. Costs

of cutting edges are indicated by the numbers on the corresponding

edges. (Best view in color)

represent the same person. At the same time, this decision

has to be certified a posteriori by a track connecting the

two. We achieve precisely this by introducing two classes of

edges: regular edges and lifted edges. In order to assign two

detections that are far apart in time and similar in appearance

to the same cluster (person), there must exist a path (track)

along the regular edges, that certifies this decision.

Two intuitive examples are given in Fig. 2. In (a) and (b)

there are three persons in the scene, v1 is the detection on the

first person, v2 and v3 are the detections on the second, v4 is

on the third. The costs on the edges v1v2 and v3v4 are −3,

suggesting strong rewards towards cutting the edges, and

this is correct. However, the cost on the edge v1v4 suggests

that the first and the third person look similar and introduces

a strong reward towards connecting them. As a result, the

MP incorrectly connects v1 and v4 as the same person; the

LMP does not connect v1 and v4, as such long-range join

is not supported by the local edges. (c) and (d) is another

example where all the detections are on the same person,

namely, a track that connects all the nodes in the graph is

desirable. Due to partial occlusion or inaccurate bounding

box localization, the costs on the local edges v1v2 and v3v4
could be ambiguous, sometimes even reverse. The long-

range edge v1v4 correctly re-identifies the person. The MP,

however, produces two clusters for a single person because

the long-range edge does not introduce additional constraints

on the local connections. In contrast, the LMP allows us to

influence the entire chain of connections between person

hypotheses with a single confident long-range observation.

In the following, we discuss in detail first the parameters,

then the feasible set, and finally the objective function.

Parameters. Given an image sequence, we consider an

instance of the LMP with respect to the parameters defined

below. The estimation of these parameters from the image

sequence is discussed in the next section.

• A finite set V in which every element v ∈ V represents

a detection of one person in one image, i.e., a bounding

box. For every detection v ∈ V , we also define its

height hv ∈ R
+, the image coordinates xv, yv ∈ R

+

of its center and its frame number tv ∈ N.

• For every pair v, w ∈ V : a conditional probability

pvw ∈ (0, 1) of v and w to represent distinct persons,

given their height, coordinates and appearance.

• A graph G = (V,E) whose edges are regular edges that

connect detections v, w in the same image tv = tw and

also connect detections v, w in distinct images tv 6= tw
that are close in time, i.e., for some fixed upper bounds

δt ∈ N : |tv − tw| ≤ δt.

• A graph G′ = (V,E′) with E ⊆ E′ whose additional

edges {v, w} ∈ E′ \ E are lifted edges which connect

detections v, w that are far apart in time and similar

in appearance, i.e., for some fixed p0 ∈ (0, 1
2 ): |tv −

tw| > δt and pvw ≤ p0.

The graph G defines the decomposition space, and the graph

G′ adds lifted edges E′ \E on top of G and defines the struc-

ture of the cost function. The lifted edges are introduced for

the detections that are far apart in time and similar in appear-

ance, because such pair of detections potentially indicates

the same person that reappears after long-term occlusion.

Feasible Set. The feasible solutions of the LMP can be

identified with the decomposition (clusterings) of the graph

G. Here, in the context of tracking, every component (clus-

ter) of detections defines a track of one person. It is therefore

reasonable to think of our approach as tracking by clustering.

Formally, any feasible solution of the LMP is a 01-vector

x ∈ {0, 1}E′

in which xvw = 1 indicates that the nodes v
and w are in distinct components. In order to ensure that x
well-defines a decomposition of G, it is further constrained

to the set XGG′ ⊆ {0, 1}E′

of those x ∈ {0, 1}E′

that

satisfy the system of linear inequalities written below.

∀C ∈ cycles(G) ∀e ∈ C :

xe ≤
∑

e′∈C\{e}

xe′ (1)

∀vw ∈ E′ \ E ∀P ∈ vw-paths(G) :

xvw ≤
∑

e∈P

xe (2)

∀vw ∈ E′ \ E ∀C ∈ vw-cuts(G) :

1− xvw ≤
∑

e∈C

(1− xe) (3)
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The constraints (1) are generalized transitivity constraints

which mean: For any neighboring nodes v and w, if there

exists a path from v to w in G along which all edges are

labeled as 0, then the edge vw can only be labeled as 0. The

constraints (2) and (3) guarantee, for every feasible solution

and every lifted edge vw ∈ E′ \E, that the label xvw of this

edge is 0 (indicating that v and w belong to the same track) if

(2) and only if (3) v and w are connected in the smaller graph

G by a path of edges labeled 0. By assigning a cost or reward

cvw ∈ R to a lifted edge vw ∈ E′ \ E, we can thus assign

this cost or reward precisely to those feasible solutions for

which v and w belong to distinct tracks, without introducing

the additional possibility of joining v and w directly.

Objective function. We consider instances of the LMP of

the form

min
x∈XGG′

∑

e∈E′

cexe (4)

with the costs ce defined as

ce = log
1− pe
pe

. (5)

The objective function is chosen such that solutions are de-

compositions of G into tracks that maximize the probability

of detections representing the same or distinct persons. More

specifically, we define pe as a logistic form:

pe :=
1

1 + exp(−〈θγ , f (e)〉) . (6)

Then the cost ce has the form:

ce := log
1− pe
pe

= −〈θγ , f (e)〉 . (7)

The model parameter θγ is estimated on the training set by

means of logistic regression. γ is the length of temporal

interval between pair of detections. We estimate a separate

set of edge-cost parameters θγ for each temporal interval

between the detections. The feature f (e) describes the simi-

larity between detections. In this work, f (e) is defined as a

combination of person re-identification confidence (Sec. 3),

deep correspondence matching, and spatio-temporal rela-

tions, which is discussed in Sec. 4

Optimization. The minimum cost lifted multicut problem

defined by (4) is APX-hard [8]. Given the size of instances

of our tracking problems, solving to optimality or within

tight bounds using branch and cut is beyond feasibility. In

this work, we exploit a primal heuristic proposed by [12],

where the bi-partitions of a subgraph are updated by a set of

sequences of transformations. The update has the worst-case

complexity of O(|V ||E|) which is almost never reached in

practice. Detailed run time analysis can be found in [12].

3. Person Re-identification for Tracking

Traditionally, person re-identification is the task to asso-

ciate observed pedestrians in non-overlapping camera views.

In the context of multi-person tracking, linking the detected

pedestrians across the whole video can be viewed as re-

identification with special challenges: occlusions, cluttered

background, large difference in image resolution and inaccu-

rate bounding box localization. In this section, we investi-

gate several CNN architectures for re-identification for the

multi-person tracking task. Our basic CNN architecture is

VGG-16 Net [26]. Particularly, we propose a novel person

re-identification model that combines the body pose layout

obtained with state-of-the-art pose estimation methods.

Data Collection. One of the key ingredients of deep CNNs

is the availability of large amounts of training data. To apply

re-identification to tracking, we collect images from the

MOT15 benchmark [18] training set and 5 sequences of the

MOT16 benchmark [20] training set. We also collect person

identity examples from the CUHK03 [19], Market-1501 [37]

datasets that are captured by 6 surveillance cameras. We use

the MOT16-02 and MOT16-11 sequences from the MOT16

training set as test sets. Overall a total of 2511 identities is

used for training and 123 identities for testing.

3.1. Architectures

In this work, we explore three architectures, namely ID-

Net, SiameseNet, and StackNet.

ID-Net. We first learn a VGG net Φ to recognize N =
2511 unique identities from our data collection as a N -way

classification problem. We re-size the training images to

112 × 224 × 3. Each image xi, i = 1, ...,M associates to

a ground truth identity label yi ∈ {1, ..., N}. The VGG

estimates the probability of each image being each label as

pi = Φ(xi) by a forward pass. The network is trained by the

softmax loss.

During testing, given an image from unseen identities,

the final softmax layer is removed and the output of the

fully-connected layer Φf7 is used as the identity feature.

Given a pair of images, the Euclidean distance between the

two identity features can be used to decide whether the pair

contains the same identity. In the experiments we observe

that this identity feature already provides good accuracy.

However, the performance is boosted by turning to a Siamese

architecture and a StackNet, explained next.

SiameseNet. A Siamese architecture means the network

contains two symmetry CNNs which share the parameters.

We start with a commonly used Siamese architecture as

shown in Fig. 3(a). To model the similarity we use fully con-

nected layers on top of the twin CNNs. More specifically, the

features FC6(xi) and FC6(xj) from a pair of images are ex-

tracted from the first fully-connected layer of the VGG-based

Siamese network that shares the weights. Then the features
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(a) (b) (c) (d)

Model Acc. (%)

ID-Net 80.4

SiameseNet 84.7

StackNet 86.9

StackNetPose 90.0

(e)

Figure 3. (a) SiameseNet. (b) StackNet. (c) StackNetPose. Red rectangles indicate the convolutional, relu and pooling layers of VGG16.

Blue rectangles indicate the fully-connected layers. Grey rectangles on the top of each network are the loss layers. Green boxes are the

stacked body part score maps. (d) Example results from StackNetPose. (e) Comparison of the person re-identification models.

are concatenated and transformed by two fully-connected

layers (FC7, FC8), where FC7 are followed by a ReLU

non-linearity. FC8 uses a softmax function to produce a

probability estimation over a binary decision, namely the

same identity or different identities.

StackNet. The most effective architecture we explored is

the StackNet, where we stack a pair of images together

along the RGB channel. The input to the network becomes

112× 224× 6. Then the filter size of the first convolutional

layer is changed from 3 × 3 × 3 to 3 × 3 × 6, and for

the rest of the network we follow the VGG architecture.

The last fully-connected layer models a 2-way classification

problem, namely the same identity or different identities.

During testing, given a pair of images, both SiameseNet

and StackNet produce the probability of the pair being the

same/different identities by a forward pass.

The StackNet allows a pair of images to communicate

at the early stage of the network, but it is still limited by

the lack of ability to incorporate body part correspondence

between the images. Next, we propose a body part fusing

method to explicitly allow modeling the semantic body part

information within the network.

3.2. Fusing Body Part Information

A desirable property of the network is to localize the cor-

responding regions of the body parts, and to reason about

the similarity of a pair of pedestrian images based on the

localized regions and the full images. We implement such

model by fusing body part detections into the CNN. More

specifically, we utilize the body part detector [24] to pro-

duce individual score maps for 14 body parts, namely, head,

shoulders, elbows, wrists, hips, knees, and ankles, each with

left/right symmetry body parts except the head which is indi-

cated by head top and head bottom. We combine the score

maps from every two symmetry body parts which results in 7

scores maps; each has the same size as the input image. We

stack the pair of images as well as the 14 score maps together

to form a 112×224×20 input volume. Now the filter size of

the first convolutional layer is set as 3× 3× 20, and the rest

of the network follows the VGG16 architecture with a 2-way

classification layer in the end. In Fig. 3(d) we show several

examples of estimated body poses on our dataset. Note that

augmenting the network with body layout information can

be interpreted as an attention mechanism that allows us to

focus on the relevant part on the input image. It can also be

seen as a mechanism to highlight the foreground and to en-

able the network to establish corresponding regions between

input images.

3.3. Experimental Analysis

Training. Our implementation is based on the Caffe deep

learning framework [11]. To learn the ID-Net, our VGG

model is pre-trained on the ImageNet Classification task.

Following a common practice in face recognition/verfication

literature [22], we use our ID-Net as initialization for learn-

ing the SiameseNet, StackNet and StackNetPose, which

makes the training faster and produces better results.

Setup. We have 123 person identities as test examples which

are collected from MOT16-02 and MOT16-11. More specif-

ically, on these two sequences, detections that are consid-

ered as true positives for a certain identity are those whose

intersection-over-union with the ground truth of the identity

are larger than 0.5. Given the true positive detections for all

the identities, we randomly select 1,000 positive pairs from

the detections assigned to the same identity and 4000 nega-

tive pairs from the detections assigned to different identities

as our test set. A larger ratio of negative pairs in the test set

is to simulate the positive/negative distribution during the

tracking. For every test pair, we estimate the probability of

the pair of images containing the same person. For the posi-

tive (negative) pairs, if the estimated probabilities are larger

(smaller) than 0.5, they are considered as correctly classified

examples. The metric is the verification accuracy, the ratio

of correctly classified pairs. For the ID-Net, the verification

result of pairs of images is obtained by testing whether the

distance between the extracted features is smaller than a

threshold. The threshold is obtained on a separate validation

data to maximize the verification accuracy.
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Figure 4. Accuracy of pairwise affinity measures on the MOT16-02

(a) and the MOT16-11 (b) sequences.

Results. It can be seen from Fig. 3(e) that the l2 distance

of the Φf7 features from the ID-Net already produces rea-

sonable accuracy. The performance is improved by applying

the SiameseNet, from 80.4% to 84.7%. The accuracy is fur-

ther improved when using the StackNet, achieving 86.9%
accuracy. Fusing the body part information (StackNetPose)

outperforms all other models by a large margin, achieving

90.0% accuracy. For our tracking task, we use the StackNet-

Pose model to generate person re-identification confidence.

We show three pairs of detections that are correctly estimated

by StackNetPose in Fig. 3(d). It can be seen that the body

part maps enable the network to localize the person despite

the inaccurate bounding boxes (the first/second pairs) and

cluttered background (the third pair).

4. Pairwise Potentials

As discussed in Sec. 2, the cost ce in the objective func-

tion (4) is defined as ce = −〈θγ , f (e)〉. In this section,

we introduce the feature f (e), which is based on three in-

formation sources: spatio-temporal relations (ST), dense

correspondence matching (DM) and person re-identification

confidence (Re-ID) that is described in the previous section.

ST. The spatio-temporal relation based feature is commonly

used in many multi-person tracking works [23, 34, 6], as

it is a good affinity measure for pairs of detections that are

in close proximity. Given two detections v and w, each

has spatio-temporal locations (x, y, t) and height h. The

ST feature is defined as fst =

√
(xv−xw)2+(yv−yw)2

h̄
, where

h̄ = (hv+hw)
2 . Intuitively, the ST features are able to provide

useful information within a short temporal window. They

model the geometric relations between bounding boxes but

do not take image content into account.

DM. DeepMatching [32] is introduced as a powerful pair-

wise affinity for multi-person tracking by [28]. We apply it in

this work as well. Given two detections v and w, each has a

set of matched keypoints M . We define MU = |Mv ∪Mw|,
and MI = |Mv ∩Mw| between the set Mv and Mw. Then

the pairwise feature between the two detections is defined as

fdm = MI/MU .

Re-ID. The DM feature is based on local image patch match-

ing, which makes it robust to irregular camera motion and

to partial occlusion in short temporal distance. As shown

in [28] and in the experiment section of our work, the

performance of the DM feature drops dramatically when

increasing temporal distance. ReID is explicitly trained

for the task of person re-identification. It is robust with

respect to large temporal and spatial distance and allows

long-range association. In this work, we utilize our deep re-

identification model (StackNetPose) for modeling the long-

range connections. Our final pairwise feature f (e) is defined

as (fst, fdm, freID, ξmin, f
2
st, fst · fdm, . . . , ξ2min), where

ξmin is the lower detection confidence within the pair, and

freID is the probability estimated by our StackNetPose. The

quadratic terms introduce a non-linear mapping from the

feature space to the cost space. In total the pairwise feature

has 14 dimensions.

4.1. Experimental Analysis

In this section, we present an analysis of our pairwise

features. We also choose MOT16-02 and MOT16-11 from

the MOT16 training set for the analysis, as the imaging

conditions and camera motion are largely different between

these two sequences. The test example collection and the

evaluation metric are the same as for evaluating the person

re-identification networks, namely for every test pair, we

estimate the probability of the pair of images containing the

same person. For the positive (negative) pairs, if the esti-

mated probabilities are larger (smaller) than 0.5, they are

considered as correctly classified examples. Any bias toward

cut or joint decreases the tracking performance. A higher

accuracy leads to a better tracking performance. We conduct

a comparison between features as a function of temporal dis-

tance. we demonstrate long temporal distance (200 frames),

as our model is able to incorporate such information.

Results. It can be seen from Fig. 4 that the DM feature

achieves good accuracy up to 10 frames, but its performance

deteriorates for connections at longer time span. The perfor-

mance of the ST feature drops quickly after 5 frames. This
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MOT16-11

δmax 30 60 90 120 150

MP 54.2 54.1 49.4 43.9 32.1

LMP 54.5 (+0.3) 55.1 (+1) 55.3 (+5.9) 55.0 (+11.1) 51.1 (+19.1)

MOT16-02

δmax 30 60 90 120 150

MP 19.9 21.5 21.2 19.1 17.2

LMP 21.3 (+1.4) 22.4 (+0.9) 21.3 (+0.1) 22.3 (+3.2) 19 (+1.8)

(a) Varying δmax
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50

52

54

56

Temporal distance (δt)

M
O

T
A

MP

LMP (δmax = 60)

LMP (δmax = 90)

LMP (δmax = 120)

(b) Varying δt

Figure 5. Comparison of Multicut model (MP) and Lifted Multicut model (LMP) with different δmax values (a) and different δt values (b).

is especially pronounced on the MOT16-11 sequence that

has rapid camera motion. In contrast, the Re-ID feature is ef-

fective and maintains high accuracy over time. For example

on the MOT16-11 sequence the Re-ID (red line) improves

over DM (black line) by a notable margin for the temporal

distances that are larger than 50 frames. When we combine

the three features (Comb, green line in Fig. 4), we obtain

the best accuracy at all the temporal distances. The reason

is that, at different temporal distance, our combined feature

is able to take advantage from different information sources.

E.g., when the temporal distance is smaller than 30 frames

(1 sec. for these two sequences), the DM and ReID features

combine both low-level (local image patch matching) and

high-level (person-specific appearance similarity) to produce

high accuracy pairwise affinity measures. When the tempo-

ral distance increases gradually, the ReID feature becomes

more and more informative. However, still adding the ST

and DM feature improves the overall accuracy, because they

act as a regularizer, that forbids physically impossible associ-

ations. Based on these results, we use the combined feature

in our tracking experiments.

5. Tracking Experiments and Results

We perform our tracking experiments and compare to

prior works on the MOT16 Benchmark [20]. The test set

contains 7 sequences, where camera motion, camera angle,

and imaging condition are largely different. For each test

sequence, the benchmark also provides a training sequence

that is captured in the similar setting. Therefore, we learn

the model parameter θγ (defined in Eq. (7)) for the test

sequences on the corresponding training sequences.

For analyzing our tracking models, we use MOT16-02

and MOT16-11 from the training set as the validation se-

quences, the same as previous sections. The model parameter

θγ trained on MOT16-02 is used for MOT16-11 and vice

versa. To obtain the final tracks from the clusters generated

by MP or LMP, we estimate a smoothed trajectory from the

detections that belongs to the same cluster, by using the code

from [21]. When there are gaps in time due to occlusion or

detection failures, we fill in the missing detections along the

estimated trajectory. We do not consider any clusters whose

size are less than 5 in all the experiments.

Evaluation Metric. We follow the standard CLEAR MOT

metrics [4] for evaluating multi-person tracking perfor-

mance. The metrics includes multiple object tracking ac-

curacy (MOTA), which combines identity switches (IDs),

false positives (FP), and false negatives (FN). Beside we also

report multiple object tracking precision (MOTP), mostly

tracked (MT), mostly lost (ML) and fragmentation (FM).

5.1. Lifted Edges versus Regular Edges

The graph for the lifted multicut (LMP) includes two types

of edges: regular edges and lifted edges. The regular edges

define the decomposition of the graph. The lifted edges

introduce long-range information on which nodes should

be joint/cut without modifying the set of feasible solutions.

They penalize long-term false joint (e.g. similar looking

people) by forcing valid paths in the feasible solution. As

shown in Fig. 4, even beyond 50 frames, the accuracy of

our pairwise affinity measure is still above 90%, Such good

pairwise affinity should be leveraged into the tracking model.

However, if we encode them by regular edges, we have 10%
chances of making a false joint, such errors directly produce

long false-positive tracks. If they are lifted edges, connecting

those detections must be certified by the local regular edges.

Two intuitive examples are shown in Fig. 2. In this section

we perform experimental analysis on the two graph variants:

Multicut (MP) and Lifted Multicut (LMP), to validate the

effectiveness of the proposed methods. Note that we use the

same pairwise feature (Comb. in Fig. 4) for the MP and LMP

problems.

Given a tracking instance, intuitively, we would connect

detections with regular edges up to a certain temporal dis-

tance to overcome potential missing detections due to occlu-

sion. For the further distant detections, we would connect

them with lifted edges to incorporate person re-identification

information into the model to gain better tracking perfor-

mance. Following the intuition, our MP is constructed in the
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Method MOTA MOTP FAF MT ML FP FN ID Sw Frag Hz Detector

CEM [21] 33.2 75.8 1.2 7.8% 54.4% 6837 114322 642 731 0.3 Public

TBD [10] 33.7 76.5 1.0 7.2% 54.2% 5804 112587 2418 2252 1.3 Public

LTTSC-CRF [16] 37.6 75.9 2.0 9.6% 55.2% 11,969 101,343 481 1,012 0.6 Public

OVBT [2] 38.4 75.4 1.9 7.5% 47.3% 11,517 99,463 1,321 2,140 0.3 Public

LINF1 [9] 41.0 74.8 1.3 11.6% 51.3% 7896 99224 430 963 4.2 Public

MHT [14] 42.9 76.6 1.0 13.6% 46.9% 5668 97919 499 659 0.8 Public

NOMT[6] 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6 Public

Multicut [28] 46.3 75.7 1.1 15.5% 39.7% 6373 90914 657 1114 0.8 Public

Lifted Multicut (LMP) 48.8 79.0 1.1 18.2% 40.1% 6654 86245 481 595 0.5 Public

Table 1. Tracking Performance on the MOT16 test set. Best in bold, second best in blue.

way that besides having the regular edges between neighbor-

ing frames, we also introduce regular edges between all pairs

of detections whose temporal distance are up to δmax. The

LMP has a combination of regular edges and lifted edges, we

denote the temporal distance where we start to change the

regular edges to the lifted edges as δt.

Varying δmax. In our first analysis, we gradually change the

value of δmax from 1 to 150 frames. As shown in Fig. 5(a),

on the MOT16-11 sequence, the MP achieves competitive

MOTA (54.2%) when δmax equals 30 frames, but the per-

formance decreases significantly when δmax is increased to

150 frames (5 sec on the MOT16-11). The reason is that the

long-range regular edges change the feasible set of the MP.

Although the accuracy of the pairwise affinity at 150 frames

is near 90%, the model can still make catastrophic false joint,

which introduces long-term false positive tracks. Similar re-

sults are obtained on the MOT16-02 sequence, MOTA drops

to 17.2% when δmax = 150.

For the LMP, we also change δmax from 1 to 150 frames

and we set δt = δmax/2. Comparing to the MP, the LMP

obtains the best MOTA on the MOT16-11 sequence (55.3%)

as well as on the MOT16-02 sequence (22.4%). Moreover,

it presents a superior performance in all the settings. Partic-

ularly for the long-range connections, the margin between

the MP and the LMP is more than 10% on the MOT16-11

sequence. Note that, these experiment results reveal a very

desirable property of the LMP: stability with respect to the

range of connections. Given a new tracking instance, due

to unknown camera motion and imaging condition, it is not

trivial to build a proper graph for the MP. As to the LMP,

due to its robustness and stability, we are free to choose any

sensible range of connections. In the next experiment, we

further reveal the stability of the LMP by varying δt.

Varying δt. As shown in Fig. 5(b), we evaluate the influ-

ence of δt on LMP under 3 different δmax settings, namely

δmax = 60, 90, 120. As a baseline, the tracking performance

of MP with δmax = 15, 30, 45, 60, 75, 90 is also shown in

the Fig. 5(b), depicted as the green line. It can be seen that at

all the temporal distances, adding lifted edges improves the

tracking performance over MP, suggesting that long-range

person re-identification information is useful for the tracking

task. Furthermore, for the longer temporal distance (e.g.

δmax = 90), MOTA of the MP drops significantly (49.4%);

however, for the LMP with δmax = 90, MOTA maintains at

higher levels for δt = 15, 30, 45, 60 (black line), indicating

that LMP is also robust to a large range of δt. Overall, the

results show that our LMP is able to encode long-range in-

formation in a more rigorous manner, such that it produces

much more stable and robust tracking results.

5.2. Results on the MOT16 Benchmark

Here we present our results on the MOT16 test set. We

compare our method with the best published results on the

benchmark, including NOMT[6], MHT-DAM [14], OVBT

[2],LTTSC-CRF [16], CEM [21], TBD [10] and Multicut

[28]. [28] is the most relevant approach comparing to our

model, where the deep matching feature is employed and

tracking is cast as the minimum cost multicut problem. It

can be seen from Tab. 1 that our method establishes a new

state-of-the-art performance in terms of MOTA, MOTP and

false negative (FN). Comparing to the previous best result,

we improve MOTA by 2.4% and MOTP by 3.1%. For FAF,

MT, ML and FM, our method achieves the second best per-

formance. The improvement over Multicut [28] demon-

strates the advantage of incorporating the long-range person

re-identification information with the lifted multicut formu-

lation. The complete metrics and visualization are presented

on the MOT16 benchmark website2.

6. Conclusion

Incorporating long-range information for multi-person

tracking is challenging. In this work, we propose to model

such long-range information by pose aided deep neural net-

works. Given the fact that similar looking people are not nec-

essarily identical, we propose a minimum cost lifted multicut

formulation where the long-range person re-identification

information is encoded in the way that it forces valid paths

along the local edges. In the end, we show that the pro-

posed tracking method outperforms previous works on the

challenging MOT16 benchmark.

2https://motchallenge.net/results/MOT16/
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