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Abstract— An estimation algorithm is developed for deter-
mining pitch and roll angles (tilt) of a rigid body fixed at
a pivot point using multiple accelerometers. The estimate
is independent of the rigid body dynamics; the method is
applicable both in static conditions and for any dynamic motion
of the body. No dynamic model is required for the estimator;
only the mounting positions of the sensors need to be known.
The proposed estimator is the optimal linear estimate in a
least-squares sense if knowledge of the system dynamics is not
used. The estimate may be used as a basis for further filtering
and fusion techniques, such as sensor fusion with rate gyro
data. The estimation algorithm is applied to the problem of
state estimation for the Balancing Cube, a rigid structure that
can actively balance on its corners. Experimental results are
provided.

I. INTRODUCTION

Attitude estimation refers to the problem of determining

the rotation of a rigid body relative to an inertial frame

of reference. It is a common problem in many engineering

disciplines such as robotics, aeronautics, and space engineer-

ing. Accelerometers are used to estimate the pitch and roll

components of attitude in many applications.1 For the simple

case of a non-moving rigid body, a single body-fixed tri-axis

accelerometer is enough to determine tilt: the accelerometer

measures the gravity vector in the body frame, which directly

relates to the tilt angles pitch and roll of the rigid body. This

is only true for a non-moving rigid body, however: if the

body is rotated or accelerated, the body-fixed accelerometer

also measures angular and centripetal acceleration terms. In

other words, with a single tri-axis accelerometer on a moving

body one cannot distinguish whether acceleration is due to

motion or due to gravity.

One method of compensating for these dynamic effects is

to combine accelerometers with rate gyros, which measure

instantaneous angular velocity. In [1]–[3], rates gyros (partly

in combination with other sensors) are used to determine

the dynamics of a rigid body and correct the accelerom-

eter’s gravity vector observation. Another approach is to

integrate the gyro measurements to obtain an estimate for

attitude. This estimate is only accurate at high frequencies,

however, as drift over time causes errors to accumulate. In

complementary filtering, [4], [5], the gyrometric estimate is
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1The standard convention of yaw, pitch and roll angles is used to specify
attitude. The yaw angle denotes the rotation about the gravity vector, and
pitch and roll are successive rotations about the other two axes of the body
frame, which will be made precise in Sec. II. Since pitch and roll together
specify the orientation of a rigid body relative to the gravity vector, they
are referred to as tilt.

Fig. 1. The Balancing Cube, balancing on one of its corners.

thus high-pass filtered and fused with a low-pass filtered

accelerometer-based estimate. In [6], [7], estimators capable

of switching between an accelerator-based estimate (for near

static conditions) and a gyro-based estimate (for dynamic

conditions) are used.

In this work, the special case of tilt estimation for a rigid

body with no translational degrees of freedom (but with full

rotational freedom) is considered. The measurements from

multiple accelerometers on the rigid body combined with

the fact that the system rotates about a fixed point allows

the derivation of a global tilt estimate that is independent

of the rigid body dynamics. That is, the method works

both for low and high frequency motion. The algorithm is

easy to implement and requires only geometric information

(knowledge of the sensor positions), but no dynamic model

of the system. For the proposed tilt estimation method, four

tri-axis accelerometers are needed. The tilt estimate, which

is solely based on accelerometer data, may be used as a basis

for further filtering techniques. A straight forward extension

for fusing the accelerometic estimate with rate gyro data is

presented in order to improve the noise characteristics of the

estimate.

The developed algorithm is applied to estimate the pitch

and roll angles of the Balancing Cube (Fig. 1), a 1.2 m

cube that can balance on any of its corners.2 The passive

structure of the cube owes its ability to balance to six rotating

2More information on the Balancing Cube may be found on the project
website http://www.idsc.ethz.ch/Research DAndrea/Cube.
A short video of the cube accompanies this paper.
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Fig. 2. The problem setup: a rigid body that has full rotational degrees of

freedom. Ô denotes the inertial coordinate system, B̂ is affixed to the rigid

body with origin at the pivot, and Âi is the coordinate system of the ith

sensor. The origins of Ô and B̂ coincide (not shown).

mechanisms located on each inner face of the cube that move

in concert to achieve equilibrium for the overall system. The

tilt estimate of the cube is used as feedback information to

stabilize the system. The Balancing Cube can be perceived as

an example of a 3D pendulum. Pendulum systems are widely

used for research in dynamics and control; for an overview,

see [8] and references therein. The Balancing Cube is being

used as a platform for research on distributed estimation and

control and adaptation techniques.

This paper is organized as follows: The tilt estimation

algorithm based on accelerometer measurements is derived

in Sec. II. It is applied to the Balancing Cube in Sec. III and

augmented by a straight-forward fusion algorithm with rate

gyro data. Experimental results to demonstrate the proposed

method are presented. Concluding remarks are given in

Sec. IV.

II. TILT ESTIMATION ALGORITHM

In this section, an estimator is derived for the pitch and

roll angles of a rigid body that has only rotational degrees of

freedom. The estimate is based on measurements of multiple

accelerometers mounted on the rigid body, whose mounting

(location and orientation) is assumed to be known. The

estimation problem is formally stated in Sec. II-A. In Sec. II-

B, an estimate is derived for the gravity vector in the body

frame, which is then used to determine pitch and roll angles

in Sec. II-C.

A. Problem Formulation

We consider a rigid body that is supported by a fixed,

frictionless pivot, see Fig. 2. Thus, the body has three

rotational, but no translational degrees of freedom. The body-

fixed coordinate frame B̂ has its origin at the center of

rotation. The inertial frame of reference is denoted by Ô;

the origin coincides with the origin of B̂. On the body,

there are L sensors (accelerometers) mounted at positions

pi, i = 1, . . . , L. The sensor positions are assumed to be

known in the body frame of reference, Bpi. Each sensor

measures local accelerations along the three axes of its local

frame Âi.

Adopting notation from [9], two rotation matrices are

introduced capturing the rotation of the rigid body and the

mounting of the sensors:

•
O
BR denotes the rotation of the inertial frame Ô to the

body frame B̂, and

•
Ai

B R denotes the rotation of the local frame of the sensor

i to the body frame.

Note that a vector quantity v given in frame B̂ Bv, can be

expressed in frame Ô by Ov = O
BR

Bv.

An accelerometer measures the acceleration Op̈i at its

mounting position Opi plus the gravity vector Og, rotated

to its local frame Âi:

Aimi =
Ai

B R B
OR

(
Op̈i +

Og
)
+ Aini, (1)

where Aimi ∈ R
3 is the ith accelerometer measurement

and Aini is measurement noise, which is assumed to be

zero-mean, band-limited white noise with standard deviation

σn, i.e. E [Ani] = 0, E [Ani(
Ani)

T ] = σ2
nI3, where E [·]

denotes the expected value and I3 is the identity matrix of

dimension three by three. This noise model is reasonable for

many MEMS based accelerometers once the bias has been

removed.

From Opi =
O
BR

Bpi and the fact that Bpi is constant with

time, it follows for the acceleration of the point Opi,

Op̈i =
O
BR̈

Bpi, (2)

where O
BR̈ denotes the second derivative of the rotation

matrix O
BR with respect to time. The matrix O

BR̈ captures the

dynamic terms of the rigid body motion, i.e. rotational and

centripetal acceleration terms. Using (2), the accelerometer

measurement (1) can be rewritten as

Aimi =
Ai

B R B
OR

(
O
BR̈

Bpi +
Og

)

+ Aini. (3)

Since all orientations of the sensors Ai

B R are assumed to be

known, one can express all accelerometer measurements in

body coordinates by multiplying (3) by B
Ai
R = Ai

B RT from

the left:
Bmi = R̃ Bpi +

Bg + Bni, (4)

where R̃ := B
OR

O
BR̈ combines the body rotation and the

dynamic terms of the body motion,

Bg = B
OR

Og (5)

is the gravity vector in body coordinates, and Bni =
B
Ai
R Aini is the noise vector rotated to the body frame. The

mean and variance of the noise still satisfy E [Bni] = 0 and

E [Bni(
Bni)

T ] = σ2
nI3.

Assume that measurements are acquired at a rate T ;

introducing time index k, equation (4) can be rewritten,

Bmi(k) = R̃(k) Bpi +
Bg(k) + Bni(k). (6)

Given the sensor measurements (6) for i = 1, . . . , L at time

k, the ultimate objective is to estimate the tilt of the rigid

body (captured by B
OR) at time k. As an intermediate step,

an estimate is derived for the gravity vector Bg(k) and (as

a by-product) for the matrix R̃(k) (Sec. II-B). The gravity

vector estimate is then used to determine the tilt angles of

the rigid body (Sec. II-C).
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B. Optimal gravity vector estimation

In this section, the problem of estimating the gravity vector
Bg given the acceleration measurements (6), i = 1, . . . , L is

formulated as a least-squares problem.

All L measurements of the form (6) are combined into a

matrix equation (index k dropped for ease of notation),

M = QP +N, (7)

M :=
[
Bm1

Bm2 . . . BmL

]
∈ R

3×L, (8)

Q :=
[
Bg R̃

]
∈ R

3×4, (9)

P :=

[
1 1 . . . 1

Bp1
Bp2 . . . BpL

]

∈ R
4×L, (10)

N :=
[
Bn1

Bn2 . . . BnL

]
∈ R

3×L,

where M combines all sensor measurements, Q is the

unknown parameter matrix, P is the matrix of known

parameters (sensor locations), and N combines all noise

vectors, i.e. E [N ] = 0, E [NTN ] = 3σ2
nIL = σ2

NIL, with

σN :=
√
3σn.

Besides the sought gravity vector Bg, the unknown matrix

Q also contains the matrix R̃. In the following, a scheme is

presented to optimally estimate the entire matrix Q, although

the primary interest for tilt estimation is the gravity vector. In

other applications, one might also be interested in an estimate

of the dynamic terms O
BR̈, which can be derived from R̃ =

B
OR

O
BR̈ once B

OR is known.

The objective is to obtain an estimate Q̂∗ of the matrix Q
that minimizes

min
Q̂

E

[

‖Q̂−Q‖2F
]

subj. to E

[

Q̂
]

= Q, (11)

where ‖·‖F denotes the Frobenius matrix norm. The pa-

rameter estimate Q̂ is restricted to linear combinations of

the measurements M , i.e. the optimal X∗ is sought for the

factorization Q̂ = MX . This will yield a straightforward

implementation: at each time step, the estimate Q̂ is obtained

by a single matrix multiplication.

Note that M , Q, and N in (7) are time-varying. At any

time k, an optimal estimate for Q is sought given the set of

measurements M .

The following lemma states the best unbiased linear esti-

mate of the full parameter matrix Q:

Lemma 2.1 (Full Estimation Problem): Given the real

matrices P ∈ R
4×L and M ∈ R

3×L satisfying M = QP+N
with unknown matrix Q ∈ R

3×4 and the matrix random

variable N ∈ R
3×L with E [N ] = 0, E [NTN ] = σ2

NIL.

Assuming P has full row rank, the (unique) minimizer

X∗ ∈ R
L×4 of

min
X

E
[
‖MX −Q‖2F

]
subj. to E [MX] = Q (12)

is given by

X∗ = PT (PPT )−1. (13)

The minimum estimation error is

E
[
‖MX∗ −Q‖2F

]
= σ2

N

4∑

i=1

1

s2i (P )
, (14)

where si(P ) denotes the ith largest singular value of P .

Proof: Since E [MX] = E [M ]X = QPX , it is

required that

PX = I (15)

to satisfy E [MX] = Q. Next, consider the singular value

decomposition (SVD) of P ,

P = U
[
Σ 0

]
[
V T
1

V T
2

]

, (16)

with U ∈ R
4×4 unitary, Σ ∈ R

4×4 diagonal, V1 ∈ R
L×4,

V2 ∈ R
L×(L−4), and V = [V1 V2] unitary. From the full row

rank assumption on P , it follows that Σ is positive definite.

Therefore, a parametrization of all X that satisfy (15) is

given by

X = V1Σ
−1UT + V2X̄, (17)

where X̄ ∈ R
(L−4)×4 is a free parameter matrix. Thus, X̄

needs to be chosen such that (12) is minimized: Using (7),

(15) and basic properties of the trace operation, [10], yields

E
[
‖MX −Q‖2F

]
= E

[
‖NX‖2F

]

= E
[
trace(XTNTNX)

]
= trace

(
E [NTN ]XXT

)

= σ2
N trace

(
XXT

)
= σ2

N trace
(
V TX(V TX)T

)

= σ2
N

∥
∥
∥
∥

[
Σ−1UT

X̄

]∥
∥
∥
∥

2

F

, (18)

which is minimized by X̄ = 0. Therefore,

X∗ = V1Σ
−1UT = PT (PPT )−1,

which can readily be seen by inserting (16) for P , and

E
[
‖MX∗ −Q‖2F

]
= σ2

N‖Σ−1UT ‖2F = σ2
N‖Σ−1‖2F .

The optimal estimate Q̂ = MX∗ includes both the optimal

estimate of the gravity vector Bg and of the dynamics matrix

R̃. Since, for tilt estimation, only the former is of interest,

one needs to ask if X∗ is also optimal if one seeks only an

estimate of parts of the unknown matrix Q. The following

lemma states that this is indeed the case.

Lemma 2.2 (Partitioned Estimation Problem): Let the

matrices Q, P , N , M be defined as in Lemma 2.1.

Furthermore, let Q = [Q1 Q2], with Q1 ∈ R
3×q ,

Q2 ∈ R
3×(4−q), 1 ≤ q ≤ 4. Assuming P has full row rank,

the (unique) minimizer Y ∗ ∈ R
L×q of

min
Y

E
[
‖MY −Q1‖2F

]
subj. to E [MY ] = Q1 (19)

is Y ∗ = X∗

1 , where X∗ = [X∗

1 X
∗

2 ] is the solution of

Lemma 2.1.

Proof: It needs to be shown that Y = X∗

1 satisfies (19).

First, since X∗ = [X∗

1 X∗

2 ] satisfies E [MX] = Q in (12),

E
[
[MX∗

1 MX∗

2 ]
]
= E [MX∗] = Q = [Q1 Q2]

⇒ E [MX∗

1 ] = Q1 (and E [MX∗

2 ] = Q2).

Then,

‖MX∗ −Q‖2F = ‖
[
MX∗

1 −Q1 MX∗

2 −Q2

]
‖2F

= ‖MX∗

1 −Q1‖2F + ‖MX∗

2 −Q2‖2F ,

2632



i.e. X∗ minimizes both terms in the last expression separately

and X∗

1 thus minimizes ‖MX∗

1 −Q1‖2F alone.

Applying Lemma 2.2 with q = 1 yields the optimal

gravity vector estimate Bĝ(k) at time k given all sensor

measurements M(k),

Bĝ(k) = M(k)X∗

1 , (20)

with X∗

1 ∈ R
L×1. The optimal fusion vector X∗

1 is static and

completely defined by the geometry of the problem (through

P ) and can thus be computed offline.

Note that the gravity vector estimate (20) is independent

of the rigid body dynamics, which are captured in O
BR̈ (and

thus in R̃). This can be seen from

Bĝ = MX∗

1 = QPX∗

1 +NX∗

1

=
[
Bg R̃

]
UΣV T

1
︸ ︷︷ ︸

P

V1Σ
−1UT

1
︸ ︷︷ ︸

X∗

1

+NX∗

1

=
[
Bg R̃

]
[
U1

U2

]

UT
1 +NX∗

1

=
[
Bg R̃

]
[
1
0

]

+NX∗

1 = Bg +NX∗

1 ,

where the SVD of P (16) has been used. Clearly, the matrix

R̃ does not appear in the estimate, i.e. the gravity vector

observation is not corrupted by any dynamic terms. As

expected, the sensor noise does enter the estimation equation.

Both in Lemma 2.1 and 2.2, the matrix P , which contains

the sensor locations on the rigid body, is assumed to have

full row rank. In the following, a physical interpretation of

this rank condition is given.

Consider the case where P does not have full row rank.

Then, there exists a nontrivial linear combination of the rows

of P ,

∃λ 6= 0 ∈ R
4 : λ1 px + λ2 py + λ3 pz + λ4 1 = 0, (21)

where pTx , p
T
y , p

T
z ∈ R

1×L, denote the last three rows of P
(the vectors of x, y, and z-coordinates of all sensor locations,

respectively) and 1
T ∈ R

1×L, the vector of all ones, is the

first row of P . Expression (21) is equivalent to

∃λ 6= 0 ∈ R
4 : ∀i = 1, . . . , L,

λ1
Bpi,x + λ2

Bpi,y + λ3
Bpi,z = −λ4,

(22)

where Bpi,x,
Bpi,y,

Bpi,z ∈ R denote the x, y, and z-

coordinate of the ith sensor location in the body frame.

Since the equation λ1x + λ2y + λ3z = −λ4 defines a

plane in (x, y, z)-space, condition (22) is equivalent to all

L sensors lying on the same plane. Therefore, the full row

rank condition on P is satisfied if and only if not all sensors

lie on the same plane. Moreover, since three points always

lie on a plane, this also implies that at least four tri-axis

accelerometers are required for the proposed method.

Note that the gravity vector estimate given in Lemma 2.2

is optimal under the assumption that P has full row rank.

These results can be extended and the rank condition on P
can be relaxed when one seeks only the gravity vector. For

example, one could directly measure gravity with a single

tri-axis accelerometer at the pivot, where the dynamic terms

do not enter the measurements. However, this is not possible

for the Balancing Cube application.

C. Tilt estimation

With the estimate Bĝ of the gravity vector in the body

frame, one can use (5) to estimate the body rotation, since the

direction of the gravity vector in the inertial frame is known.

In this work, the attitude of the rigid body is represented by

z-y-x-Euler angles (yaw, pitch, roll), [9], i.e. the body frame

B̂ is obtained by rotating the inertial frame Ô successively

about its z-axis, then the resulting y- and x-axis,

O
BR = Rz(α)Ry(β)Rx(γ), (23)

Rz(α) :=





cosα − sinα 0
sinα cosα 0
0 0 1



, Ry(β) :=





cosβ 0 sinβ
0 1 0

− sin β 0 cosβ



,

Rx(γ) :=





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



,

where α, β, and γ are the yaw, pitch, and roll Euler angles,

respectively. With this representation, the tilt of the rigid

body is captured by β and γ. Using (23), (5) can be written

as

Bg = O
BR

T Og = RT
x (γ)R

T
y (β)R

T
z (α)

Og. (24)

Using Og = [0 0 g0]
T with gravity constant g0 and the

definitions of the rotation matrices, (24) simplifies to

Bg = RT
x (γ)R

T
y (β)

Og = g0





− sinβ
sin γ cosβ
cos γ cosβ



 . (25)

It follows that the z-Euler angle α is not observable from

the accelerometer measurements.

Given the estimate of the gravity vector (20), the accelero-

metric estimates for the y- and x-Euler angles at time k are:

β̂a(k) = atan2
(

−Bĝx(k),
√

Bĝ2y(k) +
Bĝ2z(k)

)

γ̂a(k) = atan2
(
Bĝy(k),

Bĝz(k)
)
,

(26)

where atan2 is the four-quadrant inverse tangent. Note that

one does not need to know the gravity constant g0 for

estimating tilt.

The variance of the angle estimates can be obtained from

the variance of the gravity vector estimate, which can in turn

be calculated from (18) and the SVD of P (16).

III. APPLICATION TO THE BALANCING CUBE

The proposed tilt estimation algorithm is applied to the

Balancing Cube (Fig. 1). The passive structure of the cube

is balanced on one of its corners by six rotating bodies

(mounted on the inner faces of the cube) that shift their

weight and exert forces on the structure, thereby keeping the

system in equilibrium. The pitch and roll angle of the cube

are estimated from measurements of six inertial measurement

units (IMUs) with tri-axis accelerometers and rate gyros

using the algorithm presented in Sec. II.
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Fig. 3. Schematic drawing of the cube and the six rotating modules (gray).

The Balancing Cube and the estimation problem are

described in Sec. III-A. Furthermore, the design of the

control architecture is explained. A comprehensive system

description however is beyond the scope of this paper and

will be published elsewhere. In Sec. III-B, the accelerometer-

based estimator of Sec. II is applied to estimate the tilt of

the cube. The noise level of the estimate is further reduced

by straightforward fusion with data from the rate gyros.

Experimental results are provided in Sec. III-C.

A. System description

The Balancing Cube consists of a rigid body in the shape

of a cube and six rotating eccentric bodies (called modules)

on the inner faces of the cube, see Fig. 3. Each of the six

faces of the cube consists of an X-shaped aluminum structure

(compare Fig. 1 and 3); the edge length is 1.2 m. The total

(passive) mass of the cube is 21.4 kg; each module has

an (active) mass of 3.7 kg. There is the possibility to add

additional weights on the modules (up to 1.9 kg) to increase

the control authority.

The objective is to balance the cube on one of its corners.

In this configuration, the rigid body has three rotational and

no translational degrees of freedom, since one can assume

that the cube pivot does not slip due to friction combined

with its large mass. Near the center of each face, an IMU [11]

is mounted that measures accelerations and angular velocities

each along three axes. Hence, the cube falls into the class of

systems considered in Sec. II-A.

The modules are actuated by a DC motor and rotate

relative to the cube structure. A drawing of a module

with its functional elements is shown in Fig. 4. When the

modules rotate, they exert reactional and gravitational forces

(by shifting the center of mass) on the cube structure. An

absolute encoder is used on each module to measure the

angle of a module relative to its mounting. Furthermore,

each module carries its own power unit and a computer

that is connected to the sensors and the DC motor. The

computers of all modules are connected to each other over a

CAN bus network. In the operation mode that is considered

in this work, each computer broadcasts all its local sensor

measurements. In particular, each module has access to all

six IMU measurements.

Battery

Computer
Absolute

encoder

DC motor

Bevel gear

Slip ring

(connection 

to cube)

Fig. 4. CAD drawing of a module with its functional parts.

A state feedback controller is designed that stabilizes

the unstable equilibrium of an upright standing cube and

downward pointing modules. Estimates for the cube angles

are obtained from the tilt estimation algorithm of Sec. II. In

this work, only the three lower modules are used as actuators;

the others are held fixed at the downward position. Although

the details of the controller design are beyond the scope of

this paper, a brief explanation of the control system follows.

For each individual module, an inner feedback loop is

closed for the module velocity. The inner-loop controllers

ensure that velocity commands are tracked at a faster rate

than the natural dynamics of the cube. This way, one can

neglect nonlinear effects such as friction and backlash in the

actuation mechanism. A linear dynamical model about the

equilibrium that takes into account the effect of the inner

loops is obtained using the time-scale separation technique

described in [12]. This model is then used to design an outer-

loop stabilizing controller.

Since all modules are broadcasting their sensor measure-

ments, each module has access to the same information.

In particular, each module can generate estimates of all

system states: the module angles are measured by encoders;

estimates of the module angular velocities result from the

time-scale separation technique, [12]; and estimates of the

cube’s pitch and roll angles and their rates are derived from

the IMU measurements as presented in the next section.

Note that for balancing, knowledge of yaw is not required.

Hence, a centralized full-state feedback LQR controller can

be designed for stabilizing the system. This controller is

implemented on each module.

B. Tilt estimation

The coordinate frame definitions and the locations of the

six IMUs on the cube are indicated in Fig. 5. The position

vectors of the sensors are

Bp1 =
[
0.55 0.64 0.06

]T
, Bp2 =

[
0.56 0.06 0.65

]T
,

Bp3 =
[
0.06 0.55 0.64

]T
, Bp4 =

[
0.64 0.55 1.14

]T
,

Bp5 =
[
0.56 1.14 0.55

]T
, Bp6 =

[
1.14 0.55 0.56

]T
.

With this data, matrix P can be constructed as in (10).

Applying Lemma 2.2 yields the optimal fusion vector for
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Fig. 5. Coordinate frames and sensor locations on the Balancing Cube:

The inertial frame Ô is shown on the top, left figure; the body frame B̂ is
on the top, right figure; and the bottom shows the locations of the six IMUs

and their local coordinate frames Âi.

estimating the gravity vector in the cube frame,

X∗

1 =
[
0.78 0.78 0.68 −0.52 −0.42 −0.30

]T
.

In the implementation of the algorithm, all accelerometer

measurements are rotated to the body frame and stacked into

the matrix M(k) as in (8) at each time step. Then, (20) and

(26) are implemented to obtain the accelerometric estimates

for the pitch and roll angles, β̂a(k) and γ̂a(k).
In order to reduce the noise level of the accelerometer-

based estimates, a straightforward scheme for data fusion

with the tri-axis rate gyro measurements may be used. Let

r(k) ∈ R
3 denote the body angular rate at time k, which is

directly measured by a gyro that is mounted on the body.

Thus, an estimate r̂(k) of this quantity may be obtained by

averaging the measurements of all six gyros. The body rates

are transformed to Euler angular rates (see e.g. [13]) by





ˆ̇α(k)
ˆ̇
β(k)
ˆ̇γ(k)




=





0 sin γ̂/ cos β̂ cos γ̂/ cos β̂
0 cos γ̂ − sin γ̂

1 sin γ̂ tan β̂ cos γ̂ tan β̂



 r̂(k), (27)

which requires estimates of the Euler angles β̂ and γ̂. For

a straightforward implementation the most recent estimate

may be used as an approximation, i.e. β̂ = β̂(k−1) and

γ̂ = γ̂(k−1).
Integrating the rate estimates (27) yields estimates for the

Euler angles that are based on the rate gyro measurements.

Thus, the accelerometer- and gyro-based estimates can be

fused to obtain a better overall estimate of the cube pitch

and roll angles,

β̂(k) = κ1β̂a(k) + (1− κ1)
(
β̂(k−1) + T

ˆ̇
β(k)

)

γ̂(k) = κ2γ̂a(k) + (1− κ2)
(
γ̂(k−1) + T ˆ̇γ(k)

)
,

(28)
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Fig. 6. Comparison of the accelerometric estimate of x- and y-Euler angles
(gray) to camera-based reference measurement (black). The cube was moved
manually around the nominal equilibrium at γ0 ≈ 0.785 and β0 ≈ −0.615.

where T is the sampling time and κ1 and κ2 are tuning

parameters that may be chosen such that the variance of

the estimate is minimized given the noise specifications of

accelerometers and rate gyros. For the application presented

in this section, κ1 = κ2 = 0.01 was used.

C. Experimental results

The accelerometer-based tilt estimator (26) was imple-

mented on the Balancing Cube as described in Sec. III-B.

In order to verify the estimator, a global-positioning system

was used that can track the position and attitude of rigid

bodies at a rate of 200 frames per second based on infrared

camera data. A description of this system may be found in

[14]; a similar positioning system is also described in [15].

In the Balancing Cube application, the bias of the Euler

angle estimates is corrected prior to operation in a calibration

procedure, which accounts to first order for the accelerometer

biases. For the comparison with the reference positioning

system in this section, the DC component of the estimates

is therefore not of interest. The means of the reference

and estimator data presented in this section have thus been

aligned for better comparability.

To demonstrate the accelerometer-based tilt estimator, the

cube was put on a corner and moved by hand about the

upright equilibrium position, which corresponds to the Euler

angles γ0 = 45 deg and β0 ≈ −35 deg. The results are

shown in Fig. 6. Clearly, the accelerometric estimate is

accurate both for slow and fast motion of the cube.

In contrast to the proposed method, in Fig. 7, the same

experiment is shown, but now only a single tri-axis ac-

celerometer (sensor i = 4) is used to observe the gravity

vector. When the cube is static (from 45s to 50s), the

estimate is accurate. However, when the cube is being moved,

the estimate suffers from the dynamic terms that act as
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Fig. 7. Euler angle estimates if only a single tri-axis accelerometer is used
(gray), compared to camera-based reference measurement (black).
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Fig. 8. Estimation data during balancing of the cube: accelerometric
estimate fused with rate gyro data (gray) and camera-based reference
measurements (black).

disturbances to the static estimator. This demonstrates that

the dynamics are not negligible.

For the closed-loop operation of the system, i.e. for

balancing the cube, the improved estimate for the cube angles

(28) using both accelerometer and rate gyro data was used.

The cube was balanced using only the three lower modules

(with additional weights of 1.9 kg). The results are shown

in Fig. 8 together with the camera-based reference data.

IV. CONCLUDING REMARKS

In comparison to existing methods, the main advantage of

the presented tilt estimation technique is the independence

of the estimate of any rigid body dynamics: the estimator is

equally well applicable in quasi-static environments and in

highly dynamic ones. This feature is mainly due to two facts:

firstly, the fixed pivot of the rigid body and, secondly, the

use of multiple accelerometers. Whether this technique can

be extended to moving bodies, e.g. a body with a moving

pivot, will be subject of future research.

The proposed method essentially transforms multiple ac-

celerometer measurements into a tilt estimate. The tilt esti-

mate is the optimal linear estimate in a least-squares sense

if knowledge of the system dynamics is not used. Clearly,

the accelerometer-based estimate may be used as the basis

for further filtering techniques if knowledge of the system

dynamics is available.
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