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Abstract
Policy gradient methods are a widely used class
of model-free reinforcement learning algorithms
where a state-dependent baseline is used to reduce
gradient estimator variance. Several recent papers
extend the baseline to depend on both the state and
action and suggest that this significantly reduces
variance and improves sample efficiency without
introducing bias into the gradient estimates. To
better understand this development, we decom-
pose the variance of the policy gradient estimator
and numerically show that learned state-action-
dependent baselines do not in fact reduce vari-
ance over a state-dependent baseline in commonly
tested benchmark domains. We confirm this unex-
pected result by reviewing the open-source code
accompanying these prior papers, and show that
subtle implementation decisions cause deviations
from the methods presented in the papers and
explain the source of the previously observed em-
pirical gains. Furthermore, the variance decom-
position highlights areas for improvement, which
we demonstrate by illustrating a simple change to
the typical value function parameterization that
can significantly improve performance.

1. Introduction
Model-free reinforcement learning (RL) with flexible func-
tion approximators, such as neural networks (i.e., deep re-
inforcement learning), has shown success in goal-directed
sequential decision-making problems in high dimensional
state spaces (Mnih et al., 2015; Schulman et al., 2015b;
Lillicrap et al., 2015; Silver et al., 2016). Policy gradi-
ent methods (Williams, 1992; Sutton et al., 2000; Kakade,
2002; Peters & Schaal, 2006; Silver et al., 2014; Schulman
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et al., 2015a; 2017) are a class of model-free RL algorithms
that have found widespread adoption due to their stability
and ease of use. Because these methods directly estimate
the gradient of the expected reward RL objective, they ex-
hibit stable convergence both in theory and practice (Sutton
et al., 2000; Kakade, 2002; Schulman et al., 2015a; Gu
et al., 2017b). In contrast, methods such as Q-learning lack
convergence guarantees in the case of nonlinear function
approximation (Sutton & Barto, 1998).

On-policy Monte-Carlo policy gradient estimates suffer
from high variance, and therefore require large batch sizes
to reliably estimate the gradient for stable iterative opti-
mization (Schulman et al., 2015a). This limits their appli-
cability to real-world problems, where sample efficiency
is a critical constraint. Actor-critic methods (Sutton et al.,
2000; Silver et al., 2014) and λ-weighted return estima-
tion (Tesauro, 1995; Schulman et al., 2015b) replace the
high variance Monte-Carlo return with an estimate based
on the sampled return and a function approximator. This
reduces variance at the expense of introducing bias from
the function approximator, which can lead to instability and
sensitivity to hyperparameters. In contrast, state-dependent
baselines (Williams, 1992; Weaver & Tao, 2001) reduce
variance without introducing bias. This is desirable because
it does not compromise the stability of the original method.

Gu et al. (2017a); Grathwohl et al. (2018); Liu et al. (2018);
Wu et al. (2018) present promising results extending the
classic state-dependent baselines to state-action-dependent
baselines. The standard explanation for the benefits of such
approaches is that they achieve large reductions in vari-
ance (Grathwohl et al., 2018; Liu et al., 2018), which trans-
lates to improvements over methods that only condition the
baseline on the state. This line of investigation is attractive,
because by definition, baselines do not introduce bias and
thus do not compromise the stability of the underlying pol-
icy gradient algorithm, but still provide improved sample
efficiency. In other words, they retain the advantages of the
underlying algorithms with no unintended side-effects.

In this paper, we aim to improve our understanding of state-
action-dependent baselines and to identify targets for further
unbiased variance reduction. Toward this goal, we present
a decomposition of the variance of the policy gradient esti-
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mator which isolates the potential variance reduction due to
state-action-dependent baselines. We numerically evaluate
the variance components on a synthetic linear-quadratic-
Gaussian (LQG) task, where the variances are nearly analyt-
ically tractable, and on benchmark continuous control tasks
and draw two conclusions: (1) on these tasks, a learned
state-action-dependent baseline does not significantly re-
duce variance over a learned state-dependent baseline, and
(2) the variance caused by using a function approximator for
the value function or state-dependent baseline is much larger
than the variance reduction from adding action dependence
to the baseline.

To resolve the apparent contradiction arising from (1), we
carefully reviewed the open-source implementations1 ac-
companying Q-prop (Gu et al., 2017a), Stein control vari-
ates (Liu et al., 2018), and LAX (Grathwohl et al., 2018) and
show that subtle implementation decisions cause the code to
diverge from the unbiased methods presented in the papers.
We explain and empirically evaluate variants of these prior
methods to demonstrate that these subtle implementation
details, which trade variance for bias, are in fact crucial for
their empirical success. These results motivate further study
of these design decisions.

The second observation (2), that function approximators
poorly estimate the value function, suggests that there is
room for improvement. Although many common bench-
mark tasks are finite horizon problems, most value function
parameterizations ignore this fact. We propose a horizon-
aware value function parameterization, and this improves
performance compared with the state-action-dependent base-
line without biasing the underlying method.

We emphasize that without the open-source code accompa-
nying (Gu et al., 2017a; Liu et al., 2018; Grathwohl et al.,
2018), this work would not be possible. Releasing the code
has allowed us to present a new view on their work and
to identify interesting implementation decisions for further
study that the original authors may not have been aware of.

We have made our code and additional visualizations
available at https://sites.google.com/view/
mirage-rl.

2. Background
Reinforcement learning aims to learn a policy for an agent
to maximize a sum of reward signals (Sutton & Barto,
1998). The agent starts at an initial state s0 ∼ P (s0).
Then, the agent repeatedly samples an action at from
a policy πθ(at|st) with parameters θ, receives a reward
rt ∼ P (rt|st, at), and transitions to a subsequent state st+1

1At the time of submission, code for (Wu et al., 2018) was not
available.

according to the Markovian dynamics P (st+1|at, st) of the
environment. This generates a trajectory of states, actions,
and rewards (s0, a0, r0, s1, a1, . . .). We abbreviate the tra-
jectory after the initial state and action by τ .

The goal is to maximize the discounted sum of rewards
along sampled trajectories

J(θ) = Es0,a0,τ

[ ∞∑
t=0

γtrt

]
= Es∼ρπ(s),a,τ

[ ∞∑
t=0

γtrt

]
,

where γ ∈ [0, 1) is a discount parameter and ρπ(s) =∑∞
t=0 γ

tPπ(st = s) is the unnormalized discounted state
visitation frequency.

Policy gradient methods differentiate the expected return
objective with respect to the policy parameters and apply
gradient-based optimization (Sutton & Barto, 1998). The
policy gradient can be written as an expectation amenable
to Monte Carlo estimation

∇θJ(θ) = Es∼ρπ(s),a,τ [Qπ(s, a)∇ log π(a|s)]
= Es∼ρπ(s),a,τ [Aπ(s, a)∇ log π(a|s)]

where Qπ(s, a) = Eτ [
∑∞
t=0 γ

trt|s0 = s, a0 = a] is the
state-action value function, V π(s) = Ea [Qπ(s, a)] is the
value function, and Aπ(s, a) = Qπ(s, a) − V π(s) is the
advantage function. The equality in the last line follows
from the fact that Ea [∇ log π(a|s)] = 0 (Williams, 1992).

In practice, most policy gradient methods (including this
paper) use the undiscounted state visitation frequencies (i.e.,
γ = 1 for ρπ(s)), which produces a biased estimator for
∇J(θ) and more closely aligns with maximizing average
reward (Thomas, 2014).

We can estimate the gradient with a Monte-Carlo estimator

ĝ(s, a, τ) = Â(s, a, τ)∇ log πθ(a|s), (1)

where Â is an estimator of the advantage function up to a
state-dependent constant (e.g.,

∑
t γ

trt).

2.1. Advantage Function Estimation

Given a value function estimator, V̂ (s), we can form a k-
step advantage function estimator,

Â(k)(st, at, τt+1) =

k−1∑
i=0

γirt+i + γkV̂ (st+k)− V̂ (st),

where k ∈ {1, 2, ...,∞} and τt+1 = (rt, st+1, at+1, . . .).
Â(∞)(st, at, τt+1) produces an unbiased gradient estimator
when used in Eq. 1 regardless of the choice of V̂ (s). How-
ever, the other estimators (k <∞) produce biased estimates
unless V̂ (s) = V π(s). Advantage actor critic (A2C and

https://sites.google.com/view/mirage-rl
https://sites.google.com/view/mirage-rl
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A3C) methods (Mnih et al., 2016) and generalized advan-
tage estimators (GAE) (Schulman et al., 2015b) use a single
or linear combination of Â(k) estimators as the advantage
estimator in Eq. 1. In practice, the value function estimator
is never perfect, so these methods produce biased gradient
estimates. As a result, the hyperparameters that control the
combination of Â(k) must be carefully tuned to balance bias
and variance (Schulman et al., 2015b), demonstrating the
perils and sensitivity of biased gradient estimators. For the
experiments in this paper, unless stated otherwise, we use
the GAE estimator. Our focus will be on the additional bias
introduced beyond that of GAE.

2.2. Baselines for Variance Reduction

The policy gradient estimator in Eq. 1 typically suffers
from high variance. Control variates are a well-studied
technique for reducing variance in Monte Carlo estima-
tors without biasing the estimator (Owen, 2013). They
require a correlated function whose expectation we can
analytically evaluate or estimate with low variance. Be-
cause Ea|s [∇ log π(a|s)] = 0, any function of the form
φ(s)∇ log π(a|s) can serve as a control variate, where φ(s)
is commonly referred to as a baseline (Williams, 1992).
With a baseline, the policy gradient estimator becomes

ĝ(s, a, τ) =
(
Â(s, a, τ)− φ(s)

)
∇ log π(a|s),

which does not introduce bias. Several recent methods (Gu
et al., 2017a; Thomas & Brunskill, 2017; Grathwohl et al.,
2018; Liu et al., 2018; Wu et al., 2018) have extended the
approach to state-action-dependent baselines (i.e., φ(s, a) is
a function of the state and the action). With a state-action
dependent baseline φ(s, a), the policy gradient estimator is

ĝ(s, a, τ) =
(
Â(s, a, τ)− φ(s, a)

)
∇ log π(a|s)

+∇Ea|s [φ(s, a)] , (2)

Now, ∇Ea|s [φ(s, a)] 6= 0 in general, so it must be ana-
lytically evaluated or estimated with low variance for the
baseline to be effective.

When the action set is discrete and not large, it is straightfor-
ward to analytically evaluate the expectation in the second
term (Gu et al., 2017b; Gruslys et al., 2017). In the con-
tinuous action case, Gu et al. (2017a) set φ(s, a) to be the
first order Taylor expansion of a learned advantage function
approximator. Because φ(s, a) is linear in a, the expectation
can be analytically computed. Gu et al. (2017b); Liu et al.
(2018); Grathwohl et al. (2018) set φ(s, a) to be a learned
function approximator and leverage the reparameterization
trick to estimate ∇Ea|s [φ(s, a)] with low variance when π
is reparameterizable (Kingma & Welling, 2013; Rezende
et al., 2014).

3. Policy Gradient Variance Decomposition
Now, we analyze the variance of the policy gradient estima-
tor with a state-action dependent baseline (Eq. 2). This is an
unbiased estimator of Es,a,τ

[
Â(s, a, τ)∇ log π(a|s)

]
for

any choice of φ. For theoretical analysis, we assume that we
can analytically evaluate the expectation over a in the sec-
ond term because it only depends on φ and π, which we can
evaluate multiple times without querying the environment.

The variance of the policy gradient estimator in Eq. 2,
Σ := Vars,a,τ (ĝ), can be decomposed using the law of
total variance as

Σ = Es
[
Vara,τ |s

((
Â(s, a, τ)− φ(s, a)

)
∇ log π(a|s)

)]
+ Vars Ea,τ |s

[
Â(s, a, τ)∇ log π(a|s)

]
,

where the simplification of the second term is because the
baseline does not introduce bias. We can further decompose
the first term,

Es
[
Vara,τ |s

((
Â(s, a, τ)− φ(s, a)

)
∇ log π(a|s)

)]
= Es,a

[
Varτ |s,a

(
Â(s, a, τ)∇ log π(a|s)

)]
+ Es

[
Vara|s

((
Â(s, a)− φ(s, a)

)
∇ log π(a|s)

)]
,

where Â(s, a) = Eτ |s,a
[
Â(s, a, τ)

]
. Putting the terms

together, we arrive at the following:

Σ =Es,a
[
Varτ |s,a

(
Â(s, a, τ)∇ log π(a|s)

)]
︸ ︷︷ ︸

Στ

+ Es
[
Vara|s

((
Â(s, a)− φ(s, a)

)
∇ log π(a|s)

)]
︸ ︷︷ ︸

Σa

+ Vars

(
Ea|s

[
Â(s, a)∇ log π(a|s)

])
︸ ︷︷ ︸

Σs

. (3)

Notably, only Σa involves φ, and it is clear that the vari-
ance minimizing choice of φ(s, a) is Â(s, a). For example,
if Â(s, a, τ) =

∑
t γ

trt, the discounted return, then the
optimal choice of φ(s, a) is Â(s, a) = Eτ |s,a [

∑
t γ

trt] =
Qπ(s, a), the state-action value function.

The variance in the on-policy gradient estimate arises from
the fact that we only collect data from a limited number of
states s, that we only take a single action a in each state, and
that we only rollout a single path from there on τ . Intuitively,
Στ describes the variance due to sampling a single τ , Σa
describes the variance due to sampling a single a, and lastly
Σs describes the variance coming from visiting a limited
number of states. The magnitudes of these terms depends
on task specific parameters and the policy.
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Figure 1. Evaluating the variance terms (Eq. 3) of the policy gradient estimator on a 2D point mass task (an LQG system) with finite
horizon T = 100. The total variance of the gradient estimator covariance is plotted against time in the task (t). Each plot from left to
right corresponds to a different stage in learning (see Appendix 9 for policy visualizations), and its title indicates the number of policy
updates completed. Σ0

a and Σ
φ(s)
a correspond to the Σa term without a baseline and using the value function as a state-dependent baseline,

respectively. Importantly, an optimal state-action-dependent baseline reduces Σa to 0, so Σ
φ(s)
a upper bounds the variance reduction

possible from using a state-action-dependent baseline over a state-dependent baseline. In this task, Σ
φ(s)
a is much smaller than Στ , so

the reduction in overall variance from using a state-action-dependent baseline would be minimal. Σ
GAE(λ)
τ indicates the Στ term with

GAE-based return estimates. We include animated GIF visualizations of the variance terms and policy as learning progresses in the
Supplementary Materials.

The relative magnitudes of the variance terms will deter-
mine the effectiveness of the optimal state-action-dependent
baseline. In particular, denoting the value of the second term
when using a state-dependent baseline by Σ

φ(s)
a , the vari-

ance of the policy gradient estimator with a state-dependent
baseline is Σ

φ(s)
a + Στ + Σs. When φ(s, a) is optimal, Σa

vanishes, so the variance is Στ + Σs. Thus, an optimal state-
action-dependent baseline will be beneficial when Σ

φ(s)
a is

large relative to Στ + Σs. We expect this to be the case
when single actions have a large effect on the overall dis-
counted return (e.g., in a Cliffworld domain, where a single
action could cause the agent to fall of the cliff and suffer a
large negative reward). Practical implementations of a state-
action-dependent baseline require learning φ(s, a), which
will further restrict the potential benefits.

3.1. Variance in LQG Systems

Linear-quadratic-Gaussian (LQG) systems (Stengel, 1986)
are a family of widely studied continuous control problems
with closed-form expressions for optimal controls, quadratic
value functions, and Gaussian state marginals. We first ana-
lyze the variance decomposition in an LQG system because
it allows nearly analytic measurement of the variance terms
in Eq. 3 (See Appendix 9 for measurement details).

Figure 1 plots the variance terms for a simple 2D point mass
task using discounted returns as the choice of Â(s, a, τ) (See
Appendix 9 for task details). As expected, without a base-
line (φ = 0), the variance of Σ0

a is much larger than Στ and
Σs. Further, using the value function as a state-dependent

baseline (φ(s) = V π(s)), results in a large variance reduc-
tion (compare the lines for Σ

φ(s)
a and Σ0

a in Figure 1). An
optimal state-action-dependent baseline would reduce Σ

φ(s)
a

to 0, however, for this task, such a baseline would not sig-
nificantly reduce the total variance because Στ is already
large relative to Σ

φ(s)
a (Figure 1).

We also plot the effect of using GAE2 (Schulman et al.,
2015b) on Στ for λ = {0, 0.99}. Baselines and GAE re-
duce different components of the gradient variances, and
this figure compares their effects throughout the learning
process.

3.2. Empirical Variance Measurements

We estimate the magnitude of the three terms for benchmark
continuous action tasks as training proceeds. Once we de-
cide on the form of φ(s, a), approximating φ is a learning
problem in itself. To understand the approximation error,
we evaluate the situation where we have access to an ora-
cle φ(s, a) and when we learn a function approximator for
φ(s, a). Estimating the terms in Eq. 3 is nontrivial because
the expectations and variances are not available in closed
form. We construct unbiased estimators of the variance
terms and repeatedly draw samples to drive down the mea-
surement error (see Appendix 10 for details). We train a

2For the LQG system, we use the oracle value function to
compute the GAE estimator. In the rest of the experiments, GAE
is computed using a learned value function.
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Figure 2. Evaluating the variance terms (Eq. 3) of the gradient estimator when Â(s, a, τ) is the discounted return (left) and GAE (right)
with various baselines on Humanoid (See Appendix Figure 9 for results on HalfCheetah). The x-axis denotes the number of environment
steps used for training. The policy is trained with TRPO. We set φ(s) = Ea|s

[
Â(s, a)

]
and φ(s, a) = Â(s, a). The “learned” label in

the legend indicates that a function approximator to φ was used instead of directly using φ. Note that when using φ(s, a) = Â(s, a),
Σ
φ(s,a)
a is 0, so is not plotted. Since Σs is small, we plot an upper bound on Σs. The upper and lower bands indicate two standard errors

of the mean. In the left plot, lines for Σ
φ̂(s)
a and Σ

φ̂(s,a)
a overlap and in the right plot, lines for Σ0

a,Σ
φ̂(s)
a , and Σ

φ̂(s,a)
a overlap.

policy using TRPO3 (Schulman et al., 2015a) and as train-
ing proceeds, we plot each of the individual terms Στ ,Σa,
and Σs of the gradient estimator variance for Humanoid in
Figure 2 and for HalfCheetah in Appendix Figure 9. Addi-
tionally, we repeat the experiment with the horizon-aware
value functions (described in Section 5) in Appendix Fig-
ures 10 and 11.

We plot the variance decomposition for two choices of
Â(s, a, τ): the discounted return,

∑
t γ

trt, and GAE (Schul-
man et al., 2015b). In both cases, we set φ(s) =

Ea|s
[
Â(s, a)

]
and φ(s, a) = Â(s, a) (the optimal state-

action-dependent baseline). When using the discounted re-
turn, we found that Στ dominates Σ

φ(s)
a , suggesting that

even an optimal state-action-dependent baseline (which
would reduce Σa to 0) would not improve over a state-
dependent baseline (Figure 2). In contrast, with GAE, Στ is
reduced and now the optimal state-action-dependent base-
line would reduce the overall variance compared to a state-
dependent baseline. However, when we used function ap-
proximators to φ, we found that the state-dependent and
state-action-dependent function approximators produced
similar variance and much higher variance than when us-
ing an oracle φ (Figure 2). This suggests that, in practice,
we would not see improved learning performance using a
state-action-dependent baseline over a state-dependent base-
line on these tasks. We confirm this in later experiments in
Sections 4 and 5.

3The relative magnitudes of the variance terms depend on the
task, policy, and network structures. For evaluation, we use a
well-tuned implementation of TRPO (Appendix 8.4).

Furthermore, we see that closing the function approximation
gap of V (s) and φ(s) would produce much larger reduc-
tions in variance than from using the optimal state-action-
dependent baseline over the state-dependent baseline. This
suggests that improved function approximation of both V (s)
and φ(s) should be a priority. Finally, Σs is relatively small
in both cases, suggesting that focusing on reducing variance
from the first two terms of Eq. 3, Στ and Σa, will be more
fruitful.

4. Unveiling the Mirage
In the previous section, we decomposed the policy gradient
variance into several sources, and we found that in practice,
the source of variance reduced by the state-action-dependent
baseline is not reduced when a function approximator for
φ is used. However, this appears to be a paradox: if the
state-action-dependent baseline does not reduce variance,
how are prior methods that propose state-action-dependent
baselines able to report significant improvements in learning
performance? We analyze implementations accompanying
these works, and show that they actually introduce bias into
the policy gradient due to subtle implementation decisions4.

4The implementation of the state-action-dependent baselines
for continuous control in (Grathwohl et al., 2018) suffered from
two critical issues (see Appendix 8.3 for details), so it was chal-
lenging to determine the source of their observed performance.
After correcting these issues in their implementation, we do not
observe an improvement over a state-dependent baseline, as shown
in Appendix Figure 13. We emphasize that these observations
are restricted to the continuous control experiments as the rest
of the experiments in that paper use a separate codebase that is
unaffected.
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Figure 3. Evaluation of Q-Prop, an unbiased version of Q-Prop that applies the normalization to all terms, and TRPO (implementations
based on the code accompanying Gu et al. (2017a)). We plot mean episode reward with standard deviation intervals capped at the
minimum and maximum across 10 random seeds. The batch size across all experiments was 5000. On the continuous control tasks
(HalfCheetah and Humanoid), we found that that the unbiased Q-Prop performs similarly to TRPO, while the (biased) Q-Prop outperforms
both. On the discrete task (CartPole), we found almost no difference between the three algorithms.

We find that these methods are effective not because of unbi-
ased variance reduction, but instead because they introduce
bias for variance reduction.

4.1. Advantage Normalization

Although Q-Prop and IPG (Gu et al., 2017b) (when ν = 0)
claim to be unbiased, the implementations of Q-Prop and
IPG apply an adaptive normalization to only some of the
estimator terms, which introduces a bias. Practical imple-
mentations of policy gradient methods (Mnih & Gregor,
2014; Schulman et al., 2015b; Duan et al., 2016) often nor-
malize the advantage estimate Â, also commonly referred to
as the learning signal, to unit variance with batch statistics.
This effectively serves as an adaptive learning rate heuristic
that bounds the gradient variance.

The implementations of Q-Prop and IPG normalize the learn-
ing signal Â(s, a, τ)− φ(s, a), but not the bias correction
term ∇Ea [φ(s, a)]. Explicitly, the estimator with such a
normalization is,

ĝ(s, a, τ) =
1

σ̂

(
Â(s, a, τ)− φ(s, a)− µ̂

)
∇ log π(a|s)

+∇Ea|s [φ(s, a)] ,

where µ̂ and σ̂ are batch-based estimates of the mean and
standard deviation of Â(s, a, τ) − φ(s, a). This deviates
from the method presented in the paper and introduces bias.
In fact, IPG (Gu et al., 2017b) analyzes the bias in the
implied objective that would be introduced when the first
term has a different weight from the bias correction term,
proposing such a weight as a means to trade off bias and
variance. We analyze the bias and variance of the gradient
estimator in Appendix 11. However, the weight actually

used in the implementation is off by the factor σ̂, and never
one (which corresponds to the unbiased case). This intro-
duces an adaptive bias-variance trade-off that constrains the
learning signal variance to 1 by automatically adding bias if
necessary.

In Figure 3, we compare the implementation of Q-Prop
from (Gu et al., 2017a), an unbiased implementation of Q-
Prop that applies the normalization to all terms, and TRPO.
We found that the adaptive bias-variance trade-off induced
by the asymmetric normalization is crucial for the gains
observed in (Gu et al., 2017a). If implemented as unbiased,
it does not outperform TRPO.

4.2. Poorly Fit Value Functions

In contrast to our results, Liu et al. (2018) report that state-
action-dependent baselines significantly reduce variance
over state-dependent baselines on continuous action bench-
mark tasks (in some cases by six orders of magnitude). We
find that this conclusion was caused by a poorly fit value
function.

The GAE advantage estimator has mean zero when V̂ (s) =
V π(s), which suggests that a state-dependent baseline is un-
necessary if V̂ (s) ≈ V π(s). As a result, a state-dependent
baseline is typically omitted when the GAE advantage esti-
mator is used. This is the case in (Liu et al., 2018). However,
when V̂ (s) poorly approximates V π(s), the GAE advantage
estimator has nonzero mean, and a state-dependent baseline
can reduce variance. We show that is the case by taking
the open-source code accompanying (Liu et al., 2018), and
implementing a state-dependent baseline. It achieves com-
parable variance reduction to the state-action-dependent
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baseline (Appendix Figure 12).

This situation can occur when the value function approxima-
tor is not trained sufficiently (e.g., if a small number of SGD
steps are used to train V̂ (s)). Then, it can appear that adding
a state-action-dependent baseline reduces variance where a
state-dependent baseline would have the same effect.

4.3. Sample-Reuse in Baseline Fitting

Recent work on state-action-dependent baselines fits the
baselines using on-policy samples (Liu et al., 2018; Grath-
wohl et al., 2018) either by regressing to the Monte Carlo
return or minimizing an approximation to the variance of
the gradient estimator. This must be carefully implemented
to avoid bias. Specifically, fitting the baseline to the current
batch of data and then using the updated baseline to form the
estimator results in a biased gradient (Jie & Abbeel, 2010).

Although this can reduce the variance of the gradient estima-
tor, it is challenging to analyze the bias introduced. The bias
is controlled by the implicit or explicit regularization (e.g.,
early stopping, size of the network, etc.) of the function
approximator used to fit φ. A powerful enough function
approximator can trivially overfit the current batch of data
and reduce the learning signal to 0. This is especially impor-
tant when flexible neural networks are used as the function
approximators.

Liu et al. (2018) fit the baseline using the current batch
before computing the policy gradient estimator. Using the
open-source code accompanying (Liu et al., 2018), we eval-
uate several variants: an unbiased version that fits the state-
action-dependent baseline after computing the policy step,
an unbiased version that fits a state-dependent baseline af-
ter computing the policy step, and a version that estimates
∇Ea|s [φ(s, a)] with an extra sample of a ∼ π(a|s) instead
of importance weighting samples from the current batch.
Our results are summarized in Appendix Figure 8. Notably,
we found that using an extra sample, which should reduce
variance by avoiding importance sampling, decreases per-
formance because the baseline is overfit to the current batch.
The performance of the unbiased state-dependent base-
line matched the performance of the unbiased state-action-
dependent baseline. On Humanoid, the biased method im-
plemented in (Liu et al., 2018) performs best. However, on
HalfCheetah, the biased methods suffer from instability.

5. Horizon-Aware Value Functions
The empirical variance decomposition illustrated in Figure 2
and Appendix Figure 9 reveals deficiencies in the commonly
used value function approximator, and as we showed in Sec-
tion 4.2, a poor value approximator can produce misleading
results. To fix one deficiency with the value function approx-
imator, we propose a new horizon-aware parameterization

of the value function. As with the state-action-dependent
baselines, such a modification is appealing because it does
not introduce bias into the underlying method.

The standard continuous control benchmarks use a fixed
time horizon (Duan et al., 2016; Brockman et al., 2016),
yet most value function parameterizations are stationary,
as though the task had infinite horizon. Near the end of
an episode, the expected return will necessarily be small
because there are few remaining steps to accumulate reward.
To remedy this, our value function approximator outputs
two values: r̂(s) and V̂

′
(s) and then we combine them with

the discounted time left to form a value function estimate

V̂ (st) =

(
T∑
i=t

γi−t
)
r̂(st) + V̂

′
(st),

where T is the maximum length of the episode. Conceptu-
ally, we can think of r̂(s) as predicting the average reward
over future states and V̂

′
(s) as a state-dependent offset.

r̂(s) is a rate of return, so we multiply it be the remaining
discounted time in the episode.

Including time as an input to the value function can also
resolve this issue (e.g., (Duan et al., 2016; Pardo et al.,
2017)). We compare our horizon-aware parameterization
against including time as an input to the value function
and find that the horizon-aware value function performs
favorably (Appendix Figures 6 and 7).

In Figure 4, we compare TRPO with a horizon-aware value
function against TRPO, TRPO with a state-dependent base-
line, and TRPO with a state-action-dependent baseline.
Across environments, the horizon-aware value function out-
performs the other methods. By prioritizing the largest
variance components for reduction, we can realize practical
performance improvements without introducing bias.

6. Related Work
Baselines (Williams, 1992; Weaver & Tao, 2001) in RL fall
under the umbrella of control variates, a general technique
for reducing variance in Monte Carlo estimators without
biasing the estimator (Owen, 2013). Weaver & Tao (2001)
analyzes the optimal state-dependent baseline, and in this
work, we extend the analysis to state-action-dependent base-
lines in addition to analyzing the variance of the GAE esti-
mator (Tesauro, 1995; Schulman et al., 2015a).

Dudı́k et al. (2011) introduced the community to doubly-
robust estimators, a specific form of control variate, for
off-policy evaluation in bandit problems. The state-action-
dependent baselines (Gu et al., 2017a; Wu et al., 2018; Liu
et al., 2018; Grathwohl et al., 2018; Gruslys et al., 2017)
can be seen as the natural extension of the doubly robust
estimator to the policy gradient setting. In fact, for the
discrete action case, the policy gradient estimator with the
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Figure 4. Evaluating the horizon-aware value function, TRPO with a state-dependent baseline, TRPO state-action-dependent baseline, and
TRPO. We plot mean episode reward and standard deviation intervals capped at the minimum and maximum across 5 random seeds. The
batch size across all experiments was 5000.

state-action-dependent baseline can be seen as the gradient
of a doubly robust estimator.

Prior work has explored model-based (Sutton, 1990; Heess
et al., 2015; Gu et al., 2016) and off-policy critic-based
gradient estimators (Lillicrap et al., 2015). In off-policy
evaluation, practitioners have long realized that constraining
the estimator to be unbiased is too limiting. Instead, recent
methods mix unbiased doubly-robust estimators with biased
model-based estimates and minimize the mean squared er-
ror (MSE) of the combined estimator (Thomas & Brunskill,
2016; Wang et al., 2016a). In this direction, several recent
methods have successfully mixed high-variance, unbiased
on-policy gradient estimates directly with low-variance, bi-
ased off-policy or model-based gradient estimates to im-
prove performance (O’Donoghue et al., 2016; Wang et al.,
2016b; Gu et al., 2017b). It would be interesting to see if the
ideas from off-policy evaluation could be further adapted to
the policy gradient setting.

7. Discussion
State-action-dependent baselines promise variance reduc-
tion without introducing bias. In this work, we clarify the
practical effect of state-action-dependent baselines in com-
mon continuous control benchmark tasks. Although an
optimal state-action-dependent baseline is guaranteed not
to increase variance and has the potential to reduce vari-
ance, in practice, currently used function approximators for
the state-action-dependent baselines are unable to achieve
significant variance reduction. Furthermore, we found that
much larger gains could be achieved by instead improving
the accuracy of the value function or the state-dependent
baseline function approximators.

With these insights, we re-examined previous work on state-

action-dependent baselines and identified a number of pit-
falls. We were also able to correctly attribute the previously
observed results to implementation decisions that introduce
bias in exchange for variance reduction. We intend to further
explore the trade-off between bias and variance in future
work.

Motivated by the gap between the value function approx-
imator and the true value function, we propose a novel
modification of the value function parameterization that
makes it aware of the finite time horizon. This gave con-
sistent improvements over TRPO, whereas the unbiased
state-action-dependent baseline did not outperform TRPO.

Finally, we note that the relative contributions of each of the
terms to the policy gradient variance are problem specific.
A learned state-action-dependent baseline will be benefi-

cial when Σ
φ̂(s)
a is large relative to Στ + Σs. In this paper,

we focused on continuous control benchmarks where we
found this not to be the case. We speculate that in environ-
ments where single actions have a strong influence on the
discounted return (and hence Vara(A(s, a)) is large), Σa
may be large. For example, in a discrete task with a critical
decision point such as a Cliffworld domain, where a single
action could cause the agent to fall of the cliff and suffer
a large negative reward. Future work will investigate the
variance decomposition in additional domains.
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