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Abstract. Modern deep learning systems successfully solve many per-
ception tasks such as object pose estimation when the input image is
of high quality. However, in challenging imaging conditions such as on
low resolution images or when the image is corrupted by imaging arti-
facts, current systems degrade considerably in accuracy. While a loss
in performance is unavoidable, we would like our models to quantify
their uncertainty to achieve robustness against images of varying quality.
Probabilistic deep learning models combine the expressive power of deep
learning with uncertainty quantification. In this paper we propose a novel
probabilistic deep learning model for the task of angular regression. Our
model uses von Mises distributions to predict a distribution over object
pose angle. Whereas a single von Mises distribution is making strong
assumptions about the shape of the distribution, we extend the basic
model to predict a mixture of von Mises distributions. We show how
to learn a mixture model using a finite and infinite number of mixture
components. Our model allows for likelihood-based training and efficient
inference at test time. We demonstrate on a number of challenging pose
estimation datasets that our model produces calibrated probability pre-
dictions and competitive or superior point estimates compared to the
current state-of-the-art.

Keywords: pose estimation, deep probabilistic models, uncertainty
quantification, directional statistics.

1 Introduction

Estimating object pose is an important building block in systems aiming to
understand complex scenes and has a long history in computer vision [1,2].
Whereas early systems achieved low accuracy, recent advances in deep learning
and the collection of extensive data sets have led to high performing systems
that can be deployed in useful applications [3,4,5].

? This work has been done prior to Peter Gehler joining Amazon.



2 S. Prokudin et al.

Fig. 1: Our model predicts complex multimodal distributions on the circle (trun-
cated by the outer circle for better viewing). For difficult and ambiguous images
our model report high uncertainty (bottom row). Pose estimation predictions
(pan angle) on images from IDIAP, TownCentre and PASCAL3D+ datasets.

However, the reliability of object pose regression depends on the quality of the
image provided to the system. Key challenges are low-resolution due to distance
of an object to the camera, blur due to motion of the camera or the object, and
sensor noise in case of poorly lit scenes (see Figure 1).

We would like to predict object pose in a way that captures uncertainty.
Probability is the right way to capture the uncertainty [6] and in this paper we
therefore propose a novel model for object pose regression whose predictions are
fully probabilistic. Figure 1 depicts an output of the proposed system. Moreover,
instead of assuming a fixed form for the predictive density we allow for flexible
multimodal distributions, specified by a deep neural network.

The value of quantified uncertainty in the form of probabilistic predictions is
two-fold: first, a high prediction uncertainty is a robust way to diagnose poor
inputs to the system; second, given accurate probabilities we can summarize them
to improved point estimates using Bayesian decision theory.

More generally, accurate representation of uncertainty is especially important
in case a computer vision system becomes part of a larger system, such as when
providing an input signal for an autonomous control system. If uncertainty is
not well-calibrated, or—even worse—is not taken into account at all, then the
consequences of decisions made by the system cannot be accurately assessed,
resulting in poor decisions at best, and dangerous actions at worst.

In the following we present our method and make the following contributions:

• We demonstrate the importance of probabilistic regression on the application
of object pose estimation;

• We propose a novel efficient probabilistic deep learning model for the task of
circular regression;

• We show on a number of challenging pose estimation datasets (including
PASCAL 3D+ benchmark [7]) that the proposed probabilistic method outper-
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forms purely discriminative approaches in terms of predictive likelihood and
show competitive performance in terms of angular deviation losses classically
used for the tasks.

2 Related Work

Estimation of object orientation arises in different applications and in this paper
we focus on the two most prominent tasks: head pose estimation and object class
orientation estimation. Although those tasks are closely related, they have been
studied mostly in separation, with methods applied to exclusively one of them.
We will therefore discuss them separately, despite the fact that our model applies
to both tasks.

Head pose estimation has been a subject of extensive research in computer
vision for a long time [2,8] and the existing systems vary greatly in terms of
feature representation and proposed classifiers. The input to pose estimation
systems typically consists of 2D head images [9,10,11], and often one has to cope
with low resolution images [12,13,14,8]. Additional modalities such as depth [15]
and motion [14,16] information has been exploited and provides useful cues.
However, these are not always available. Also, information about the full body
image could be used for joint head and body pose prediction [17,18,19]. Notably
the work of [18] also promotes a probabilistic view and fuse body and head
orientation within a tracking framework. Finally, the output of facial landmarks
can be used as an intermediate step [20,21].

Existing head pose estimation models are diverse and include manifold learning
approaches [22,23,24,25], energy-based models [19], linear regression based on
HOG features [26], regression trees [15,27] and convolutional neural networks
[5]. A number of probabilistic methods for head pose analysis exist in the
literature [18,28,29], but none of them combine probabilistic framework with
learnable hierarchical feature representations from deep CNN architectures. At
the same time, deep probabilistic models have shown an advantage over purely
discriminative models in other computer vision tasks, e.g., depth estimation [30].
To the best of our knowledge, our work is the first to utilize deep probabilistic
approach to angular orientation regression task.

An early dataset for estimating the object rotation for general object classes
was proposed in [31] along with an early benchmark set. Over the years the
complexity of data increased, from object rotation [31] and images of cars in
different orientations [32] to Pascal3D [33]. The work of [33] then assigned a
separate Deformable Part Model (DPM) component to a discrete set of viewpoints.
The work of [34,35] then proposed different 3D DPM extensions which allowed
viewpoint estimation as integral part of the model. However, both [34] and [35]
and do not predict a continuous angular estimate but only a discrete number of
bins.

More recent versions make use of CNN models but still do not take a prob-
abilistic approach [3,4]. The work of [36] investigates the use of a synthetic
rendering pipeline to overcome the scarcity of detailed training data. The addi-
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tion of synthetic and real examples allows them to outperform previous results.
The model in [36] predicts angles, and constructs a loss function that penalizes
geodesic and `1 distance. Closest to our approach, [37] also utilizes the von Mises
distribution to build the regression objective. However, similarly to [5], the shape
of the predicted distribution remains fixed with only mean value of single von
Mises density being predicted. In contrary, in this work we advocate the use of
complete likelihood estimation as a principled probabilistic training objective.

The recent work of [38] draws a connection between viewpoints and object
keypoints. The viewpoint estimation is however again framed as a classification
problem in terms of Euler angles to obtain a rotation matrix from a canonical
viewpoint. Another substitution of angular regression problem was proposed
in a series of work [39,40,41], where CNN is trained to predict the 2D image
locations of virtual 3D control points and the actual 3D pose is then computed
by solving a perspective-n-point (PnP) problem that recovers rotations from
2D-3D correspondences. Additionally, many works phrase angular prediction
as a classification problem [3,36,38] which always limits the granularity of the
prediction and also requires the design of a loss function and a means to select the
number of discrete labels. A benefit of a classification model is that components
like softmax loss can be re-used and also interpreted as an uncertainty estimate.
In contrast, our model mitigate this problem: the likelihood principle suggests
a direct way to train parameters, moreover ours is the only model in this class
that conveys an uncertainty estimate.

3 Review of Biternion Networks

We build on the Biternion networks method for pose estimation from [5] and
briefly review the basic ideas here. Biternion networks regress angular data and
currently define the state-of-the-art model for a number of challenging head pose
estimation datasets.

A key problem is to regress angular orientations which is periodic and prevents
a straight-forward application of standard regression methods, including CNN
models with common loss functions. Consider a ground truth value of 0◦, then
both predictions 1◦ and 359◦ should result in the same absolute loss. Applying the
mod operator is no simple fix to this problem, since it results in a discontinuous
loss function that complicates the optimization. A loss function needs to be
defined to cope with this discontinuity of the target value. Biternion networks
overcome this difficulty by using a different parameterization of angles and the
cosine loss function between angles.

3.1 Biternion Representation

Beyer et al. [5] propose an alternative representation of an angle φ using the
two-dimensional sine and cosine components y = (cosφ, sinφ).

This biternion representation is inspired by quaternions, which are popular
in computer graphics systems. It is easy to predict a (cos, sin) pair with a
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fully-connected layer followed by a normalization layer, that is,

fBT (x;W , b) =
Wx + b

||Wx + b||
= (cosφ, sinφ) = ypred, (1)

where x ∈ Rn is an input, W ∈ R2×n, b ∈ R2. A Biternion network is then a
convolutional neural network with a layer (1) as the final operation, outputting
a two-dimensional vector ypred. We use VGG-style network [42] and Inception-
ResNet [43] networks in our experiments and provide a detailed description of
the network architecture in Section 6.1. Given recent developments in network
architectures it is likely that different network topologies may perform better
than selected backbones. We leave this for future work, our contributions are
orthogonal to the choice of the basis model.

3.2 Cosine loss function

The cosine distance is chosen in [5] as a natural candidate to measure the
difference between the predicted and ground truth Biternion vectors. It reads

Lcos(ypred,ytrue) = 1− ypred · ytrue
||ypred|| · ||ytrue||

= 1− ypred · ytrue, (2)

where the last equality is due to ||y|| = cos2 φ+ sin2 φ = 1.
The combination of a Biternion angle representation and a cosine loss solves

the problems of regressing angular values, allowing for a flexible deep network
with angular output. We take this state-of-the-art model and generalize it into a
family of probabilistic models of gradually more flexibility.

4 Probabilistic models of circular data.

We utilize the von Mises (vM) distribution as the basic building block of our
probabilistic framework, which is a canonical choice for a distribution on the
unit circle [44]. Compared to standard Gaussian, the benefit is that it have as a
support any interval of length 2π, which allow it to truthfully models the domain
of the data, that is angles on a circle.

We continue with a brief formal definition and in Section 4.1 describe a simple
way to convert the output of Biternion networks into a VM density, that does
not require any network architecture change or re-training as it requires only
selection of the model variance. We will then use this approach as a baseline
for more advanced probabilistic models. Section 4.2 slightly extends the original
Biternion network by introducing an additional network output unit that models
uncertainty of our angle estimation and allows optimization for the log-likelihood
of the VM distribution.

The von Mises distribution VM(µ, κ) is a close approximation of a normal
distribution on the unit circle. Its probability density function is

p(φ;µ, κ) =
exp (κ cos (φ− µ))

2πI0(κ)
, (3)
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Fig. 2: Left: examples of the von Mises probability density function for different
concentration parameters κ. Center, right: predicted VM distributions for two
images from the CAVIAR dataset. We plot the predicted density on the viewing
circle. For comparison we also include the 2D plot (better visible in zoomed pdf
version). The distribution on the center image is very certain, the one on the
right more uncertain about the viewing angle.

where µ ∈ [0, 2π) is the mean value, κ ∈ R+ is a measure of concentration
(a reciprocal measure of dispersion, so 1/κ is analogous to σ2 in a normal
distribution), and I0(κ) is the modified Bessel function of order 0. We show
examples of VM-distributions with µ = π and varying κ values in Figure 2 (left).

4.1 Von Mises Biternion Networks

A conceptually simple way to turn the Biternion networks from Section 3 into a
probabilistic model is to take its predicted value as the center value of the VM
distribution,

pθ(φ|x;κ) =
exp (κ cos (φ− µθ(x)))

2πI0(κ)
, (4)

where x is an input image, θ are parameters of the network, and µθ(x) is the
network output. To arrive at a probability distribution, we may regard κ > 0 as a
hyper-parameter. For fixed network parameters θ we can select κ by maximizing
the log-likelihood of the observed data,

κ∗ = argmax
κ

N∑
i=1

log pθ(φ
(i)|x(i);κ), (5)

where N is the number of training samples. The model (4) with κ∗ will serve as
the simplest probabilistic baseline in our comparisons, referred as fixed κ model
in the experiments.

4.2 Maximizing the von Mises Log-likelihood

Using a single scalar κ for every possible input in the model (4) is clearly a
restrictive assumption: model certainty should depend on factors such as image
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Fig. 3: The single mode von Mises model (VGG backbone variation).
A BiternionVGG network regresses both mean and concentration parameter of a
single vM distribution.

quality, light conditions, etc. For example, Figure 2 (center, right) depicts two
low resolution images from a surveillance camera that are part of the CAVIAR
dataset [13]. In the left image facial features like eyes and ears are distinguishable
which allows a model to be more certain when compared to the more blurry
image on the right.

We therefore extend the simple model by replacing the single constant κ with
a function κθ(x), predicted by the Biternion network,

pθ(φ|x) =
exp (κθ(x) cos (φ− µθ(x)))

2πI0(κθ(x))
. (6)

We train (6) by maximizing the log-likelihood of the data,

logL(θ|X, Φ) =

N∑
i=1

κθ(x
(i)) cos (φ(i) − µθ(x(i)))−

N∑
i=1

log 2πI0(κθ(x
(i))). (7)

Note that when κ is held constant in (7), the second sum in logL(θ|X, Φ)
is constant and therefore we recover the Biternion cosine objective (2) up to
constants C1, C2,

logL(θ|X, Φ, κ) = C1

N∑
i=1

cos
(
φ(i) − µθ(x(i))

)
+ C2.

The sum has the equivalent form,

N∑
i=1

cos
(
φ(i) − µθ(x(i))

)
=

N∑
i=1

[
cosφ(i) cosµθ(x

(i)) + sinφ(i) sinµθ(x
(i))
]

(8)

=

N∑
i=1

yφ(i) · yµθ(x(i)), (9)

where yφ=(cosφ, sinφ) is a Biternion representation of an angle. Note, that
the above derivation shows that the loss function in [5] corresponds to opti-
mizing the von Mises log-likelihood for the fixed value of κ = 1. This offers an
interpretation of Biternion networks as a probabilistic model.
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Fig. 4: The finite VM mixture model. A VGG network predicts K mean
and concentration values and the mixture coefficients π. This allows to capture
multimodality in the output.

The additional degree of freedom to learn κθ(x) as a function of x allows us
to capture the desired image-dependent uncertainty as can be seen in Figure 2.

However, like the Gaussian distribution the von Mises distribution makes a
specific assumption regarding the shape of the density. We now show how to
overcome this limitation by using a mixture of von Mises distributions.

5 Mixture of von Mises Distributions

The model described in Section 4.2 is only unimodal and can not capture ambi-
guities in the image. However, in case of blurry images like the ones in Figure 2
we could be interested in distributing the mass around a few potential high prob-
ability hypotheses, for example, the model could predict that a person is looking
sideways, but could not determine the direction, left or right, with certainty. In
this section we present two models that are able to capture multimodal beliefs
while retaining a calibrated uncertainty measure.

5.1 Finite Mixture of von Mises Distributions

One common way to generate complex distributions is to sum multiple distribu-
tions into a mixture distribution. We introduce K different component distribu-
tions and a K-dimensional probability vector representing the mixture weights.
Each component is a simple von Mises distribution. We can then represent our
density function as

pθ(φ|x) =

K∑
j=1

πj(x, θ) pj(φ|x, θ), (10)

where pj(φ|x, θ) = VM(φ|µj , κj) for j = 1, . . . ,K are the K component distri-
butions and the mixture weights are πj(x, θ) so that

∑
j πj(x, θ) = 1. We denote

all parameters with the vector θ, it contains component-specific parameters as
well as parameters shared across all components.

To predict the mixture in a neural network framework, we need K × 3 output
units for modeling all von Mises component parameters (two for modeling the
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Biternion representation of the mean, µj(x, θ) and one for the κj(x, θ) value), as
well as K units for the probability vector πj(x, θ), defined by taking the softmax

operation to get a positive mixture weights.
The finite von Mises density model then takes form

pθ(φ|x) =

K∑
j=1

πj(x, θ)
exp

(
κj(x, θ) cos

(
φ− µj(x, θ)

))
2πI0

(
κj(x, θ)

) . (11)

Similarly to the single von Mises model, we can train by directly maximizing the
log-likelihood of the observed data,

∑N
i=1 log pθ(φ

(i)|x(i)). No specific training
schemes or architectural tweaks were done to avoid redundancy in mixture
components. However, empirically we observe that model learns to set mixture
weights πj of the redundant components close to zero, as well as to learn the
ordering of the components (e.g. it learns that some output component j should
correspond to the component with high mixture weight).

We show an overview of the model in Figure 4.

5.2 Infinite Mixture (CVAE)

To extend the model from a finite to an infinite mixture model, we follow the
variational autoencoder (VAE) approach [45,46], and introduce a vector-valued
latent variable z. The resulting model is depicted in Figure 5. The continuous
latent variable becomes the input to a decoder network p(φ|x, z) which predicts
the parameters—mean and concentration—of a single von Mises component. We
define our density function as the infinite sum (integral) over all latent variable
choices, weighted by a learned distribution p(z|x),

pθ(φ|x) =

∫
p(φ|x, z) p(z|x)dz, (12)

where pθ(φ|x, z) = VM(µ(x, θ), κ(x, θ)), and pθ(z|x) = N (µ1(x, θ), σ2
1(x, θ)).

The log-likelihood log pθ(φ|x) for this model is not longer tractable, preventing
simple maximum likelihood training. Instead we use the variational autoencoder
framework of [45,46] in the form of the conditional VAE (CVAE) [47]. The CVAE
formulation uses an auxiliary variational density qθ(z|x, φ) = N (µ2(x, φ, θ),
σ2
2(x, φ, θ)) and instead of the log-likelihood optimizes a variational lower bound,

log pθ(φ|x) = log

∫
pθ(φ|x, z) pθ(z|x)dz (13)

≥ Ez∼qθ(z|x,φ)
[
log

pθ(φ|x, z) pθ(z|x)

qθ(z|x, φ)

]
=: LELBO(θ|x, φ). (14)

We refer to [45,46,47,48] for more details on VAEs.
The CVAE model is composed of multiple deep neural networks: an encoder

network qθ(z|x, φ), a conditional prior network pθ(z|x), and a decoder network
pθ(φ|x, z). Like before, we use θ to denote the entirety of trainable parameters of
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Fig. 5: The infinite mixture model (CVAE). An encoder network predicts
a distribution q(z|x) over latent variables z, and a decoder network p(φ|x, z)
defines individual mixture components. Integrating over z yields an infinite
mixture of von Mises distributions. In practice we approximate this integration
using a finite number of Monte Carlo samples z(j) ∼ q(z|x).

all three model components. We show an overview of the model in Figure 5. The
model is trained by maximizing the variational lower bound (14) over the training
set (X, Φ), where X = (x(1), . . . ,x(N)) are the images and Φ = (φ(1), . . . , φ(N))
are the ground truth angles. We maximize

L̂CVAE(θ|X, Φ) =
1

N

N∑
i=1

L̂ELBO(θ|x(i), φ(i)), (15)

where we use L̂ELBO to denote the Monte Carlo approximation to (14) using S
samples. We can optimize (15) efficiently using stochastic gradient descent.

To evaluate the log-likelihood during testing, we use the importance-weighted
sampling technique proposed in [49] to derive a stronger bound on the marginal
likelihood,

log pθ(φ|x) ≥ log
1

S

S∑
j=1

pθ(φ|x, z(j)) pθ(z
(j)|x)

qθ(z(j)|x, φ)
, (16)

z(j) ∼ qθ(z(j)|x, φ) j = 1, . . . , S. (17)

Simplified CVAE. In our experiments we also investigate a variant of the
aforementioned model where pθ(z|x) = qθ(z|x, φ) = p(z) = N (0, I). Compared
to the full CVAE framework, this model, which we refer to as simplified CVAE
(sCVAE) in the experiments, sacrifices the adaptive input-dependent density of
the hidden variable z for faster training and test inference as well as optimization
stability. In that case the KL-divergence KL

(
qθ ‖ pθ

)
term in L̂ELBO becomes

zero, and we train for a Monte Carlo estimated log-likelihood of the data:

L̂sCVAE(θ|X, Φ) =
1

N

N∑
i=1

log
( 1

S

S∑
j=1

pθ(φ
(i)|x(i), z(j))

)
, (18)

z(j) ∼ p(z) = N (0, I), j = 1, . . . , S. (19)
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In some applications it is necessary to make a single best guess about the
pose, that is, to summarize the posterior p(φ|x) to a single point prediction φ̂.
We now discuss an efficient way to do that.

5.3 Point Prediction

To obtain an optimal single point prediction we utilize Bayesian decision the-
ory [6,50,51] and minimize the expected loss,

φ̂∆ = argmin
φ∈[0,2π)

Eφ′∼p(φ|x) [∆(φ, φ′)] , (20)

where ∆ : [0, 2π)× [0, 2π)→ R+ is a loss function. We will use the ∆AAD(φ, φ′)
loss which measures the absolute angular deviation (AAD). To approximate (20)
we use the empirical approximation of [50] and draw S samples {φj} from pθ(φ|x).
We then use the empirical approximation

φ̂∆ = argmin
j=1,...,S

1

S

S∑
k=1

∆(φj , φk). (21)

We now evaluate our models both in terms of uncertainty as well as in terms
of point prediction quality.

6 Experiments

This section presents the experimental results on several challenging head and
object pose regression tasks. Section 6.1 introduces the experimental setup
including used datasets, network architecture and training setup. In Section 6.2
we present and discuss qualitative and quantitative results on the datasets of
interest.

6.1 Experimental Setup

Network architecture and training. We use two types of network archi-
tectures [42,43] during our experiments and Adam optimizer [52], performing
random search [53] for the best values of hyper-parameters. We refer to supple-
mentary and corresponding project repository for more details 4.

Head pose datasets. We evaluate all methods together with the non-
probabilistic BiternionVGG baseline on three diverse (in terms of image quality
and precision of provided ground truth information) headpose datasets: IDIAP
head pose [9], TownCentre [54] and CAVIAR [13] coarse gaze estimation. The
IDIAP head pose dataset contains 66295 head images stemmed from a video
recording of a few people in a meeting room. Each image has a complete annotation
of a head pose orientation in form of pan, tilt and roll angles. We take 42304,

4 https://github.com/sergeyprokudin/deep_direct_stat

https://github.com/sergeyprokudin/deep_direct_stat
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Table 1: Quantitative results on the IDIAP head pose estimation dataset [9] for
the three head rotations pan, roll and tilt. In the situation of fixed camera pose,
lightning conditions and image quality, all methods show similar performance
(methods are considered to perform on par when the difference in performance is
less than standard error of the mean).
estimated pose component pan tilt roll

MAAD log-likelihood MAAD log-likelihood MAAD log-likelihood

Beyer et al. ([5]), fixed κ 5.8◦ ± 0.1∗ 0.37± 0.01 2.4◦ ± 0.1 1.31± 0.01 3.1◦ ± 0.1 1.13± 0.01
Ours (single von Mises) 6.3◦ ± 0.1 0.56± 0.01 2.3◦ ± 0.1 1.56± 0.01 3.4◦ ± 0.1 1.13± 0.01
Ours (mixture-CVAE) 6.4◦ ± 0.1 ≈ 0.52± 0.02 2.9◦ ± 0.1 ≈ 1.35± 0.01 3.5◦ ± 0.1 ≈ 1.05± 0.02

*standard error of the mean (SEM).

Table 2: Quantitative results on the CAVIAR-o [13] and TownCentre [54] coarse
gaze estimation datasets. We see clear improvement in terms of quality of prob-
abilistic predictions for both datasets when switching to mixture models that
allow to output multiple hypotheses for gaze direction.

CAVIAR-o TownCentre

MAAD log-likelihood MAAD log-likelihood

Beyer et al. [5], fixed κ 5.74◦ ± 0.13 0.262± 0.031 22.8◦ ± 1.0 −0.89± 0.06
Ours (single von Mises) 5.53◦ ± 0.13 0.700± 0.043 22.9◦ ± 1.1 −0.57± 0.05
Ours (mixture-finite) 4.21◦ ± 0.16 1.87± 0.04 23.5◦ ± 1.1 −0.50± 0.04

11995 and 11996 images for training, validation, and testing, respectively. The
TownCentre and CAVIAR datasets present a challenging task of a coarse gaze
estimation of pedestrians based on low resolution images from surveillance camera
videos. In case of the CAVIAR dataset, we focus on the part of the dataset
containing occluded head instances (hence referred to as CAVIAR-o in the
literature).

PASCAL3D+ object pose dataset. The Pascal 3D+ dataset [33] consists
of images from the Pascal [55] and ImageNet [56] datasets that have been labeled
with both detection and continuous pose annotations for the 12 rigid object
categories that appear in Pascal VOC12 [55] train and validation set. With nearly
3000 object instances per category, this dataset provide a rich testbed to study
general object pose estimation. In our experiments on this dataset we follow
the same protocol as in [36,38] for viewpoint estimation: we use ground truth
detections for both training and testing, and use Pascal validation set to evaluate
and compare the quality of our predictions.

6.2 Results and Discussion

Quantitative results. We evaluate our methods using both discriminative
and probabilistic metrics. We use discriminative metrics that are standard for
the dataset of interest to be able to compare our methods with previous work.
For headpose tasks we use the mean absolute angular deviation (MAAD), a
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Table 3: Results on PASCAL3D+ viewpoint estimation with ground truth bound-
ing boxes. First two evaluation metrics are defined in [38], where Accπ

6
measures

accuracy (the higher the better) and MedErr measures error (the lower the bet-
ter). Additionally, we report the log-likelihood estimation logL of the predicted
angles (the higher the better). We can see clear improvement on all metrics when
switching to probabilistic setting compared to training for a purely discriminative
loss (fixed κ case).

aero bike boat bottle bus car chair table mbike sofa train tv mean
Accπ

6
(Tulsiani et al.[38]) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.81

Accπ
6

(Su et al.[36]) 0.80 0.82 0.62 0.95 0.93 0.83 0.75 0.86 0.86 0.85 0.82 0.89 0.83

Accπ
6

(Grabner et al.[41]) 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.84

Accπ
6

(Ours, fixed κ) 0.83 0.75 0.54 0.95 0.92 0.90 0.77 0.71 0.90 0.82 0.80 0.86 0.81

Accπ
6

(Ours, single v.Mises) 0.87 0.78 0.55 0.97 0.95 0.91 0.78 0.76 0.90 0.87 0.84 0.91 0.84

Accπ
6

(Ours, mixture-sCVAE) 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91 0.84

MedErr (Tulsiani et al.[38]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
MedErr (Su et al.[36]) 10.0 12.5 20.0 6.7 4.5 6.7 12.3 8.6 13.1 11.0 5.8 13.3 10.4
MedErr (Grabner et al.[41]) 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9
MedErr (Ours, fixed κ) 11.4 18.1 28.1 6.9 4.0 6.6 14.6 12.1 12.9 16.4 7.0 12.9 12.6
MedErr (Ours, single v.Mises) 9.7 17.7 26.9 6.7 2.7 4.9 12.5 8.7 13.2 10.0 4.7 10.6 10.7
MedErr (Ours, mixture-sCVAE) 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0 12.2

logL(Ours, fixed κ) -0.89 -0.73 -1.21 0.18 2.09 1.43 -0.08 0.69 -0.50 -0.75 0.06 -1.02 −0.07± 0.15
logL(Ours, single v.Mises) 0.19 -1.12 -0.30 2.40 4.87 2.85 0.42 0.79 -0.72 -0.54 2.52 0.52 1.17± 0.07
logL(Ours, mixture-sCVAE) 0.60 -0.73 -0.26 2.71 4.45 2.52 -0.58 0.08 -0.62 -0.64 2.05 1.14 1.15± 0.07

widely used metric for angular regression tasks. For PASCAL3D+ we use the
metrics advocated in [38]. Probabilistic predictions are measured in terms of
log-likelihood [57,58], a widely accepted scoring rule for assessing the quality
of probabilistic predictions. We summarize the results in Tables 1, 2 and
3. It can be seen from results on IDIAP dataset presented in Table 1 that
when camera pose, lightning conditions and image quality are fixed, all methods
perform similarly. In contrast, for the coarse gaze estimation task on CAVIAR
we can see a clear improvement in terms of quality of probabilistic predictions for
both datasets when switching to mixture models that allow to output multiple
hypotheses for gaze direction. Here low resolution, pure light conditions and
presence of occlusions create large diversity in the level of head pose expressions.
Finally, on a challenging PASCAL3D+ dataset we can see clear improvement
on all metrics and classes when switching to a probabilistic setting compared to
training for a purely discriminative loss (fixed κ case). Our methods also show
competitive or superior performance compared to state-of-the-art methods on
disriminative metrics advocated in [38]. Method of [36] uses large amounts of
synthesized images in addition to the standard training set that was used by our
method. Using this data augmentation technique can also lead to an improved
performance of our method and we consider this future work.

Qualitative results. Examples of probabilistic predictions for PASCAL3D+
dataset are shown in Figure 6. Upper left images highlight the effect we set out
to achieve: to correctly quantify the level of uncertainty of the estimated pose.
For easier examples we observe sharp peaks and a highly confident detection, and
more spread-out densities otherwise. Other examples highlight the advantage
of mixture models, which allow to model complex densities with multiple peaks
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Fig. 6: Qualitative results of our simpified CVAE model on the PASCAL3D+
dataset. Our model correctly quantifies the uncertainty of pose predictions and
is able to model ambiguous cases by predicting complex multimodal densities.
Lower right images are failure cases (confusing head and tail of the object with
high confidence).

corresponding to more than one potential pose angle. Failure scenarios are
highlighted in the lower right: high confidence predictions in case if the model
confuses head and tail.

7 Conclusion

We demonstrated a new probabilistic model for object pose estimation that
is robust to variations in input image quality and accurately quantifies its
uncertainty. More generally our results confirm that our approach is flexible
enough to accommodate different output domains such as angular data and
enables rich and efficient probabilistic deep learning models. We train all models
by maximum likelihood but still find it to be competitive with other works
from the literature that explicitly optimize for point estimates even under point
estimate loss functions. In the future, to improve our predictive performance and
robustness, we would also like to handle uncertainty of model parameters [30]
and to use the Fisher-von Mises distribution to jointly predict a distribution of
azimuth-elevation-tilt [44].

We hope that as intelligent systems increasingly rely on perception abilities,
future models in computer vision will be robust and probabilistic.
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