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Abstract
It is commonplace to encounter nonstationary or
heterogeneous data, of which the underlying gener-
ating process changes over time or across data sets
(the data sets may have different experimental con-
ditions or data collection conditions). Such a dis-
tribution shift feature presents both challenges and
opportunities for causal discovery. In this paper we
develop a principled framework for causal discov-
ery from such data, called Constraint-based causal
Discovery from Nonstationary/heterogeneous Data
(CD-NOD), which addresses two important ques-
tions. First, we propose an enhanced constraint-
based procedure to detect variables whose local
mechanisms change and recover the skeleton of
the causal structure over observed variables. Sec-
ond, we present a way to determine causal ori-
entations by making use of independence changes
in the data distribution implied by the underlying
causal model, benefiting from information carried
by changing distributions. Experimental results on
various synthetic and real-world data sets are pre-
sented to demonstrate the efficacy of our methods.

1 Introduction
In many fields of empirical sciences and engineering, one
aims to find causal knowledge for various purposes. As it
is often difficult if not impossible to carry out randomized
experiments, inferring causal relations from purely observa-
tional data, known as the task of causal discovery, has drawn
much attention in several fields, e.g. computer science, eco-
nomics, and neuroscience. With the rapid accumulation of
huge volumes of data of various types, causal discovery is
facing exciting opportunities but also great challenges.

One feature such data often exhibit is distribution shift.
Distribution shift may occur across data sets, which be ob-
tained under different interventions or have different data col-
lection conditions, or over time, as featured by nonstationary
data. For an example of the former kind, consider the problem
of remote sensing image classification, which aims to derive
land use and land cover information through the process of in-
terpreting and classifying remote sensing imagery. The data
collected in different areas and at different times usually have

different distributions due to different physical factors related
to ground, vegetation, illumination conditions, etc. As an ex-
ample of the latter kind, fMRI recordings are usually nonsta-
tionary: the causal connections in the brain may change with
stimuli, tasks, attention of the subject, etc. More specifically,
it is believed that one of the basic properties of the neural con-
nections is their time-dependence [Havlicek et al., 2011]. To
these situations many existing approaches to causal discovery
fail to apply, as they assume a fixed causal model and hence
a fixed joint distribution underlying the observed data.

In this paper we assume that the underlying causal struc-
ture is a directed acyclic graph (DAG), but the mechanisms
or parameters associated with the causal structure, or in other
words the causal model, may change across data sets or over
time (we allow mechanisms to change in such a way that
some causal links in the structure become vanish over some
time periods or domains). We aim to develop a principled
framework to model such situations as well as practical meth-
ods, called Constraint-based causal Discovery from Nonsta-
tionary/heterogeneous Data (CD-NOD), to address the fol-
lowing questions:

• How to efficiently identify which variables have nonsta-
tionary local causal mechanisms and recover the skele-
ton of the causal structure over the observed variables?

• How to take advantage of the information carried by dis-
tribution shifts for the purpose of identifying causal di-
rection?

This paper is organized as follows. In Section 2 we de-
fine and motivate the problem in more detail and review
related work. Section 3 proposes an enhanced constraint-
based method for recovering the skeleton of the causal struc-
ture over the observed variables and identify those variables
whose generating processes are nonstationary. Section 4 de-
velops a method for determining some causal directions by
exploiting nonstationarity. It makes use of the property that
in a causal system, causal modules change independently if
there is no confounder, which can be seen as a generalization
of the invariance property of causal mechanisms. Moreover,
we show that invariance of causal mechanisms can be readily
checked by performing conditional independence test. The
above two sections together give the procedure of CD-NOD.
Section 5.1 reports experimental results tested on both syn-
thetic and real-world data sets.



2 Problem Definition and Related Work
Suppose that we are working with a set of observed variables
V = {Vi}ni=1 and the underlying causal structure over V is
represented by a DAG G. For each Vi, let PAi denote the
set of parents of Vi in G. Suppose at each time point or in
each domain, the joint probability distribution of V factorizes
according to G : P (V) =

∏n
i=1 P (Vi |PAi). We call each

P (Vi |PAi) a causal module. If there are distribution shifts
(i.e., P (V) changes over time or across domains), at least
some causal modules P (Vk |PAk), k ∈ N must change. We
call those causal modules changing causal modules. Their
changes may be due to changes of the involved functional
models, causal strengths, noise levels, etc. We assume that
those quantities that change over time or cross domains can
be written as functions of a time or domain index, and denote
byC such an index. The values ofC can be immediately seen
from the given time series or multiple data sets.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1: An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the observed
data in the asymptotic case.

If the changes in some modules are related, one can treat
the situation as if there exists some unobserved quantity (con-
founder) which influences those modules simultaneously and,
as a consequence, the conditional independence relationships
in the distribution-shifted data will be different from those
implied by the true causal structure. Therefore, standard
constraint-based algorithms such as the PC and SGS algo-
rithms [Spirtes et al., 2001] may not be able to reveal the true
causal structure. As an illustration, suppose that the observed
data were generated according to Fig. 1(a), where g(C), a
function ofC, is involved in the generating processes for both
V2 and V4; the conditional independence graph for the ob-
served data then contains spurious connections V1 − V4 and
V2−V4, as shown in Fig. 1(b), because there is only one con-
ditional independence relationship, V3 ⊥⊥ V1 |V2. Moreover,
when one fits a fixed functional causal model (e.g., the linear,
non-Gaussian model [Shimizu et al., 2006], the additive noise
model [Hoyer et al., 2009; Zhang and Hyvärinen, 2009a],
or the post-nonlinear causal model [Zhang and Chan, 2006;
Zhang and Hyvärinen, 2009b]) to distribution-shifted data,
the estimated noise may not be independent from the cause
any more. Consequently, in general the approach based on
constrained functional causal models cannot infer the correct
causal structure either.

To tackle the issue of changing causal models, one may try
to find causal models on sliding windows [Calhoun et al.,
2014] (for nonstationary data) or in different domains (for
data from multiple domains) separately, and then compare

them. Improved versions include the online changepoint de-
tection method [Adams and Mackay, 2007], the online undi-
rected graph learning [Talih and Hengartner, 2005], the lo-
cally stationary structure tracker algorithm [Kummerfeld and
Danks, 2013], and the regime aware learning algorithm to
learn a sequence of Bayesian networks (BNs) that model a
system with regime changes [Bendtsen, 2016]. Such meth-
ods may suffer from high estimation variance due to sample
scarcity, large type II errors, and a large number of statistical
tests. Some methods aim to estimate the time-varying causal
model by making use of certain types of smoothness of the
change [Huang et al., 2015], but they do not explicitly locate
the changing causal modules. Several methods aim to model
time-varying time-delayed causal relations [Xing et al., 2010;
Song et al., 2009], which can be reduced to online parameter
learning because the direction of the causal relations is given
(i.e., the past influences the future). Compared to them, learn-
ing changing instantaneous causal relations, with which we
are concerned in this paper, is generally more difficult. More-
over, most of these methods assume linear causal models,
limiting their applicability to complex problems with nonlin-
ear causal relations.

In contrast, we will develop a nonparametric and compu-
tationally efficient causal discovery procedure to discover the
causal skeleton and orientations from all data points simulta-
neously. We term this procedure Constraint-based causal Dis-
covery from Nonstationary/heterogeneous Data (CD-NOD).
By analyzing all available data, it efficiently identifies nonsta-
tionary causal modules and recovers the causal skeleton. We
will also show that distribution shifts actually contain useful
information for the purpose of determining causal directions
and develop practical algorithms accordingly.

3 CD-NOD Phase 1: Changing Causal
Module Detection and Causal Skeleton
Estimation

3.1 Assumptions
As already mentioned, we allow changes in causal mod-
ules and some of the changes to be related, which may be
explained by positing particular types of unobserved con-
founders. Intuitively, such confounders may refer to some
high-level background variables. For instance, for fMRI data,
they may be the subject’s attention or some unmeasured back-
ground stimuli; for the stock market, they may be related to
economic policies. Thus we do not assume causal sufficiency
for the set of observed variables. However, we assume that
the confounders, if any, can be written as smooth functions of
time or domain index. It follows that at each time or in each
domain, the values of these confounders are fixed. We call
this a pseudo causal sufficiency assumption.

We assume that the observed data are independently but
not identically distributed. As a consequence, in this paper
we will focus on instantaneous or contemporaneous causal
relations; the strength (or model, or even existence) of the
causal relations is allowed to change over time or across data
sets. We did not explicitly consider time-delayed causal rela-
tions and in particular did not engage autoregressive models.



However, we note that it is natural to generalize our frame-
work to incorporate time-delayed causal relations in time se-
ries, just in the way that constraint-based causal discovery
was adapted to handle time-series data (see, e.g., [Chu and
Glymour, 2008]).

Denote by {gl(C)}Ll=1 the set of such confounders (which
may be empty). We further assume that for each Vi the lo-
cal causal process for Vi can be represented by the following
structural equation model (SEM):

Vi = fi
(
PAi,gi(C), θi(C), εi

)
, (1)

where gi(C) ⊆ {gl(C)}Ll=1 denotes the set of confounders
that influence Vi (it is an empty set if there is no confounder
behind Vi and any other variable), θi(C) denotes the effective
parameters in the model that are also assumed to be functions
ofC, and εi is a disturbance term that is independent ofC and
has a non-zero variance (i.e., the model is not deterministic).
We also assume that the εi’s are mutually independent.

In this paper we treat C as a random variable, and so there
is a joint distribution over V ∪ {gl(C)}Ll=1 ∪ {θm(C)}nm=1.
We assume that this distribution is Markov and faithful to the
graph resulting from the following additions to G (which,
recall, is the causal structure over V): add {gl(C)}Ll=1 ∪
{θm(C)}nm=1 to G, and for each i, add an arrow from each
variable in gi(C) to Vi and add an arrow from θi(C) to Vi.
We refer to this augmented graph as Gaug . Obviously G is
simply the induced subgraph of Gaug over V.

3.2 Detecting Changing Modules and Recovering
Causal Skeleton

In this section we propose a method to detect variables whose
causal modules change and infer the skeleton ofG. The basic
idea is simple: we use the (observed) variable C as a sur-
rogate for the unobserved {gl(C)}Ll=1 ∪ {θm(C)}nm=1, or in
other words, we take C to capture C-specific information.1
We now show that given the assumptions in 3.1, we can apply
conditional independence tests to V∪{C} to detect variables
with changing modules and recover the skeleton of G. We
considered C as a surrogate variable (it itself is not a causal
variable, it is always available, and confounders and changing
parameters are its functions): by adding onlyC to the variable
set V, the skeleton ofG and the changing causal modules can
be estimated as if {gl(C)}Ll=1 ∪ {θm(C)}nm=1 were known.
This is achieved by Algorithm 1 and supported by Theorem
1.

The procedure given in Algorithm 1 outputs an undirected
graph, UC , that contains C as well as V. In Step 2, whether a
variable Vi has a changing module is decided by whether Vi
and C are independent conditional on some subset of other
variables. The justification for one side of this decision is triv-
ial. If Vi’s module does not change, that means P (Vi |PAi)

1Recall that C may simply be time. Thus in this paper we take
time to be a special random variable which follows a uniform distri-
bution over the considered time period, with the corresponding data
points evenly sampled at a certain sampling frequency. We realize
that this view of time will invite philosophical questions, but for the
purpose of this paper, we will set those questions aside. One can
regard this stipulation as purely a formal device without substantial
implications on time per se.

Algorithm 1 Detection of Changing Modules and Recovery
of Causal Skeleton

1. Build a complete undirected graph UC on the variable
set V ∪ {C}.

2. (Detection of changing modules) For each i, test for the
marginal and conditional independence between Vi and
C. If they are independent given a subset of {Vk | k 6=
i}, remove the edge between Vi and C in UC .

3. (Recovery of causal skeleton) For every i 6= j, test
for the marginal and conditional independence between
Vi and Vj . If they are independent given a subset of
{Vk | k 6= i, k 6= j} ∪ {C}, remove the edge between Vi
and Vj in UC .

remains the same for every value of C, and so Vi ⊥⊥ C |PAi.
Thus, if Vi andC are not independent conditional on any sub-
set of other variables, Vi’s module changes with C, which is
represented by an edge between Vi and C. Conversely, we
assume that if Vi’s module changes, which entails that Vi and
C are not independent given PAi, then Vi and C are not inde-
pendent given any other subset of V\{Vi}. If this assumption
does not hold, then we only claim to detect some (but not nec-
essarily all) variables with changing modules.

Step 3 aims to discover the skeleton of the causal struc-
ture over V. Its (asymptotic) correctness is justified by the
following theorem:

Theorem 1. Given the assumptions made in Section 3.1, for
every Vi, Vj ∈ V, Vi and Vj are not adjacent in G if and
only if they are independent conditional on some subset of
{Vk | k 6= i, k 6= j} ∪ {C}.

Basic idea of the proof. For a complete proof see [Zhang
et al., 2015]. The “only if” direction is proven by making
use of the weak union property of conditional independence
repeatedly, the fact that all gl(c) and θm(C) are determinis-
tic functions of C, some implications of the SEMs Eq. 1, the
assumptions in Section 3.1, and the properties of mutual in-
formation given in [Madiman, 2008]. The “if” direction is
shown based on the faithfulness assumption on Gaug and the
fact that {gl(C)}Ll=1 ∪ {θm(C)}nm=1 is a deterministic func-
tion of C. �

In the above procedure, it is crucial to use a general, non-
parametric conditional independence test, for how variables
depend on C is unknown and usually very nonlinear. In this
work, we use the kernel-based conditional independence test
(KCI-test [Zhang et al., 2011]) to capture the dependence on
C in a nonparametric way. By contrast, if we use, for exam-
ple, tests of vanishing partial correlations, as is widely used
in the neuroscience community, the proposed method will not
work well.

4 CD-NOD Phase 2: Nonstationarity Helps
Determine Causal Direction

We now show that using the additional variable C as a sur-
rogate not only allows us to infer the skeleton of the causal
structure, but also facilitates the determination of some causal



directions. Let us call those variables that are adjacent to C
in the output of Algorithm 1 “C-specific variables”, which
are actually the effects of nonstationary causal modules. For
each C-specific variable Vk, it is possible to determine the di-
rection of every edge incident to Vk, or in other words, it is
possible to infer PAk. Let Vl be any variable adjacent to Vk
in the output of Algorithm 1. There are two possible cases to
consider:

1. Vl is not adjacent to C. Then C − Vk − Vl forms an un-
shielded triple. For practical purposes, we can take the
direction between C and Vk as C → Vk (though we do
not claimC to be a cause in any substantial sense). Then
we can use the standard orientation rules for unshielded
triples to orient the edge between Vk and Vl [Spirtes et
al., 2001; Pearl, 2000]. There are two possible situa-
tions:
1.a If Vl and C are independent given a set of variables
excluding Vk, then the triple is a V-structure, and we
have Vk ← Vl.
1.b Otherwise, if Vl and C are independent given a set
of variables including Vk, then the triple is not a V-
structure, and we have Vk → Vl.

2. Vl is also adjacent to C. This case is more complex than
Case 1, but it is still possible to identify the causal di-
rection between Vk and Vl, based on the principle that
P (cause) and P (effect |cause) change indepen-
dently; a heuristic method is given in Section 4.2.

The procedure in Case 1 contains the methods proposed
in [Hoover, 1990; Tian and Pearl, 2001] for causal discov-
ery from changes as special cases, which may also be inter-
preted as special cases of the principle underlying the method
for Case 2: if one of P (cause) and P (effect |cause)
changes while the other remains invariant, they are clearly
independent.

4.1 Independent Changes of Causal Modules as
Generalization of Invariance

There exist methods for causal discovery from changes of
multiple data sets [Hoover, 1990; Tian and Pearl, 2001;
Peters et al., 2016] by exploiting the property of invariance
of causal mechanisms. They used linear models to represent
causal mechanism and, as a consequence, the invariance of
causal mechanisms can be assessed by checking whether the
involved parameters change across data sets or not. Actually,
Situation 1.b above provides a nonparametric way to achieve
this in light of nonparametric conditional independence test.
For any variable Vi and a set of variables S, the conditional
distribution P (Vi |S) is invariant across different values of C
if and only if

P (Vi |S, C = c1) = P (Vi |S, C = c2), ∀ c1 and c2.

This is exactly the condition under which V1 ⊥⊥ C |S. In
words, testing for invariance (or homogeneity) of the condi-
tional distribution is naturally achieved by performing con-
ditional independence test on Vi and C given the variable S,
for which there exist off-the-shelf algorithms and implemen-
tations. When S is the empty set, this reduces to the test of

marginal independence between Vi and C, or the test of ho-
mogeneity of P (Vi).

In Situation 1.a, we have the invariance of
P (cause) when the causal mechanism, represented by
P (effect |cause), changes, which is complementary
to the invariance of causal mechanisms. Naturally, both
invariance properties above are particular cases of the
principle of independent changes of causal modules un-
derlying the method for Case 2: if one of P (cause) and
P (effect |cause) changes while the other remains
invariant, they are clearly independent. Usually there is no
reason why only one of them could change, so the above
invariance properties are rather restrictive. The property of
independent changes holds in rather generic situations, e.g.,
when there is no confounder behind cause and effect,
or even when there are confounders but the confounders are
independent from C. Below we will propose an algorithm
for causal direction determination based on independent
changes.

4.2 Inference of the Causal Direction between
Variables with Changing Modules

We now develop a heuristic method to deal with Case 2 above.
For simplicity, let us start with the two-variable case: suppose
V1 and V2 are adjacent and are both adjacent to C. We aim
to identify the causal direction between them, which, without
loss of generality, we assume to be V1 → V2.

Fig. 2(a) shows the case where the involved changing pa-
rameters, θ1(C) and θ2(C) are independent, i.e., P (V 1; θ1)
and P (V 2 |V1; θ2) change independently. (We dropped the
argument C in θ1 and θ2 to simplify notations.)

V1 V2

θ1(C) θ2(C)

V1 V2

θ1(C) θ2(C)

g1(C)

(a) (b)

Figure 2: Two possible situations where V1 → V2 and both V1 and
V2 are adjacent to C. (a) θ1(C) ⊥⊥ θ2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1

and V2.

For the reverse direction, one can decompose the joint dis-
tribution of (V1, V2) according to

P (V1, V2; θ′1, θ
′
2) = P (V2; θ′2)P (V1 |V2; θ′1), (2)

where θ′1 and θ′2 are assumed to be sufficient for the corre-
sponding distribution modules P (V2) and P (V1|V2). Gener-
ally speaking, θ′1 and θ′2 are not independent, because they are
determined jointly by both θ1 and θ2. We assume that this is
the case, and identify the direction between V1 and V2 based
on this assumption.

Now we face two problems. First, how can we compare
the dependence between θ1 and θ2 and that between θ′1 and
θ′2? Second, in our nonparametric setting, we do not really
have such parameters. How can we compare the dependence
based on the given data?

The total contribution (in a way analogous to causal effect;
see [Janzing et al., 2013]) from θ′1 and θ′2 to (V1, V2) can be



measured with mutual information:

S(θ′1,θ′2)→(V1,V2)

(1)
= I

(
(θ′1, θ

′
2); (V1, V2)

)
(2)
=I((θ′1, θ

′
2);V2) + I((θ′1, θ

′
2);V1 |V2)

(3)
=I(θ′2;V2) + I(θ′1;V2 | θ′2) + I(θ′1;V1 |V2) + I(θ′2;V1 | θ′1, V2)

(4)
=I(θ′2;V2) + I(θ′1;V1 |V2) + I(θ′2;V1 | θ′1, V2)

(5)
=I(θ′2;V2) + I(θ′1;V1 |V2),

(3)
where the 2nd and 3rd equalities hold because of the chain

rule, the 4th equality because of the relation θ′1 ⊥⊥ V2 | θ′2
implied by the sufficiency of θ′2 for V2, and the 5th equality
because the sufficiency of θ′1 for P (V1 |V2; θ′1) implies θ′2 ⊥⊥
V1 | θ′1, V2.

Since θ′1 and θ′2 are dependent, their individual contri-
butions to (V1, V2) are redundant. Below we calculate the
individual contributions. The contribution from θ′2 to V2
is Sθ′2→V2

= I(θ′2;V2). The contribution from θ′1 to V1
has been derived in [Janzing et al., 2013]: Sθ′1→V1

=

E
[

log
P (V1 |V2,θ

′
1)∫

P (V1 |V2,θ̃′1)P (θ̃′1)dθ̃′1

]
, where θ̃′1 is an independent

copy of θ′1 (it has the same marginal distribution as θ′1 but
does not depend on θ′2). As a consequence, the dependence
(or redundancy) in the contributions from θ′1 and θ′2 is

∆V2→V1 = Sθ′2→V2
+ Sθ′1→V1

− S(θ′1,θ′2)→(V1,V2)

= E
[

log
P (V1 |V2)∫

P (V1 |V2, θ̃′1)P (θ̃′1)dθ̃′1

]
= E

[
log

P (V1 |V2)

Eθ̃′1P (V1 |V2, θ̃′1)

]
.

(4)

∆V2→V1
is always non-negative because it is a Kullback-

Leibler divergence. One can verify that if θ′1 ⊥⊥ θ′2, which
implies θ′1 ⊥⊥ V2, we have

∫
P (V1 |V2, θ̃′1)P (θ̃′1)dθ̃′1 =∫

P (V1 |V2, θ′1)P (θ′1 |V2)dθ′1 = P (V1 |V2), leading to
∆V2→V1

= 0. (Proving the converse is non-trivial, involv-
ing some constraint on P (V1 |V2, θ′1).)

∆V2→V1
provides a way to measure the dependence be-

tween θ′1 and θ′2. Regarding the second problem mentioned
above, since we do not have parametric models, we propose
to estimate ∆V2→V1

from the data by:

∆̂V2→V1 =
〈

log
P̄ (V1 |V2)

〈P̂ (V1 |V2)〉

〉
, (5)

where 〈·〉 denotes the sample average, P̄ (V1 |V2) is the
empirical estimate of P (V1 |V2) on all data points, and
〈P̂ (V1 |V2)〉 denotes the sample average of P̂ (V1 |V2), which
is the estimate of P (V1 |V2) at each time (or in each do-
main). In our implementation, we used kernel density esti-
mation (KDE) on all data points to estimate P̄ (V1 |V2), and
used KDE on sliding windows (or in each domain) to estimate
P̂ (V1 |V2). We take the direction for which ∆̂ is smaller to
be the causal direction.

If there is a confounder g1(C) underlying V1 and V2, as
shown in Fig. 2(b), we conjecture that the above approach still
works if the influences from g1(C) are not very strong, for
the following reason: for the correct direction, ∆̂ measures

the influence from the confounder; for the wrong direction, it
measures the influence from the confounder and the depen-
dence in the “parameters” caused by the wrong causal direc-
tion. A future line of research is to seek a more rigorous theo-
retical justification of this method. When there are more than
two variables which are connected to C and inter-connected,
we try all possible causal structures and choose the one that
minimizes the total ∆̂ value, i.e.,

∑
i:PAi 6=∅ ∆̂PAi→Vi

.

5 Experimental Results
We have applied proposed approaches to a variety of syn-
thetic and real-world data sets. We learned the causal struc-
ture by the enhanced constraint-based method (Algorithm 1),
and compared it with the SGS algorithm [Spirtes et al., 2001],
a constraint-based causal discovery method; for both, we used
kernel-based conditional independence test (KCI) [Zhang et
al., 2011] with SGS search [Spirtes et al., 1993]. Further-
more, we applied the approaches proposed in Section 4 for
further causal direction determination.

5.1 Simulations
A Toy Example We generated synthetic data according to
the SEMs specified in Fig. 3. More specifically, the noise
variance of V1, and the causal modules of V4, V5 and V6 are
time varying, governed by a sinusoid function of t; for V1
and V4, the time-varying component a(t) is multiplicative,
and for V5 and V6, theirs are additive. We tried different pe-
riods (w = 5, 10, 20, 30) on the time-varying component a,
as well as different sample sizes (N = 600, 1000). The fixed
causal mechanisms {fi}6i=2 and g4 are randomly chosen from
sinusoid functions, polynomial functions, or hyperbolic tan-
gent functions of Vi’s directed causes, and we set w′ = 200
to ensure the independence between a and b. In each set-
ting, we ran 50 trials. We tested the generated data with pro-
posed enhanced constraint-based method (Algorithm 1, set C
to be the time information) and the original constraint-based
method. Furthermore, we determined the causal directions by
both approaches proposed in Section 4.



V1 = a(t) · E1,

V2 = f2(V1) + E2,

V3 = f3(V1) + E3,

V4 = a(t) · f4(V2, V3) + g4(V2, V3) + E4,

V5 = 0.6a(t) + f5(V3) + E5,

V6 = b(t) + f6(V2, V5) + E6,

E1 ∼ U(−0.75, 0.75)

E2 ∼ U(−0.5, 0.5)

E3 ∼ U(−0.5, 0.5)

E4 ∼ U(−0.25, 0.25)

E5 ∼ U(−0.25, 0.25)

E6 ∼ U(−0.5, 0.5)

with a(t) = sin(w·t
N

), and b(t) = sin(w
′·t
N

), t ∈ {1, · · · , N}

Figure 3: The SEMs according to which we generated the simulated
data. The noise variance to V1, and the causal modules of V4 and V5

are time- varying, governed by a; the causal module of V6 are time-
varying, governed by b. We tried different periods w, and different
sample sizes N .

Fig. 4 shows the False Positive (FP) rate and the False
Negative (FN) rate of the discovered causal skeletons with
significance level 0.05. It is obvious that compared to the
original method, our method effectively reduces the number
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Figure 4: The estimated FP rate and FN rate with w =
{5, 10, 20, 30} and N = {600, 1000} by both our enhanced
constraint-based method and the original SGS method.

of spurious edges (represented by FP rate) due to the nonsta-
tionarity; specifically, the spurious edges V1−V4, V1−V5 and
V4−V5. With the enhanced one, the FN rate only has a slight
increase at a small sample size, and keeps the same when N
is large. As w increases, both FP and FN stay stable, with a
little bit variation; as N increases, the FN rates are reduced
with both methods. In addition, with the enhanced constraint-
based method we identified those variables, V1, V4, V5 and
V6, which have nonstationary causal modules. Furthermore,
we successfully identified causal directions by the procedure
given in Section 4; specifically, V5 → V6 is identified by the
criterion in Section 4.2 with 93.2% accuracy, since a and b
change independently, and other causal directions are deter-
mined by the procedure given in Case 1. In this simulation,
the whole causal DAG is correctly identified. However, with
the original method, we only identified two causal directions:
5 → 6 and 2 → 6, and there are spurious edges V1 − V4,
V1 − V5 and V4 − V5.

5.2 Real Data
fMRI Hippocampus This fMRI Hippocampus dataset [Pol-
drack and Laumann, 2015] contains signals from six separate
brain regions: perirhinal cortex (PRC), parahippocampal cor-
tex (PHC), entorhinal cortex (ERC), subiculum (Sub), CA1,
and CA3/Dentate Gyrus (CA3) in the resting states on the
same person in 64 successive days. We are interested in in-
vestigating causal connections between these six regions in
the resting states. We used the anatomical connections, for
which see [Chris and Neil, 2008], because in theory a direct
causal connection between two areas should not exist if there
is no anatomical connection between them.

We applied our enhanced constraint-based method on 10
successive days separately, with time information T as an ad-
ditional variable in the system. We assumed that the underly-
ing causal graph is acyclic, although the anatomical structure
gives cycles. We found that our method effectively reduces
the FP rate, from 62.9% to 17.1%, compared to the original
constraint-based method with SGS search and KCI-test. Here
we regard those connections that do not exist in the anatom-
ical structure as spurious; however, with the lack of ground
truth, we are not able to compare the FN rate. We found
that the causal structure varies across days, but the connec-
tions between CA1 and CA3, and between CA1 and SUB are
robust, which coincides with the current findings in neuro-
science [Song et al., 2015]. In addition, on most data sets the

causal graphs we derived are acyclic, which validates the use
of constraint-based method. Furthermore, we applied the pro-
cedure in Section 4 to infer causal direction. We successfully
recovered the following causal directions: CA3 → CA1,
CA1 → Sub, Sub → ERC, ERC → CA1 and PRC → ERC,
and the accuracy of direction determination is 85.7%.

Breast Tumor Dataset The breast tumor dataset is from the
UCI Machine Learning Depository [Blake and Merz, 1998].
It contains subjects with benign tumor and malignant tumor,
569 subjects each. Ten real-valued features are computed for
each cell nucleus, and each feature has three measures: the
mean, standard error (SE), and largest value, resulting in 30
features in total. We concatenated the data from benign and
malignant subjects and set the additional variable C to be the
indicator of the disease (1 for “benign”, and 2 for “malig-
nant”). With our enhanced constraint-based method, we iden-
tified the causal connections between features, and we found
that only 11 features are directly affected by the tumor type;
the 11 features are mean radius, SE of radius, mean perime-
ter, SE of concave points, worst symmetry, SE of symmetry,
worst radius, worst area, mean symmetry, SE of fractal di-
mension, and mean texture. We then identified the causal ori-
entations between a set of features. Moreover, the features ad-
jacent to C produced the best classification performance: we
trained SVM with these 11 features, subsets of these 11 fea-
tures, random subsets of all features, and all 30 features, and
used 10-fold cross-validation (CV) error to assess the classifi-
cation accuracy. These 11 features give the CV error 0.0246,
while the 3 features used in [Street et al., 1993] give 0.0791,
and the whole 30 features give 0.0264.

6 Conclusion and Discussions
We have proposed CD-NOD, a framework for causal dis-
covery from nonstationary/heterogeneous data, where causal
modules may change over time or across data sets. We as-
sume a pseudo causal sufficiency condition, which states that
all confounders can be written as smooth functions of time
or the domain index. CD-NOD consists of (1) an enhanced
constraint-based method for locating variables with chang-
ing generating mechanisms and estimating the skeleton of the
causal structure, and (2) a method for causal direction deter-
mination that takes advantage of changing distributions.

In future work, we aim to answer the following questions.
1. What if the causal direction also changes? Can we develop
a general approach to detect all causal direction changes?
2. To fully determine the causal structure, one might need
to combine the proposed framework with other approaches,
such as those based on restricted functional causal models.
How can this be efficiently accomplished? 3. The issue of
distribution shift may decrease the power of statistical (condi-
tional) independence tests. How can we alleviate this effect?
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