

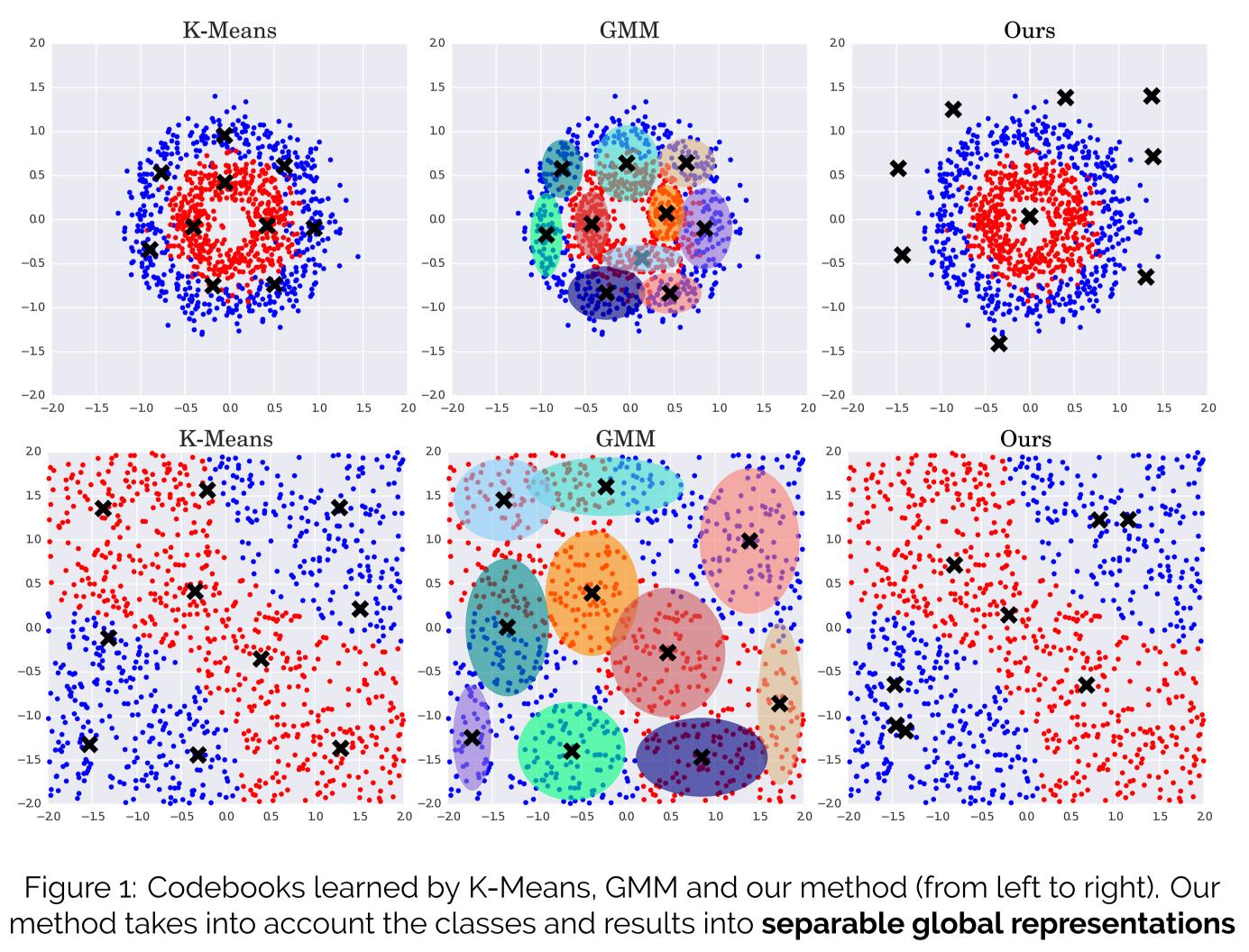
ARISTOTLE UNIVERSITY OF THESSALONIKI

Motivation

Local Feature Aggregation Methods are used to generate discriminative global representations from local image/video features.

> Existing local feature aggregation functions ignore the subsequent usage of the global feature representation!

- ldea
- Compose local feature aggregation functions with a classifier's cost function and backpropagate the gradient to learn the parameters
- The resulting representations outperform BOW, VLAD and Fisher Vectors, with respect to classification accuracy, by a large margin



Aggregation Functions

We introduce a family of local feature aggregation functions that can be expressed as follows

$$R(F;\Theta) = \frac{1}{N_F} \sum_{n=1}^{N_F} T(f_n;\Theta)$$

where $T(\cdot; \Theta) : \mathbb{R}^D \to \mathbb{R}^K$ is a differentiable function with respect to the parameters Θ and $F = \{f_1, f_2, \dots, f_{N_F}\}$ is the set of N_F local descriptors extracted from an image or video.

Learning Local Feature Aggregation Functions with Backpropagation Angelos Katharopoulos*, Despoina Paschalidou*, Christos Diou, Anastasios Delopoulos

Multimedia Understanding Group, Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, Greece

> We experiment with two local feature aggregation functions: • A generalized Soft-assignment Bag of Words (BOW)

$$T_1(f_n; C, \Sigma) = \frac{1}{Z(f_n, C, \Sigma)} \begin{bmatrix} D(f_n, C_1, \Sigma_1) \\ \vdots \\ D(f_n, C_K, \Sigma_K) \end{bmatrix}$$

• A Soft-assignment Vector of Locally Aggregated Descriptors (VLAD)

$$T_{2}(f_{n}; C, \Sigma) = \frac{1}{Z(f_{n}, C, \Sigma)} \begin{bmatrix} D(f_{n}, C_{1}, \Sigma_{1})(f_{n} - C_{1}) \\ \vdots \\ D(f_{n}, C_{K}, \Sigma_{K})(f_{n} - C_{K}) \end{bmatrix}$$

where

and

 C_k is the codebook and Σ_k is the diagonal covariance matrix used to compute the Mahalanobis distance between the n-th local feature and the k-th codeword.

Parameter Estimation

We jointly learn a classifier and a feature aggregation function by solving the following optimization problem, where $J(\cdot; W)$ is the cost function of **any classifier**.

$$V^*, \Theta^* = \underset{W,\Theta}{\operatorname{arg\,min}} \sum_{i=1}^N J\left(R(F^{(i)}; \Theta), y^{(i)}; W\right)$$

- Algorithm 1 Procedure to learn the parameters of a local feature aggregation function procedure TRAINAGGFUN(F, y)
 - if initialize with K-Means then $C_0 \leftarrow KMeans(F)$ $\Sigma_0 \leftarrow I$ \mathbf{else} $C_0, \Sigma_0 \leftarrow GMM(F)$ end if $W_0 \leftarrow \operatorname{arg\,min}_W \sum_{i=1}^N J\left(R(F^{(i)}; C_0, \Sigma_0), y^{(i)}; W\right)$ $t \leftarrow 0$ repeat $i \sim \text{DiscreteUniform}(1, N)$ Sample $\hat{F}^{(i)}$ from $F^{(i)}$ $W_{t+1} \leftarrow \mathrm{SGD}(\nabla_{W_t} J(R(\hat{F}^{(i)}; C_t, \Sigma_t), y^{(i)}; W_t))$ $C_{t+1} \leftarrow \text{SGD}(\nabla_{C_t} J(R(\hat{F}^{(i)}; C_t, \Sigma_t), y^{(i)}; W_t))$ $\Sigma_{t+1} \leftarrow \mathrm{SGD}(\nabla_{\Sigma_t} J(R(\hat{F}^{(i)}; C_t, \Sigma_t), y^{(i)}; W_t))$ $t \leftarrow t + 1$ **until** $t \geq$ specific number of mini-batches

$$C^* \leftarrow C_t$$

$$\Sigma^* \leftarrow \Sigma_t$$

$$W^* \leftarrow \arg\min_W \sum_{i=1}^N J\left(R(F^{(i)}; C^*, \Sigma^*), y^{(i)}; W_t\right)$$

end procedure

Any classifier can be used, but we use **Logistic Regression** and an additional χ^2 feature map in the case of $T_1(\cdot)$.

$$D(f_n, C_k, \Sigma_k) = \exp\left(-\gamma \left(f_n - C_k\right)^T \Sigma_k^{-1} (f_n - C_k)\right)$$

$Z(f_n, C, \Sigma) = \sum D(f_n, C_k, \Sigma_k)$

// Parameter initialization

// Core training

// Classifier fine tuning

Experimental Results

Improved Dense Trajectories (IDT).

Training evolution of soft generalized BOW (T_1) on CIFAR10

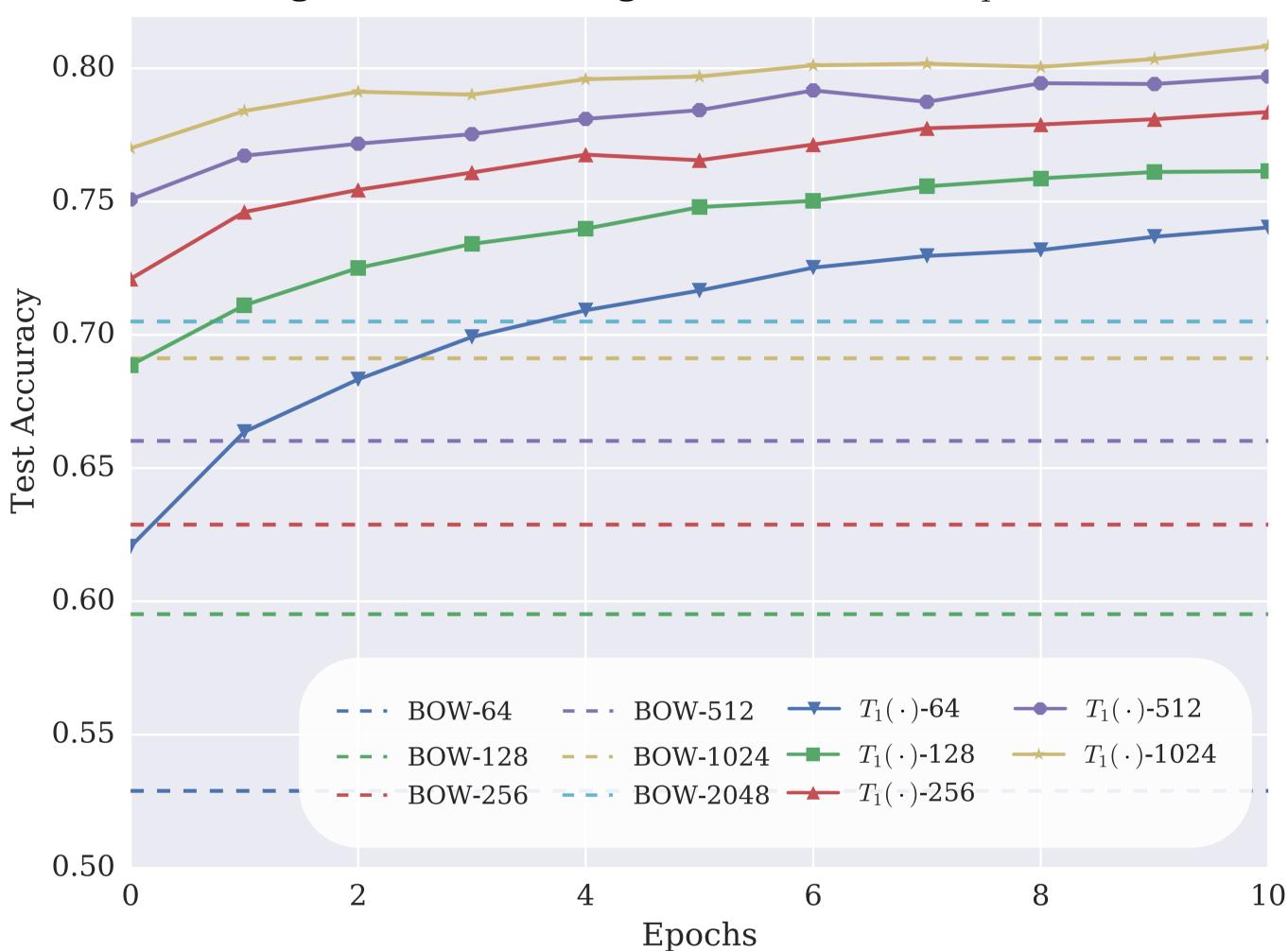


Figure 2: Classification accuracy on the test set with respect to the training epochs for various representation sizes on CIFAR10 with local features extracted from a conv net.

Learning a codebook using our method achieves 3.66% better classification accuracy with 64 dimensions than the codebook found with K-Means with 2048 dimensions in the CIFAR image classification benchmark.

Our method improves upon the state-of-the-art feature aggregation methods in **all** cases usually requiring a much smaller final representation.

Method-Codebook	CIFAR10-DCNN	UCF11-IDT_HOF	UCF11-IDT_TRAJ
BOW-1024	69.12%	$89.72\% \pm 0.50$	83.88% ± 0.39
BOW-2048	70.50%	$91.03\% \pm 0.35$	$85.65\% \pm 0.53$
T1-1024	80.87%	$92.23\% \pm 0.37$	86.90% ± 0.63
T1-2048	81.12%	93.00% ± 0.30	87.01% ± 0.48
VLAD-64	_	$90.25\% \pm 0.33$	$78.71\% \pm 0.94$
FV-64	_	$90.55\% \pm 0.26$	$78.92\%\pm0.21$
T2-64	_	91.08% ± 0.26	83.82% ± 0.34

Table 1: Classification accuracy of Bag of Words (BOW), VLAD, Fisher Vectors (FV) and the two proposed aggregation methods $T_1(\cdot)$ and $T_2(\cdot)$

We conduct experiments on image and video datasets, CIFAR10 and UCF-11 respectively, using state-of-the-art local features such as **Deep Convolutional Neural Networks** and