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1. Implementation Details

Func. I and 3 choose local transformations that decrease
the cost optimally. Our implementation computes cost differ-
ences incrementally, as proposed by Kernighan and Lin [8].
The exact computations are described below.

Transforming the Labeling. Func. 1 repeatedly chooses
a node % and a label [ such that labeling 0 with [ decreases
the cost maximally. I.e., Func. 1 repeatedly solves the opti-
mization problem
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While o(zt,y#*) is constant, it is more efficient to mini-
mize the difference (27w (M) ytt) — p(2*, y#t) than to
minimize p(zTvt(A) yit) as the difference can be com-
puted locally, considering only the neighbors w of v in G':
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Initially, i.e., for t = 0, we compute A ,; for every node v
and every label [. In subsequent iterations, i.e., fort € N
and the minimizer (¢,[) of (1) chosen in this iteration, we
update cost differences for all neighbors w of ¥ in G’ and

all labels [ € L. The update rule is written below for an
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edge (w,¥) € A. The update for an edge in the opposite
direction is analogous. Below, (3) subtracts the costs due to
¥ being labeled \;(0) (which is possibly outdated), while (4)
adds the costs due to ¥ having obtained a new and possibly
different label .
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We solve (1) by means of a priority queue in time com-
plexity O(|V|log|V| + |VI|(|L] + log|V|) deg G') with
deg G’ the node degree of G’. For sparse graphs and constant
number |L| of labels, this is O(|V|log |V]).

Transformation of Labeling and Decomposition. The
algorithm KL;j of [9] for the minimum cost lifted multicut
problem generalizes the Kernighan-Lin-Algorithm [8] for
the minimum cost multicut problem. The algorithms KLj/r
and KLj+r we define further generalize KL;j to the NL-LMP.
The critical part is Func. 3 that solves the optimization prob-
lem
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Let us consider w.l.o.g. two sets of vertices A and B repre-

senting two neighboring components of the graph G. Then
we compute Vv € AU B,VI € L:
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where w € Ng/(v). In eq. (7) the first two cases are exactly
the same as given in [8] for the edges between partitions A
and B. But in our case changing vertex’s class label may
affect the cut costs of edges between A and B and any other
partition. Also, we have join and cut costs.

Let us assume w.l.o.g. that vertex v was chosen to be
moved from set A to set B,i.e. A= A\ {0}. Now we can
update the expected gains of Yw € Ng/(9),Vl € L:
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After that B = B U {0}. In the above equations, the ex-
pression in parenthesis cancels the current contribution for
vertex w, that assumed ¢ was labeled A\;(v) and belonged
to partition A. For the case when |L| = 1 and ¢” = ¢ the
above equations simplify to exactly the ones as in [8], but
multiplied by 2, because in our objective we have two terms
that operate on the edges simultaneously.

As we generalize [9] by an additional loop over the set
L of labels, the analysis of the time complexity carries over
from [9] with an additional multiplicative factor |L|.

2. Articulated Human Body Pose Estimation

2.1. Problem Statement

Pishchulin et al. [12] introduce a binary cubic problem
w.r.t. a set C' of body joint classes and a set D of putative
detections of body joints. Every feasible solution is a pair

(v,y) withz : D x C — {0,1} and y : (}) — {0,1},
constrained by the following system of linear inequalities:
vd € DVed € (g) Y Xge + g <1 (10)
vdd' € (5): yaw < Tac
ceC
Yddr < Z Tare (11)
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|V| Alg. Head Sho Elb Wri Hip Knee Ank AP

[7] 849 792 664 523 655 592 512 655

E KLjr 87.1 80.0 66.8 53.6 66.1 60.0 51.8 66.5

KLj*r 86.8 80.2 67.5 535 663 603 51.9 66.6
S KLir 902 852 715 595 713 63.1 53.1 70.6
<  KLjxr 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Table 1: Comparison of B&C [7], KLj/r and KLj*r in an
application to the task of articulated human body pose esti-
mation.

The objective function has the form below with coefficients
« and B.
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We identify the solutions of this problem with the solu-
tions of the NL-LMP w.r.t. the complete graphs G = G’ =

(D, (g)), the label set L = C' U {6} and the costs C76 =0
and
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Note that in [12], yg4 = 1 indicates a join. In our NL-LMP,
y4ar = 1 indicates a cut.

2.2. Further Results

Quantitative results for each body joint are shown in
Tab. 1. Qualitative results for the MPII Human Pose dataset
are shown in Fig. 1.

3. Instance-Separating Semantic Segmentation

We tackle the problem of instance-separating seman-
tic segmentation by adapting the approach of Uhrig et
al. [15]. They propose three complementary representations,
which are learned jointly by a fully convolutional network
(FCN) [1 1], that facilitate the problem of separating individ-
ual objects: Semantics, depth, and directions towards object
centers. To extract object instances, a template matching
approach was proposed, followed by a proposal fusion.

Instead of template matching and clustering, we rely on
a generic graphical formulation of the problem using only
the three predicted output scores from the network of Uhrig
et al. [15], together with a suitable formulation of unary ¢



Figure 1: Pose estimation results on the MPII Human Pose dataset.

and pairwise terms ¢~ and ¢™. As there might be up to two
million nodes for a direct mapping of pixel scores to the
graph, we report performance on different down-sampled
versions to reduce overall computation time and reduce the
impact of noise in high resolutions. Results on KITTI were
achieved on half of the input resolution, for Cityscapes we
down-sample the FCN scores by a factor of eight before the
graph optimization.

3.1. Cut Costs Details

To define cut costs between connected pixels in the graph,
we use an equally weighted sum of the three following com-
ponents:

The probability of fusing two pixels v and w of different
semantic classes is 1 — p(A(v) = a, A(w) = b), the proba-
bility of confusing label class a and b, which was computed
from the training set.



Figure 2: Instance center directions with color coding
from [15]. Near object centers, directions point towards
each other (center consistency). Within colored regions, di-
rections have similar angles (angular consistency). Along
object borders, directions are inconsistent in both ways.

To incorporate the depth and center direction channels,
we neither use scores nor argmax predictions directly. In-
stead, we weight the predicted softmax scores for all non-
background classes with their corresponding class to recover
a continuous center direction and depth map. As objects
at different depth values should be separated, we generate
higher cut probabilities for those pixels. From training data,
we found the probability of splitting two neighboring pixels
to be one when the predicted depth values differ by more
than 1.6 units.

If center directions have opposite orientations, there
should be a high probability for splitting the two pixels.
However, opposite directions also appear at the center of
an object. Therefore, we define the cut probability as the
minimum of an angular inconsistency, which punishes two
pixels that point at different directions, as well as a center
inconsistency, which punishes if two pixels do not point at
each other, c.f. Fig. 2. This induces high cut probabilities
at the borders of objects, as directions of pixels should have
opposite center direction. The probability of splitting two
neighbors due to direction inconsistency was found to be
one at 90 degrees.

3.2. Dataset Specifics

For the KITTI dataset [2, 5], the only pixel-level anno-
tated object class is car. For Cityscapes [4] however, there
are 8 different object classes (person, rider, car, truck, bus,
train, motorcycle, bicycle), together with 11 background
classes versus 1 background class for KITTI. We found that
the network model used by Uhrig et al. [15] performs close
to optimum for semantic labeling on KITTI data, however
has some flaws on Cityscapes.

Therefore we chose a more sophisticated network struc-
ture, which performs much better on the many different
classes on Cityscapes. We use a ResNet [6] with dilated
convolutions [3] for cut costs ¢, namely the unary terms con-
sisting of scores for the problem of semantic labeling, which
was trained independently on the Cityscapes dataset [4].

To obtain the unaries for Cityscapes, we use a slightly
modified ResNet-50 network. We introduce dilated convolu-
tions in the conv4 _x and conv5_x layers to increase the output
resolution from !/32 to 1/s of the input resolution. We then
remove the final average pooling layer and for classification
use a convolutional layer with 5 x 5 dilated kernels with a
dilation size of 12. This is identical to the best performing
basic ResNet-50 variant reported in ([16], Table 1).

Due to GPU memory constraints, we train with 512px x
768px crops randomly sampled from the full-resolution train-
ing set images. We apply minimal data augmentation, i.e.
random horizontal flips, and train with a batch size of 5. We
train the network for 60000 iterations using the Adam solver
with an initial learning rate of 0.000025, weight decay of
0.0005 and momentum of 0.9. We use the “’poly” learning
rate policy to gradually reduce the learning rate during train-
ing with the power parameter set to 0.9, which as reported
in both [10] and [ 1] yields better results than the commonly
used “’step” reduction policy.

At test-time we apply the network to overlapping
1024px x 768px crops of the full-resolution test set images
and stitch the results to obtain the final predictions.

For KITTI however, we stick with the original semantic
scores. The only adaptation for our definition of the semantic
cut costs ¢ is an additional weighting of the semantic scores:
As depth and center directions are only estimated for objects,
all three channels contain knowledge of the objectness of a
certain pixel. We therefore use the semantic scores weighted
by the depth and direction scores for objects as unaries. This
increases robustness of the semantics as all three channels
must agree to achieve high scores.

3.3. Post Processing

Using the unary and pairwise terms defined above, we
solve the graph for labels and components with our proposed
algorithms KLj/r and KLj#r. As the center direction repre-
sentation inherently cannot handle cases of full occlusions,
e.g. if a bicycle is split into two connected components by
a pedestrian in front of it, we apply a similar component
fusion technique as proposed in [15]: We accumulate di-
rection predictions within each component and fuse it with
another suitable component when direction predictions are
clearly overshooting into a certain direction. We compare
performance of the raw graph output as well as the fused
instances in Tab. 2 (top).

3.4. Detailed Results

As there are different metrics used by related approaches,
we report performance on the Cityscapes [4] and KITTI [2,
] dataset using both proposed metrics. The instance score
required for the evaluation on Cityscapes was chosen as the
size of the instance in pixels multiplied by its mean depth
- this score achieved slightly better results compared to a



Dataset AP AP59%

KITTIval 43.0 72.5
KITTIval 43.5 72.6
KITTIval 50.5 82.9
KITTIval 50.3 824

KITTItest 41.6 69.1
KITTItest 43.6 71.4

Algorithm

Ours KLj/r (raw)
Ours KLj#r (raw)
Ours KLj/r (fused)
Ours KLj#r (fused)

Pixel Encoding [15]
Ours KLj#r (fused)

Table 2: Comparison of algorithms for instance segmentation
on the KITTI [2] datasets using the mean average precision
metrics introduced in [4].

Alg. IoU AvgFP AvgFEN InsPr InsRe InsFl
[18] 77.4 0479 0.840 489 43.8 46.2
[1717 77.0 0375 1139 653 50.0 56.6
[15] 8&4.1 0.201 0.159 86.3 741 79.7
[13] 87.4 0.118 0.278 - - -

Ours 839 0.555 0.111 69.2 76.5 727

Table 3: Comparison of algorithms for instance segmentation
on the KITTI test dataset [2] using metrics proposed in [17].
Ours describes the performance of our KLj*r variant.

constant score.

For KITTI, we outperform all existing approaches us-
ing the Cityscapes metric (without adapting the semantic
scores of Uhrig et al. [15]), which averages precision and
recall performance for multiple overlaps, c.f. Tab. 2 (bottom).
We evaluate the performance using KLj/r or KLj+r and raw
graph output (raw) or the post-processed results using above
described fusion (fused) in Tab. 2 (top). Using the KITTI
metrics, we perform among the best results while having a
slight preference of Recall over Precision, c.f. Tab. 3.

For Cityscapes, we report evaluation metrics using both
the raw scores of Uhrig et al. [15] as well as our final
proposed model using the semantic scores of a ResNet [0]
together with the center direction and depth scores of Uhrig
et al. [15], c¢.f. Tab. 5 (top). Using our adapted ResNet
version, we outperform the currently published state-of-the
art, c.f. Tab. 5 (bottom). Note that we report significantly
better performance for the large vehicle classes truck, bus,
and trains despite starting from the same FCN output, c.f.
Tab. 4. This comes from incorporating confusion probabili-
ties between unreliable classes as well as optimizing jointly
for semantics and instances.

3.5. Qualitative Results

See Fig. 3 for some qualitative results for our instance-
separating semantic segmentation on the Cityscapes valida-
tion dataset [4]. It can be seen that we perform equally well
for large and small objects, we only tend to fuse pedestrians
too often, which explains the worse performance on pedes-
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[4] 56 3.9 26.0 13.8 26.3 158 8.6 3.1

[15] 31.8 33.8 37.8 7.6 12.0 85 205 17.2
Ours 18.4 29.5 38.3 16.1 21.5 24.5 21.4 16.0

Table 4: Comparison of performance on Cityscapes test
. . . . (&7

using the mean average precision metric AP°% [4]. Ours

describes the performance of our KLj*r (ResNet) variant.

Algorithm Dataset AP  AP°%

Pixel Encoding [15] CSval 99 225
Ours ([15] scores) CSval 94 22.1
Ours KLj/r (ResNet) CSval 11.3 26.8
Ours KLj#r (ResNet) CSval 11.4 26.1

MCG+R-CNN [4] CStest 4.6 12.9
Pixel Encoding [15] CStest 89 21.1
Ours KLj+r (ResNet) CStest 9.8 23.2

Table 5: Comparison of algorithms for instance segmentation
on the Cityscapes (CS) dataset [4] using the mean average
precision metrics introduced in [4].

trians - c.f. the mother with her child on the right in the
last row of Fig. 3. Also, the impact of the proposed post-
processing based on the fusion algorithm proposed by Uhrig
et al. [15] can be seen clearly: Due to noisy predictions, the
raw graph output is often highly over-segmented. However,
after applying the fusion step, most objects are correctly
fused.

3.6. Outlook

The reason for the varying performance for objects of
different semantic classes certainly comes from their very
different typical forms, which we do not incorporate in our
general approach. Uhrig et al. [15] use different aspect
ratios for their sliding object templates to cope for these
changes. In future work, we would like to combine multiple
graphs for different semantic classes to boost individual class
performance. Also, the predicted FCN representation and
scores will be adjusted for better suiting the requirements of
our graph optimization.

4. Multiple Object Tracking

4.1. Problem Statement

Tang et al. [14] introduce a binary linear program w.r.t. a
graph G = (V, E') whose nodes are candidate detections of
humans visible in an image. Every feasible solution is a pair
(z,y) withz € {0,1}V and y € {0, 1}, constrained such
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Figure 3: Visualization of our predictions on the Cityscapes validation dataset [4], where we can compare with corresponding

ground truth (GT) and show respective RGB images.

that
V{v,w} EE: Youw < Ty (16)
Yow < Tu (17)
VC € cycles(G)Ve € C: 1—y. < Y (1—yp) (18)
rec\{e}

The objective function has the form below with coefficients
« and 3.
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We identify the solutions of this problem with the solu-
tions of the NL-LMP w.r.t. the graphs G’ = G, the label set

L = {¢,1} and the costs ¢* = 0 and
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Note that in [14], y44» = 1 indicates a join. In our NL-LMP,
yqqr = 1 indicates a cut.

4.2. Further Results

A complete evaluation of our experimental results in
terms of the Multiple Object Tracking Challenge 2016 can
be found at http://motchallenge.net/tracker/
NLLMPa.


http://motchallenge.net/tracker/NLLMPa
http://motchallenge.net/tracker/NLLMPa
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