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1 Introduction
Models based on temporal point processes [4, 10] are well-fitted to capture the dynamics of con-
tinuously generated streams of data, for which the classical i.i.d. assumption clearly does not hold.
Among these, approaches based on Hawkes Processes (HPs) [11] have been shown to be particularly
suitable to model the inherent self-excitatory nature of many real-world domains like sequences
of user-generated content, (e.g., tweets [14, 5]), their behaviour (e.g., online learning patterns [15],
popularity [16]) or interactions in social networks (e.g., sharing a post [7, 8]).

In all these application scenarios, the accuracy of modeling such temporal dynamics would depend
on how effectively a model exploits the latent structure underlying the observed events [10]: e.g.,
understanding the dynamics underlying the topics over the generated user messages [6, 15] as well
as discovering the hidden community structure behind users’ interactions [3, 19] greatly improves
modeling the dynamics of the whole time series of events.

In this context, Bayesian nonparametric priors (BNPs) have become the model-of-choice to flexibly
represent the complex distributions over these latent structures. For instance, the popular Dirichlet
Process (DP) [9], its hierarchical [20] and nested variants [17], have been frequently employed as
BNPs to model a possibly infinite number of latent features in the form of topics, tasks, patterns or
communities associated to streams of events from several application domains [3, 6, 15, 19].

However, a closer look into this fast-growing literature reveals that many of these works do not
actually rely on a valid BNP model. Specifically, based on the restaurant metaphor generative process
of BNPs, they derive an ad-hoc prior over hidden structure in the data. While this construction
allows dealing with structures of increasing complexity as the amount of data grows, it does not result
in a valid probability distribution on an infinite-dimensional space. As a result, the probability of
observing a particular pattern in the latent structure vanishes, as the self-excitation of the HP tends to
zero. We call this issue the “vanishing prior” problem.

The contribution in this work is threefold. First, we formalize the vanishing prior problem in Section 2.
Second, in Section 3, we develop a formal methodology that enables us to overcome the vanishing
prior problem. Our proposed methodology allows us to disentangle the BNP prior from the HP in the
event generative process. As a result, we provide general and modular framework to plug-in any BNP
(e.g., the nested [2] or the franchise [20] variants of the Chinese Restaurant Process (CRP) [9]) to
model the latent structure of Hawkes events, while keeping inference straightforward by employing
Sequential Monte Carlo schemes to “reverse” the generative process. The proposed framework is
indeed general enough not only to model user activity but also users’ interactions, as in [3]. Finally, in
Section 4, we revisit the state-of-the-art on BNP priors for HPs, verifying whether current approaches
suffer from the vanishing prior or not, and providing an intuition on how to use our methodology to
“fix” them.
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2 The “vanishing prior” problem
A marked temporal point process (TPP) is a stochastic process whose realization consists of a
sequence of discrete events localized in continuous time, taking the form of e : (t, u,m), where t is
the event time, u the user performing it, and m is the mark characterizing the content of the event
(e.g., the sentiment of a message [5], or the words of a post [6, 15]). A TPP is fully characterized by
its intensity function λ(t), such that the probability of a new event happening in the time window
[t, t+ dt) is λ(t)dt. The intensity λ(t) of a Hawkes process (HP) is history-dependant and captures
the self-excitatory nature of a series of events [11]. By the superposition property of HPs [21], it can
be written as

λ(t) = λexo + λendo(t) = µ+
∑

i:ei∈H(t)
γ(t− ti)

where λexo = µ > 0 is a baseline intensity independent of the historyH(t), modeling the exogenous
event activities, and γ(t) is a triggering kernel modeling the self-excitation phenomenon across
events, i.e., the endogenous event activity λendo [11, 21].

The above event representation can be extended as e : (t, u,m, z) to account for the latent nature
of an event, being captured by a random latent variable z, which we refer to as pattern. The event
pattern parametrizes the mark distribution p(m|z) as well as the triggering kernel γz(t), such that the
endogenous intensity component λendo can be rewritten as:

∑
i:ei∈H(t) γzi(t− ti).

Several works have attempted to combine HPs with BNPs into a single generative process—which
we will refer here as a BNP+HP model— to place a nonparametric prior distribution on the pattern
distribution, where the number of patterns K is potentially infinite. For example, the patterns may
correspond to the clusters (e.g., document topics) that every event belongs to, as in [6, 15], or to a set
of (binary) features characterizing every event, as in [18], or even to paths in a tree hierarchy over
users, as in [19].

Most of these works rely on generative processes based on the restaurant metaphor (where the
random discrete probability measure induced by the BNP is integrated out [2]) to come up with an
intuitive combined process for the BNP+HP model. However, many of these BNP+HP models [6, 18]
construct an ad-hoc prior by directly mapping the choice of sampling a new pattern z = K +1, or an
already used pattern z ∈ {1 . . .K} to respectively the intensities λexo and λendo. More specifically,
they assume that, given the event time t, the latent pattern z can be sampled as follows:

z =

{
k with prob. λendo

k (t)
λ(t) for already seen patterns k ∈ {1, . . . ,K}

K + 1 with prob. λexo

λ(t) for new (unseen) pattern
, (1)

where λendok (t) =
∑
i:ei∈H(t)|zi=k γk(t − ti) is the endogenous intensity of pattern k, and the

parameters corresponding to a new patternK+1 (e.g., the kernel parameters and, the word distribution
associated to a topic) are sampled from a continuous base measure, e.g., H0 in a DP.

Although indeed the above equation allows for a potentially infinite number of patterns, this generative
process does not lead to a valid probability distribution on an infinite-dimensional space, and therefore,
to the promised BNP prior. More specifically, the above expression suffers from the fact that when
λendok (t) becomes negligible with respect to the total intensity λ(t) (or the exogenous one λexo), the
probability of z = k tends to zero. In other words, pattern k will vanish. As an extreme case, consider
a memoryless system where γz=k(t) is a delta function on zero, then the probability of observing the
same pattern more than once is zero.

This problem has been briefly discussed in [15] for the CRP+HP model introduced in [6]. However,
more recent approaches still suffer from the same issue [18]. The practical consequences for a model
affected by the “vanishing” prior issue are that i) patterns vanish as their λendok (t) intensity tends
to zero; and ii) patterns cannot be shared across events of different nature (e.g., featuring different
independent users). In the next section we explain how to avoid this issue and devise a methodology
for distilling BNP+HP models, by employing different BNPs from the literature.

3 Building-up BNP+HPs processes
In this section, we propose a general methodology to place a generic BNP prior over the parameters
of a HP, avoiding the vanishing prior issue by design. To this end, we use the superposition property
of HPs to differentiate between the events that are triggered by the endogenous activity of the HP,
from the events that are sampled directly from the BNP prior. More specifically, the distribution
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Algorithm 1: BNP+HP: Generative process
Input: a BNP, triggering kernel function γ(·), N
Output: {en = (tn, un,mn, zn)}Nn=1

1 for n = 1 . . . N do
2 Compute λ(t) =

∑
u λu(t|H(t));

3 Sample tn ∼ Hawkes(λ(t));
4 Sample un ∼ Cat({λu(tn)/λ(tn)}u∈U );
5 Sample bn ∼ Ber(λendo

un
(tn)/λun

(tn));
6 if bn = 1 then
7 Sample zn ∼ Cat({λendoun,k

(tn)/λ
endo
un

(tn)}Kk=1);
8 else
9 Sample zn ∼ BNP;

10 UpdateHun
(t);

11 if zn = K + 1 then
12 Sample parameters for the new pattern;
13 Sample mark mn ∼ p(mn|zn);

Figure 1: Nested and arbitrarily deep restaurant-based BNPs (left) can be interchangeably combined
with HPs via our methodology. The generic BNP+HP generative process (right) lets one distill a
specific model from the lattice on the left, while providing a clean and valid way to sample between
the temporal (blue) and BNP (orange) components.

over the event pattern z given the event time t is a mixture distribution with two components, one
corresponding to the HP and the other to the BNP prior, i.e.,

z|t ∼

{
Categorical

([
λendo
1 (t)
λendo(t)

, . . . ,
λendo
K (t)
λendo(t)

])
with prob. λendo(t)

λ(t)

BNP with prob. λexo

λ(t)

. (2)

Note that in the above expression, in contrast to Eq. 1, while events triggered by the endogenous
activity of the HP are sampled from a categorical distribution over the normalized endogenous
intensities associated to already observed patterns, i.e., k ∈ 1, . . . ,K, events sampled from the BNP
can be assigned to either an already seen pattern k ∈ 1, . . . ,K or a new (unseen) pattern K + 1. As
a consequence, even in absence of active history (i.e, λendok (t) = 0), the probability of reusing an
observed pattern is greater than zero, avoiding therefore the vanishing prior problem.

Most importantly, note that by doing so, we create a clean interface between the history-dependent
rate component of the BNP+HP process (i.e., the endogenous intensity λendo) and a history-invariant
latent prior (i.e., the exogenous rate λexo). As a matter of fact, we can therefore use Eq. 2 to develop a
general generative BNP+HP process, which allow plugging-in any desired BNP prior, while keeping
the HP-related procedures for sampling and inference unchanged. For example, one may easily
combine any restaurant-based BNP generative model, such as the Chinese Restaurant Process (CRP);
its hierarchical version, the Chinese Restaurant Franchise (CRF); or their nested counterparts, the
nCRP and nCRF, with an HP to develop its corresponding temporal extension (see Figure 1).

Algorithm 1 sketches the generative process for a generic BNP+HP model over N events representing
user activities in the form {en = (tn, un,mn)}Nn=1. Here, we split the sampling of the pattern z into
two steps: 1) sampling from an auxiliary binary variable bn indicating whether the event is triggered
by endogenous activity (λendo) or by exogenous activity (λexo); and 2) sampling the event pattern
zn conditioned on the latent binary variable bn. Note that the auxiliary variable bn allows to clearly
show that the temporal component part (blue) is not affected by the choice of a specific BNP model
(orange), and vice-versa, preventing thus from the vanishing prior issue to happen.

Inference. Moreover, we would like to remark that when using restaurant-based BNP generative
models, one can easily derive a general sequential Monte Carlo (SMC) algorithm, by “reversing” the
generative process in Algorithm 1. This inference framework i) is suitable for a large number of BNP
models, and ii) exploits the temporal dependencies in the observed data to sequentially sample the
latent pattern associated to each event, therefore scaling to large datasets. For an example, see the
derivation of an SMC method to infer the posterior distribution of the CRP+HP model in [15].
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Figure 2: Extending the lattice over BNP+HP models with our methodology to I-BNP+HP models to
deal with interactions between pairs of users.

3.1 Extension to interaction models
BNPs have been successfully used to model user interactions, e.g., to capture static user community
structures [13, 1, 12]. Here, we refer to these models as I-BNPs. There also exist temporal extensions
of I-BNP models that employ HP to model interactions events between users, such as e.g. exchange
of emails, likes, posts, etc [3, 18]. In these models every interaction event can be represented as
{en = (tn, sn, dn,mn, z

(s)
n , z

(d)
n }Nn=1, where sn is the sender, dn the receiver, and z(s)n , z

(d)
n are the

latent patterns associated to respectively the sender and receiver. As an example, z(s)n , z
(d)
n may

correspond to the communities that the users belong to.

The methodology proposed in the previous section can easily be extended to account for I-BNPs, and
thus for user interactions. To this end, one simply needs to modify Algorithm 1 by

i) replacing line 4 with the sampling steps for the sender and receiver,
i.e., sn ∼ Cat ({λu,·(tn)/λ(tn)}u∈U ) and dn ∼ Cat ({λsn,u(tn)/λsn,·(tn)}u∈U ); and

ii) substituting the BNP prior in line 9, by the corresponding I-BNP model.

Here, the interaction intensity is given by λsn,dn(t) = µsn,dn +
∑
j:tj∈Hsn,dn (t) γz(s)j z

(d)
j

(t− tj).

4 BNP+HP: Where are we now?
In this section, we navigate the lattice of possible combinations of (I-)BNPs and HPs (see Fig. 2),
in order to pose into a common methodological framework the efforts performed in the literature.
Specifically, we verify the validity of existing approaches, i.e., we check whether they suffer from the
vanishing prior issue or not, in which case we discuss the possibility to solve it via our methodology.

In [6], a Hawkes extension of the CRP is unsuccessfully attempted, leading to a follow-up work [15]
which finally manages to define a sound CRP+HP model. Note that, although the model in [15] is
referred to as Hierarchical Dirichlet Hawkes, it in fact induces a CRP+HP. However, this model can
be easily extended to account for a distribution over patterns (clusters) per user by replacing the CRP
by a CRF in line 9 of Algorithm 1.

Similarly, one may replace the CRP by a nCRP, which induces a infinitely deep and wide tree structure.
The work in [19] attempts to provide an I-nCRP+HP to model hierarchies of user communities. How-
ever, the nCRP is fully detached from the event generation process. According to our methodology,
in order to solve this limitation, an event pattern would correspond to a path in the tree induced by
the (I-)nCRP.

The Hawkes IRM in [3] successfully derives a variant of the I-CRP+HP, where each user intensity
is fully characterized by the community she belongs to. In this model, a user only belongs to one
community, and therefore, all interactions events between two users are driven by the same pair
of patterns (i.e., their respective communities). In order to extend such model in the direction of
mixed-membership methods, where a user may belong to several communities at the same time, one
would just need to move to the I-CRF+HP in the lattice. Finally, a temporal extension based on HPs,
of the Indian Buffet process (IBP) [18] has been proposed also to model user interactions. However,
not only does this approach suffer from the vanishing prior issue, but also makes use of heuristics to
handle the exponential complexity due to the combinatorial nature of the the IBP.

Hence, although there is still work to do in order to complete the lattice (and extending it to other BNP
models, e.g., the IBP), we believe that the proposed methodology paves the way moving forward.
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