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Abstract— Dual control, the simultaneous identification and
control of dynamic systems, is an idea that has been around
for several decades without being widely used in applications,
due to the fundamental intractability of the optimal solution.
Available algorithms are either complex and computationally
demanding, or reduce to a simple change of the cost function,
which can lead to poor average performance. In addition, classic
dual control schemes do not deal with constraints and economic
cost structures present in many applications. In this paper, we
aim at facilitating the use of dual control algorithms based on
a series expansion of the cost function for such systems. In
particular, this is realized by employing reference tracking of
the optimal mean trajectory together with soft constraints. A
key feature of the proposed formulation is that it maintains the
value of information in the cost, making dual control tractable
with all dual features. Evaluation on a simulated building
control problem exhibits an advantage of using the proposed
dual controller over simplified solutions.

I. INTRODUCTION

DUAL CONTROL addresses the goal of solving the well-
known exploration-exploitation trade-off optimally. The term
was coined by [1], who noted that dual control can be seen as
optimal control of not only the physical states of the system,
but also of the parameters of the underlying dynamics model.
See e.g., [2], [3] for an overview. It was realized early that this
kind of problem is intractable [4], except for a few comparably
simple systems, e.g., [5]. Approximate dual control methods
have therefore been developed, as well as simpler alternatives
based on re-formulations of state and control costs.

Many approximate methods are, however, computationally
expensive or too simple to retain all features of dual control:
caution, the downscaling of control signals when facing high
uncertainty; exploration, the excitation of the system when
cautious control does not learn fast enough; and the value of
information, the selective exploration of system parameters
that are important for future performance of the system [6].

An approximation derived by [7], [8] is conceptually
close to optimal dual control and retains all three of the
aforementioned features of dual control. In its classic form,
however, this framework is not able to address aspects
central to many modern control problems: nonlinear dynamics,
constraints, and non-quadratic cost functions. The framework
was recently extended to nonlinear systems [9]; the present
work additionally addresses systems with constraints and non-
quadratic cost functions. Dual control is particularly beneficial
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38, 72076 Tübingen, Germany {eklenske, bs, phennig}
@tue.mpg.de

2Melanie N. Zeilinger is with the ETH Zürich, Sonneggstrasse 3, 8092
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for systems with economic (linear) cost, since it can exploit
time-varying cost structures to optimally identify the latent
parameters of dynamical systems.

A problem of this type that has raised significant attention
in recent years is building climate control, due to its
potential impact on the world-wide energy consumption: A
large amount of the globally consumed energy is used for
buildings [10]. This has sparked recent interest in model
predictive control (MPC) for buildings [11], [12], [13], [14],
leveraging predictions of the model as well as external error
sources, such as weather conditions and occupancy. These
techniques require a sufficiently accurate system model. As
the parameters of the model generally vary with the building
and potentially with time, parameter identification has to be
performed individually for each building during operation,
which can be expensive.

Adaptive controllers offer the potential to obtain accurate
models for a low energy footprint over the whole lifetime
of the building. While passively learning adaptive control
systems [15] can only learn by evaluating past measurements,
dual controllers [16] can enhance the learning procedure by
also reasoning about the effect of current actions on the
control performance of the future. This way, dual control
can make use of certain parts of the problem structure to
identify the model more efficiently than purely passive control
systems. For example, a dual controller can learn at times
where the energy cost or demand is low (making use of
real-time-pricing or day/night tariffs) to obtain more precise
control at times of high control cost.

Dual control has regained attention over the past few years,
not only in combination with MPC [17], but also in the use
for building control [18]. In many dual control approaches
exploration bonuses are used and added to the control cost.
Other methods include constraining the minimal information
gain [19], [20] and persistent excitation [21], [22]. In this
work, we focus on maintaining the value of information
explicitly, which cannot be expressed through exploration
bonuses or excitation signals, but which is one of the key
benefits of a dual controller.

After introducing the problem setting and approximate
dual control based on series-expansion of the cost (Sec. II),
we provide a procedure for using the method for economic
cost and constrained systems using hierarchical tracking
MPC and soft constraints (Sec. III). We apply the proposed
technique to a simple building control problem and analyze
the performance with respect to purely passively learning
methods as well as simplistic dual control (Sec. IV).



II. PRELIMINARIES

A. Problem setting

We consider the continuous-time system

ẋ(t) = f(x(t), u(t), w(t)) + v(t), (1)

with state x ∈ Rnx , input u ∈ Rnu , disturbance w ∈ Rnw

and white noise v ∈ Rnx . We assume that the dynamics f are
not known, but can be described up to Gaussian uncertainty
by a general linear model with linear and nonlinear features
φ, and an unknown matrix M of appropriate size:

ẋ(t) = Mφ(x(t), u(t), w(t)) + v(t). (2)

The linear part of the system can be discretized in
numerous ways, but for maximal accuracy while retaining
the possibility to directly calculate the Jacobian w.r.t. the
parameters, we use element-wise zero-order-hold linearization:
Each state dynamics is discretized as scalar differential
equation, considering the other states as inputs. Using this
method, we arrive at the discretized system

xk+1 = Akxk +Bkuk +Dkwk +Mkφ
n(xk, uk, wk) + ξk,

(3)
with time index k, matrices Ak, Bk, Dk of appropriate sizes
and Gaussian disturbance ξk ∼ N (0,Ξ). The matrix Mk is
the result of a first-order Euler forward exponential integrator
[23] of the nonlinear features φn. For simplicity of notation,
we subsume the non-zero elements of matrices Ak, Bk, Dk

and Mk into a parameter vector θk. The system is subject to
possibly time-varying state and input constraints xk ∈ Xk and
uk ∈ Uk, where Xk ⊂ Rnx and Uk ⊂ Rnu are polytopes.

B. Approximate Dual Control

Dual control can be seen as a variant of adaptive control,
where uncertain dynamics are identified and the belief about
the dynamics is updated during runtime. For parametric
settings, this means that the parameters of the dynamics
are defined by a probability distribution.

In practice, a common procedure is to apply certainty
equivalence (CE) control, using the current mean estimate of
the parameters to compute the controller [24]. This approach
can, however, lead to failure in cases of high uncertainty,
which often occur in the beginning or after parameter changes.
One approach to incorporate the uncertainty is stochastic
optimal control [25], where the uncertain parameters are
marginalized out while calculating the optimal controller.
This leads to smaller control signals under higher uncertainty
(“caution”), but it can also result in the so-called “turn-off
phenomenon” [26] in the face of large uncertainties: The
control is scaled down to zero, and, as a result, the system
never acts or learns.

The—theoretically ideal, but intractable—way to deal
with simultaneous identification and control is dual control:
When the learning as response to current actions is taken
into account, the turn-off characteristic vanishes in favor
of explorative behavior1 [1]. Because this is fundamentally

1This feature is sometimes also called “investigation” or “probing” in the
dual control literature.

intractable for general problems [4], tractable approximations
have been developed. While many approximations only mimic
some features of dual control (caution and exploration, e.g.,
[17], [18]), some methods build approximations of the cost
structure of dual control (e.g., [8]), in order to take into
account future belief updates.

The key observation in dual control is that both the
states x and the parameters θ are subject to uncertainty
and can therefore be subsumed in an augmented state
z>k =

(
x>k θ>k

)
∈ Rnx+np [1], [27], [28]. The uncertainty

of states and parameters can then be dealt with in the form
of a joint probability density p(z) = N (z, µ,Σ). In this
framework, the dual control problem reduces to optimal
stochastic control of the augmented system. It is important
to note that we assume the parameters to be deterministic,
but unknown; this is modeled by defining a prior distribution
over the parameters p(θ0) ∼ N (µθ0,Σ

θθ
0 ) and deterministic

parameter dynamics p(θk+1|θk) = δ(θk+1 − θk), where δ is
the Dirac delta distribution.

The optimal controller minimizing the expected cost over
a finite horizon is defined by Bellman’s equation

Jk(xk) = Ezk
[
`k(xk, uk) + Exk+1

[Jk+1(xk+1)]
]
, (4)

which can be solved using dynamic programming [29], [30].
In this formulation, all past knowledge is incorporated into
the belief over zk. The cost at each stage `k depends on
both states xk and inputs uk except for the last stage of the
horizon, N , where it only depends on the state xN . The final
element of the cost is defined as

JN (xN ) = ExN
[`N (xN )] . (5)

The optimal controller minimizing this cost will be denoted
u∗k, with associated cost

J∗k (xk) = min
uk

Ezk
[
`k(xk, uk) + Exk+1

[
J∗k+1(xk+1)

]]
.

(6)
This recursive formulation amounts to alternating minimiza-
tion and expectation steps. As uk influences both xk+1 and
the belief θk+1, it enters the latter expectation nonlinearly,
resulting in the loss of the closed-form solution. The alterna-
tive, i.e. optimizing the control inputs uk · · ·uN−1 jointly, is
usually impractical due to the curse of dimensionality.

The basic idea of one class of approximate dual control
[7], [8] is to use a second-order approximation of the
nonlinear expected cost-to-go in combination with a nonlinear
optimization scheme. The algorithm is outlined in the flow-
chart in Fig. 1. The optimization at each time step is initialized
with the CE solution as starting point for the nonlinear
optimization. In an inner loop, the gradient-free optimization
algorithm evaluates the approximated cost function at different
locations uk. The optimization loop runs until convergence
or until a number of function evaluations is reached.

The evaluation of the cost approximation is divided in
three conceptual steps:

¬ With the given uk, a one-step prediction is performed.
 From the predicted next state xk+1, a CE trajectory is

computed, including state and parameter covariances.
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Fig. 1. Flow-chart of the approximate dual control algorithm to show
the overall structure. Adapted from [8]. The left cycle is the inner loop,
performing the nonlinear optimization.

® The second-order approximation of the cost-to-go is
evaluated, using the covariances along the trajectory.

For each evaluation of the cost function, ¬-® are computed to
obtain the cost-to-go. More details on the cost approximation
will be provided in the next section. Details of the overall
method can be found in the original papers [7], [8] or in the
recent nonlinear adaptation [9].

The main purpose of this algorithm is to reduce the highly
nonlinear optimization algorithm in multiple dimensions
(control inputs over the horizon) to nonlinear optimization
of only the first control input, by approximating the cost-to
go, in an iterative fashion. While retaining the possibility to
explore, this approach alleviates the curse of dimensionality.
This procedure also circumvents the difficulty of a receding
horizon approach in the dual control setting as noted in [22]:
If the excitation is planned for future time steps, in closed-
loop the excitation may be delayed at every time instance,
leading to non-explorative behavior. Forcing the excitation to
occur in the first step only, this problem cannot arise.

C. The Value of Information

The value of information refers to the fact that not all
parameters of an uncertain model are equally important.
If a certain parameter is important for the future control
performance, it can be beneficial to identify this parameter
and it might pay off to invest some energy in its identification.
If a parameter does not have an important impact on the future
cost, its identification can be neglected.

The second-order approximation ® defines a quadratic
reference tracking problem based on the CE trajectory.
The solution can be obtained with dynamic programming,
projecting onto a quadratic form at every time step. This
results in an approximation of the cost-to-go of the form [8]

J∗k (xk+1) =
1

2
[(xk+1 − xref

k+1)>Kxx
k+1(xk+1 − xref

k+1)]

+
1

2
tr

N−1∑
j=k

{
Qj+1Σxxj+1 +

[
Σj+1|j − Σj+1

]
Kj+1

}
, (7)

where ·xx defines the submatrix belonging to the state x from
a matrix that is defined for the augmented state z. Kj is
defined by the recursive Riccati equation

Kj = Ā>j Kj+1Āj

−Kj+1B̄j
(
B̄>j Kj+1B̄j +Rj

)−1
B̄>j Kj+1Āj +Qj (8a)

KN = QN , (8b)

where the Jacobian Āj and the input response B̄j are
calculated for the augmented system. The future beliefs Σj
along the trajectory are generated with an extended Kalman
filter (EKF) [31], where Σj+1|j denotes the EKF prediction
before the subsequent update.

While the first component of Eq. (7) is the usual de-
terministic cost, the trace term adds a cost that results
from the uncertainty. The term Qj+1Σxxj+1 represents the
cost of the state uncertainty in future time steps. Since the
source of this uncertainty is mostly control actions with
uncertain outcome (such as an unknown gain), this term
results in cautious behavior of the control system. The final
term

[
Σj+1|j − Σj+1

]
Kj+1 is the most interesting part,

as it represents an approximate measure for the value of
information: It introduces a cost that weighs the covariance
update

[
Σj+1|j − Σj+1

]
by the projected cost matrix Kj+1.

This results in high cost for important parameters (indicated
by large values in Kj+1) that are learned during the process
(indicated by large values in the covariance update). If the
parameters are either unimportant, precisely known or cannot
be learned, this additional cost term vanishes.

III. APPROXIMATE DUAL CONTROL WITH
NON-QUADRATIC COST AND CONSTRAINTS

Classic approximate dual control algorithms were posed
in the LQG setting, assuming linear dynamics, quadratic cost
and Gaussian noise. In this setting, the optimal CE trajectory
and the subsequent perturbation control can be obtained with
dynamic programming, because there is a recursive solution
for the optimal controller at each time step.

Many control problems where dual control may have an
important impact involve economic costs. An example is the
considered application to building control, where the cost is
linear (energy prices) and the inputs and states are constrained
(bounds on the temperature, heating/cooling limits). In this
setting, dynamic programming is computationally expensive,
since there is no simple recursive solution to obtain a second-
order approximation to the cost.

In order to deal with more general cost structures and con-
straints, we therefore propose to use a common hierarchical
tracking scheme: 1) An economic reference satisfying the
constraints is computed using the CE system and standard
MPC techniques; 2) The reference is tracked using a dual
controller, where state constraints are considered in the form
of soft constraints. The details of this scheme are outlined in
the following sections.



A. Economic Reference

The economic reference for the controller is generated by
solving a discrete-time MPC problem for the CE system.

(xref,uref) := arg min
x,u

N−1∑
n=0

`n(xn, un) (9a)

s.t. x0 = xk (9b)
xn+1 = Anxn +Bnun +Dnwn +Mdφ(xn, un, wn)

(9c)
xn ∈ Xn (9d)
un ∈ Un (9e)

This nonlinear MPC problem is solved with standard algo-
rithms, depending on the problem structure, e.g., sequential
linear programming [32].

B. Soft Constraints and Uncertainty

Assuming Gaussian uncertainty, hard constraint satisfaction
cannot be guaranteed when using the approximate dual control
scheme in Sec. II-B. In order to capture the state constraints
when tracking the reference, we introduce soft constraints.
For constraints of the form Xk := {xk |Pkxk ≤ pk}, these
take the form

εk(xk) = max(Pkxk − pk,0), (10a)

`ck(xk) = εk(xk)>Wkεk(xk). (10b)

With the max defined element-wise, εk captures the amount
of constraint violation, whereas Wk penalizes the constraint
violation in an extra cost term that is added to the stage cost
considered by the dual controller.

In order to apply step ® of the dual control scheme, one
would now marginalize the Gaussian distributed state against
the soft constraint penalty function. This calculation is of the
form

∞∫
−∞

εk(xk)>Wkεk(xk) · N (xk, µk,Σk) dxk, (11)

which has generally no closed-form solution because of the
max operator in the definition of εk. Only when the mean µk
coincides with the constraint boundary, there is a closed-form
solution, amounting to

∞∫
µk

(Pxk − p)>Wk(Pxk − p) · N (xk, µk,Σk) dxk

=
1

2

(
(Pµk − p)>Wk(Pµk − p) + tr {WkΣk}

)
. (12)

For all states on the constraint boundary, this means that
Gaussian marginalization of the soft constraints is equal to
an additional quadratic tracking cost

˜̀c
k(xk) = (xk − xref

k )>W̃k(xk − xref
k ) (13)

with W̃k = 1
2Wk. This can now be used to modify the

second order approximation of the cost-to-go in (7), which is
based on the CE reference trajectory: For states lying on the
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Fig. 2. Schematic overview of the building model. The room of which the
temperature is to be controlled exchanges heat with the outside air through
the window and the outer wall, and with the rest of the building through
the inner wall. All symbols are explained in Table I.

constraint boundary, the cost term in (13) is added. For states
inside of the constraint boundaries, the additional cost can be
reduced to zero, or to a small fraction of Wk to keep the cost
positive definite if no other state cost is applied (Qk = 0).

With this approximation, we can capture some of the
nonlinear effects of the state constraints and add them to
the stage cost for the dual tracking controller

`DC
k = (xk − xref

k )>Qk(xk − xref
k )

+ (uk − uref
k )>Rk(uk − uref

k ) + ˜̀c
k(xk), (14)

where Qk and Rk are the cost matrices for states and inputs.

C. Maintaining the Value of Information

With the aforementioned modifications, the series-
expansion based approximate dual control scheme presented
in Sec. II-B can be applied to constrained linear programming
problems. The basic idea is to obtain an approximation of the
cost-to-go by tracking a CE trajectory satisfying constraints
and minimizing an economic cost with a stochastic optimal
controller. The rest of the procedure explained in Sec. II-B
remains the same. The additional cost induced by parameter
uncertainty and the inverse value of information can thereby
be maintained also for more general cost functions and
polytopic state constraints.

IV. BUILDING CLIMATE CONTROL

A. The Building Model

In this section, we investigate the proposed dual controller
for building climate control, with the goal of reducing overall
energy consumption. We consider the simplified case of
temperature control for a building equipped with a heat pump,
a setup motivated by the increasing use of heat pumps in
buildings. In this case, electrical energy can be assumed as the
energy source for both heating and cooling. The simplified
building model is shown in Fig. 2. The model is adapted from
[11], [33], [34] and models the temperature in a single room
inside a larger building.

Most parameters are relatively easy to identify and are
therefore assumed to be known. The input efficiencies ηh and
ηc in contrast are generally not known, but highly important



TABLE I
OVERVIEW OF THE MODEL STATES, DISTURBANCES AND PARAMETERS

symbol meaning unit

t1 room air temperature [°C]
t2 exterior wall temperature [°C]
t3 interior wall temperature [°C]

δ1 outside air temperature [°C]
δ2 solar radiation [kW]
δ3 internal heat sources [kW]

u electrical input power [kW]
uh electrical heating power (u < 0) [kW]
uc electrical cooling power (u > 0) [kW]
ηh heating efficiency -
ηc cooling efficiency -

τ1 window radiation coefficient -
τ2 outer wall radiation coefficient -

K1−4 heat conductivities [kW/°C]
C1−3 heat capacities [kJ]

and only identifiable while the respective inputs are active.
For the simulation we consider 50 different buildings with
parameters drawn from Gaussian distributions, ηh ∼ N (4, 2)
and ηc ∼ N (2, 2), where we use rejection sampling to limit
the range to ηh ∈ [1, 10] and ηc ∈ [0.35, 5].

The continuous-time dynamics of this building model are

ṫ1 =
1

C1
[K3(t2 − t1) +K1(δ1 − t1) +K4(t3 − t1)

+τ1δ2 + ηhuh + ηcuc + δ3] (15a)

ṫ2 =
1

C2
[K2(δ1 − t2) +K3(t1 − t2) + τ2δ2] (15b)

ṫ3 =
1

C3
[K4(t1 − t3)] (15c)

where all variables and parameters are defined in Table I. The
model is simulated continuously, but state and control costs
are defined for the discretized system. The model is simulated
for a whole day with a discretization interval of ∆t = 600 s.

The input constraints

−1000 ≤ uk ≤ 1000 (16)

are imposed at all times, representing the power limitations
of the heat pump system. These constraints are chosen to
retain feasibility also in the case of poor efficiency (low ηh
and/or ηc). The input constraints are enforced through the CE
MPC for generating the tracking trajectory. If the tracking
dual controller violates the input constraints, the constraints
are enforced by saturation. The state constraints are time-
dependent to account for different temperature demands
during and outside working hours:

Xk :

{
21 ≤ t1 ≤ 26 from 08:00 to 18:00
19 ≤ t1 ≤ 30 otherwise

(17a)

The cost on constraint violation is also defined to be time-
varying to account for the reduced importance of constraint
satisfaction over night:

Wk =

{
103 from 08:00 to 18:00
10−1 otherwise

(18)
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Fig. 3. The disturbances over 24 hours. Top: The outside air temperature
(solid), around the mean temperature δ0 = 10°C (dashed). Middle: The
solar radiation. Bottom: The internal heat gains.

The energy cost is linear

`uk(uk) = d>k uk, (19)

where the prices dk are based on a day/night pricing, which
is a common scheme for electricity used for heating:

dk =

{
0.025 from 06:00 to 22:00
0.010 otherwise

(20)

The overall cost is the sum of energy and constraint cost

`k(xk, uk) = `uk(uk) + `ck(xk). (21)

For the purpose of controller comparison, we assume that
an accurate prediction of outside air temperature and solar
radiation is known. The disturbance trajectories are shown
in Fig. 3. Nonetheless, not all simulated days are identical:
The mean temperature is drawn from a Gaussian distribution
δ0 ∼ N (20, 5) for each of the 50 building scenarios to
provide a comparison of the controller types at days with
different weather conditions.

B. Controller Types

In order to analyze the performance of the dual controller,
we compare it to four other controllers. First of all, an
optimal controller having access to the true parameter values
is employed to serve as a lower bound (LB) to the cost for a
specific instance of the problem.

The second approach is the CE controller, simply using
the expectation of the uncertain parameters [24].

One of the more elaborate options when dealing with
parameter uncertainties in MPC is the scenario approach
(SA) [35]. Instead of relying on the mean value only, samples
from the parameter distribution are used for marginalization.
We use a simplified version of the scenario approach, where
the MPC is solved for all sampled dynamics individually,
averaging the optimal control afterwards. In order to obtain
fast and reliable sampling, we use the latin hypercube
sampling technique [36] for this process.

Since dual control is about the benefits of exploration, we
also compare to a controller with modified cost function that
favors exploration, also known as exploration bonus (EB)
[37], [38]. This approach is often referred to as dual control,
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Fig. 4. Visual overview of the control performance for 50 different problem instances. The overall cost after one day is color-coded on a log scale. From
top to bottom: Lower bound (LB), certainty equivalent (CE), scenario approach (SA), exploration bonus (EB), dual control (DC).

but it lacks the value of information. Exploration bonus based
controllers cannot automatically decide which features of the
dynamics are important. As a result, they aim at identifying
as much as possible, defined by the trade-off between the
superimposed (and purely virtual) uncertainty cost and the
actual cost. We use an exploration bonus with an additional
cost term of the form

diag(Σ)>QEB diag(Σ). (22)

The matrix QEB has to be tuned for the exploration bonus
to have some effect, but also not to dominate the certainty
equivalent cost structure. In the experiments, it was chosen

QEB =

(
1 0
0 1

)
. (23)

The last controller in the comparison is the dual controller
(DC) as presented in this paper.

All controllers, except for the LB, use the element-wise
zero-order hold discretization as described in Sec. II and all
use a horizon length of one day (N = 144).

C. Experimental Results

In order to provide a fair comparison of the different con-
trollers under uncertainty, we sampled 50 different buildings
with 50 different weather conditions, as described in Sec. IV-A.
For each of these setups, the performance of all five controllers
was evaluated. Since already the optimal performance under
full knowledge varies tremendously based on the temperature
and the heat pump efficiencies, the performances of the tested
controllers are also evaluated relative to the lower bound
performance. The aggregated results are shown in Table II.
Since the variability due to the different scenarios is high, it
is difficult to draw strong general conclusions. Nonetheless it
is noticeable that the dual controller shows the best average
performance. Relative to the lower bound, the DC shows
more than 50% improvement compared to the standard CE
approach and about 28% compared to EB.

Fig. 4 shows the performance of the different controller
types as color-coded entries of the result matrix, visualizing
the performance differences. In most cases DC outperforms
EB, but in some cases it is the other way round. This is due
to the fact that, based on the weather, for certain days only
the heating is necessary, for certain days only the cooling,
and for some days both.

Note that for days where both cooling and heating are
used, the EB and DC controllers perform almost equally well,
since both input parameters have to be learned. Remaining
differences are due to the used approximation and tuning.
Fig. 5 illustrates such a case (problem instance 23), where the

TABLE II
SIMULATION RESULTS

absolute relative to LB
mean std SEM mean std SEM

LB 34.45 27.24 3.85 0.00 0.00 0.00
CE 49.44 50.24 7.11 14.99 26.65 3.77
SA 45.15 40.76 5.76 10.70 18.09 2.56
EB 44.60 37.70 5.33 10.15 14.27 2.02
DC 41.75 33.45 4.73 7.30 10.61 1.50

Overall performance comparison. Aggregated costs over 50 different instances
of the building control problem for the different controllers: Lower bound
(LB), certainty equivalent (CE), scenario approach (SA), exploration bonus
(EB), dual control (DC). Provided are the sample mean, sample standard
deviation and the standard error of the mean (SEM).
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Fig. 5. Weather conditions where both heating and cooling are used
(problem instance 23). Top row: Room temperature (green), outer wall
temperature (blue) and inner wall temperature (grey). The constraints on the
room temperature are dashed grey. Bottom row: Control inputs for heating
(red) and cooling (blue). Left: Exploration bonus controller. Right: Dual
controller.

DC has not much benefit over the EB. Fig. 6 on the other hand
shows a day (problem instance 20), where only heating, but
no cooling is needed. This is an example of a situation where
it is profitable to use DC instead of EB. Any controller with
exploration bonus tries to identify all uncertain parameters,
whereas the dual controller only identifies the parameters that
are important, or valuable in this scenario.

V. CONCLUSIONS

The value of information is a feature of dual control often
neglected. Using an approximation to the optimal dual control
formulation in terms of a series expansion of the cost function,
we constructed a controller that maintains an approximation of
the value of information in systems with linear cost structure.
This controller favors the identification of relevant features
and ignores features that are not necessary for future control.

The method is based on the construction of a tracking
reference found by solving the optimal control problem for
the current mean estimate of the parameters. This reference is
subsequently tracked by a quadratic low-level dual controller
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Fig. 6. Weather conditions where only heating is necessary (problem
instance 20). Colors and controllers as in Fig. 5. The pre-heating around 5
am is due to the lower energy price at this time.

based on dynamic programming.
Since constraint satisfaction cannot be guaranteed by the

low-level controller under Gaussian assumptions, we use soft
constraints with relatively high cost to penalize constraint
violation. Further, we propose a formulation that allows for
marginalization of the augmented cost in closed form.

The proposed method combining reference tracking and
soft constraint marginalization allows for the evaluation of the
value of information. This can be used to increase the average
control performance under high initial parameter uncertainty.

In simulation experiments with a simple building model,
we illustrate that this method improves performance over
simpler alternative approximations to dual control that are
based on changes of the cost function, without an explicit
model for future information gain.
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[20] J. Rathouský and V. Havlena, “MPC-based approximation of dual
control by information maximization,” in Proceedings of the 18th
International Conference on Process Control, Tatranská Lomnica,
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