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Abstract— A limiting property of the matrix exponential is
proven: For a real square matrix, where the log norm of the
upper-left n by n block approaches negative infinity in a limiting
process, the matrix exponential goes to zero in the first n rows
and n columns. This property is useful for simplification of
dynamic systems that exhibit modes with sufficiently different
time scales; for example, in multi-loop control systems with fast
inner and slow outer feedback loops. For this case, we derive
a time scale separation algorithm for a linear continuous-time
model under the assumption of high-gain inner loop feedback,
which yields a simplified discrete-time model at the slow time
scale. The proposed technique is applied to the design of a
two-loop control system for stabilizing an inverted pendulum.
Experimental results are provided.

Index Terms— matrix exponential, limiting property, loga-
rithmic norm, time scale separation, multi-loop control

I. INTRODUCTION

The matrix exponential arises naturally when solving the

linear ordinary differential equation (ODE)

ẋ(t) = Ax(t), x(0) = x0; (1)

the solution is

x(t) = exp(At)x0. (2)

In particular, when discretizing the system (1) at a sampling

rate T , the state transition matrix is given by the matrix

exponential,

x(t+ T ) = exp(AT )x(t). (3)

Because of its relevance in various fields, the matrix ex-

ponential and its properties have been subject to extensive

studies, for example [1]–[4].

In many dynamic systems, there are parts that operate

at different time scales. Therefore, it is interesting to ask

whether the matrix exponential in (3) can be simplified if

the system (1) exhibits modes with sufficiently large time

scale separation. In particular, what happens in the limiting

case of some infinitely fast modes, i.e. the case of infinite

time scale separation? We prove in this paper that, if some

of the eigenvalues of a general real matrix approach negative

infinity in a particular manner, the corresponding rows and

columns of the matrix exponential go to 0. Applying this to

a system like (1), one achieves a significantly simpler system

representation.

This consideration is of particular practical relevance for

a cascaded control architecture with fast inner and slow

outer loops. Especially, one may not have full knowledge
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of the inner loop (for example, when using off-the-shelf

control components); however, one needs to approximatively

incorporate the inner loop behavior in a model used for the

design of an outer loop controller. Based on the limiting

property of the matrix exponential, we present a time scale

separation technique that results in a model of the multi-

loop system at the slow time scale relevant to outer loop

controller. It incorporates the behavior of the inner loop by

assuming that the inner loop is an ideal feedback loop, i.e. it

is arbitrarily fast.

We apply the proposed technique to the design of a two-

loop control system for balancing an inverted pendulum. As

actuator, we use a DC motor with a built-in local velocity

controller. Our objective is to design an outer loop controller

operating at a slower rate that stabilizes the system. We

provide experimental results of the closed-loop operation.

The paper is organized as follows: In Sec. II, we state and

prove the limiting property of the matrix exponential. Using

this result, we derive the time scale separation algorithm for

a multi-loop system with high-gain inner feedback loops in

Sec. III. In Sec. IV, the proposed technique is applied to the

controller design for the inverted pendulum. We conclude

with some remarks in Sec. V.

II. MAIN RESULT

We will work exclusively with the vector 2-norm and its

induced matrix norm, i.e., for a vector x ∈ R
n and a real

matrix M ,

‖x‖ =
( n∑

i=1

|xi|
2
)1/2

, ‖M‖ = max
‖x‖=1

‖Mx‖.

Let µ(M) denote the log norm of M (associated with the

2-norm), [1], [2],

µ(M) := max{µ|µ an eigenvalue of (M +MT )/2},

where the matrix MT denotes the transpose of M . We shall

exploit the following properties of the log norm µ(M), [2],

‖eMt‖ ≤ eµ(M)t (4)

µ(M) ≤ ‖M‖ (5)

µ(M + P ) ≤ µ(M) + ‖P‖, (6)

where M , P are real square matrices and t ≥ 0.

A. Theorem

The following theorem states the main result of this paper:
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Theorem 2.1: Let M be a real square matrix and Ki,

i = 1, 2, . . . ,∞ be a sequence of real square matrices. If

limi→∞ µ(−Ki) = −∞, then

lim
i→∞

exp

([
M11 −Ki M12

M21 M22

])

=

[
0 0
0 exp(M22)

]

.

Note that it would be relatively straightforward to prove

this result if the matrices
[
M11 0
M21 M22

]

and

[
−Ki M12

0 0

]

(7)

commuted. Then

lim
i→∞

exp

([
M11 −Ki M12

M21 M22

])

= lim
i→∞

exp

([
M11 0
M21 M22

])

exp

([
−Ki M12

0 0

])

=

[
exp(M11) 0
M̄21 exp(M22)

]

lim
i→∞

[
exp(−Ki) M̄12,i

0 I

]

=

[
exp(M11) 0
M̄21 exp(M22)

] [
0 0
0 I

]

=

[
0 0
0 exp(M22)

]

,

where, [4],

M̄21 :=

∫ 1

0

eM11(1−τ)M21e
M22τ dτ,

M̄12,i :=

∫ 1

0

e−Ki(1−τ)M12 dτ,

and we used limi→∞ exp(−Ki) = 0 and limi→∞ M̄12,i = 0,

since

‖e−Ki‖ ≤ eµ(−Ki) → 0 as i→ ∞,

‖M̄12,i‖ ≤

∫ 1

0

eµ(−Ki)(1−τ)‖M12‖ dτ

=
‖M12‖

µ(−Ki)

(
eµ(−Ki) − 1

)
→ 0 as i→ ∞.

In general, however, the matrices (7) do not commute; the

proof of the theorem for the general case is a little more

involved.

B. Proof

We need the following Gronwall-type inequality, [5], [6]:

Lemma 2.1: Let u(t), α(t) be continuous functions in

J = [t0, t1], let β(t) be a nonnegative continuous function

in J , let κ(t, s) be a nonnegative continuous function for

t0 ≤ s ≤ t ≤ t1, and suppose

u(t) ≤ α(t) + β(t)

∫ t

t0

κ(t, s)u(s) ds, t ∈ J.

Then

u(t) ≤ ᾱ(t) exp

(

β̄(t)

∫ t

t0

κ̄(t, s) ds

)

, t ∈ J,

where

ᾱ(t) := sup
τ∈[t0,t]

α(τ), β̄(t) := sup
τ∈[t0,t]

β(τ),

κ̄(t, s) := sup
τ∈[s,t]

κ(τ, s).

As an intermediate step of the proof, we will use the

following matrix ODE in X(·) and Y (·),

Ẋ(t) = (M11−Ki)X(t) +M12Y (t),

Ẏ (t) = M21X(t) +M22Y (t),

X(0) = X0, Y (0) = Y0,

(8)

with real matrices M11, M12, M21, M22, Ki and initial

conditions X0 and Y0.

The proof of Theorem 2.1 is organized into three parts:

1) For the system (8), with initial conditions X0 = I and

Y0 = 0, show that, if limi→∞ µ(−Ki) = −∞, then,

for all (finite) t > 0,

lim
i→∞

X(t) = 0 and lim
i→∞

Y (t) = 0. (9)

2) For the system (8), with initial conditions X0 = 0 and

Y0 = I , show that, if limi→∞ µ(−Ki) = −∞, then,

for all (finite) t > 0,

lim
i→∞

X(t) = 0 and lim
i→∞

Y (t) = exp(M22t).

(10)

3) Consider the matrix ODE that is solved uniquely by

the matrix exponential

exp

([
M11 −Ki M12

M21 M22

]

t

)

and reformulate it into the form (8); then use the results

of Part 1 and Part 2 to conclude Theorem 2.1.

Proof: Since limi→∞ µ(−Ki) = −∞, there exists i0 ∈
N such that for all i ≥ i0

µ(M11 −Ki) ≤ ‖M11‖ + µ(−Ki) < 0, (11)

µ(M11 −Ki) − ‖M22‖ < −1. (12)

In the following, we consider sufficiently large i such that

i ≥ i0.

PART 1: The unique solution to (8) is, for all t ≥ 0,

X(t) = e(M11−Ki)tX0 +

∫ t

0

e(M11−Ki)(t−τ)M12Y (τ) dτ

(13)

Y (t) = eM22tY0 +

∫ t

0

eM22(t−τ)M21X(τ) dτ. (14)

Substituting (13) into (14) and using the initial conditions

X0 = I and Y0 = 0 yields

Y (t) =

∫ t

0
eM22(t−τ)M21e

(M11−Ki)τ dτ

+

∫ t

0

∫ τ

0
eM22(t−τ)M21e

(M11−Ki)(τ−s)M12Y (s) ds dτ

=

∫ t

0
eM22(t−τ)M21e

(M11−Ki)τ dτ

+

∫ t

0

∫ t

s

eM22(t−τ)M21e
(M11−Ki)(τ−s)M12Y (s) dτ ds, (15)
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where the order of integration in the last term was inter-

changed. This is valid (see e.g. [7]), since the integrand

is continuous and we can express the integration region in

either of the two ways: {(τ, s) : 0 ≤ τ ≤ t, 0 ≤ s ≤ τ} or

{(τ, s) : 0 ≤ s ≤ t, s ≤ τ ≤ t}.

Using (4), (5), we obtain the inequality

‖Y (t)‖ ≤ ‖M21‖

∫ t

0
‖eM22(t−τ)‖‖e(M11−Ki)τ‖ dτ

+

∫ t

0
‖M21‖‖M12‖

∫ t

s

‖eM22(t−τ)‖‖e(M11−Ki)(τ−s)‖ dτ ‖Y (s)‖ ds

≤ ‖M21‖

∫ t

0
e‖M22‖(t−τ)eµ(M11−Ki)τ dτ

+

∫ t

0
‖M21‖‖M12‖

∫ t

s

e‖M22‖(t−τ)eµ(M11−Ki)(τ−s) dτ ‖Y (s)‖ ds

(16)

= α(t) +

∫ t

0
κ(t, s)‖Y (s)‖ ds, (17)

where

α(t) := ‖M21‖

∫ t

0

e‖M22‖(t−τ)eµ(M11−Ki)τ dτ (18)

κ(t, s) := ‖M21‖‖M12‖

∫ t

s

e‖M22‖(t−τ)eµ(M11−Ki)(τ−s) dτ.

(19)

Applying Lemma 2.1 to (17) yields, for all finite t ≥ 0,

‖Y (t)‖ ≤ ᾱ(t) exp

(∫ t

0

κ̄(t, s) ds

)

, (20)

where

ᾱ(t) = sup
τ∈[0,t]

α(τ), κ̄(t, s) = sup
τ∈[s,t]

κ(τ, s).

Next, we derive bounds for α(t), ᾱ(t) and κ(t, s), κ̄(t, s)
using the properties (11), (12). First, consider (18),

α(t) = ‖M21‖e
‖M22‖t

∫ t

0

e(µ(M11−Ki)−‖M22‖)τ dτ

=
‖M21‖

µi

(
e‖M22‖t − eµ(M11−Ki)t

︸ ︷︷ ︸

∈(0,1]

)

≤
‖M21‖

µi
e‖M22‖t =

M1(t)

µi
,

where µi := ‖M22‖ − µ(M11 − Ki) > 1 and M1(t) :=
‖M21‖e

‖M22‖t ≥ 0 is a continuous function in t. Therefore,

ᾱ(t) = sup
τ∈[0,t]

α(τ) ≤ sup
τ∈[0,t]

‖M21‖

µi
e‖M22‖τ

=
‖M21‖

µi
e‖M22‖t =

M1(t)

µi
. (21)

Similarly, we obtain for (19), with s ≤ t,

κ(t, s) = ‖M21‖‖M12‖e
‖M22‖te−µ(M11−Ki)s

∫ t

s

e(µ(M11−Ki)−‖M22‖)τ dτ

=
‖M21‖‖M12‖

µi

(
e‖M22‖(t−s) − eµ(M11−Ki)(t−s)

︸ ︷︷ ︸

∈(0,1]

)

≤
‖M21‖‖M12‖

µi
e‖M22‖t =

M2(t)

µi
,

where M2(t) := ‖M21‖‖M12‖e
‖M22‖t ≥ 0 is a continuous

function in t. Therefore,

κ̄(t, s) = sup
τ∈[s,t]

κ(τ, s) ≤ sup
τ∈[s,t]

‖M21‖‖M12‖

µi
e‖M22‖τ

=
‖M21‖‖M12‖

µi
e‖M22‖t =

M2(t)

µi
. (22)

With (21) and (22), we can now bound (20),

‖Y (t)‖ ≤
M1(t)

µi
exp

(∫ t

0

M2(t)

µi
ds

)

≤
M1(t)

µi
exp

(
M2(t)

µi
t

)

≤
M1(t)

µi
etM2(t) =

M(t)

µi
, (23)

where M(t) := M1(t)e
tM2(t) is a positive and continuous

function. Since limi→∞ µi = ∞, limi→∞ Y (t) = 0 follows

directly from (23). Furthermore, with (13) and X0 = I , for

all t > 0,

‖X(t)‖

≤ eµ(M11−Ki)t + ‖M12‖

∫ t

0

eµ(M11−Ki)(t−τ)
︸ ︷︷ ︸

∈(0,1]

‖Y (τ)‖ dτ

≤ eµ(M11−Ki)t +
‖M12‖

µi

∫ t

0

M(τ) dτ

≤ eµ(M11−Ki)t +
‖M12‖

µi
t max

τ∈[0,t]
(M(τ)).

Therefore, limi→∞X(t) = 0, which completes the proof of

Part 1.

PART 2: Substituting (14) into (13) and using the initial

conditions X0 = 0 and Y0 = I yields, after interchange of

integration in the second term,

X(t) =

∫ t

0

e(M11−Ki)(t−τ)M12e
M22τ dτ

+

∫ t

0

∫ t

s

e(M11−Ki)(t−τ)M12e
M22(τ−s)M21X(s) dτ ds,

and, therefore,

‖X(t)‖ ≤ ‖M12‖

∫ t

0
eµ(M11−Ki)(t−τ)e‖M22‖τ dτ

+

∫ t

0
‖M12‖‖M21‖

∫ t

s

eµ(M11−Ki)(t−τ)e‖M22‖(τ−s) dτ ‖X(s)‖ ds.

(24)

Now, consider the substitutions τ → t− τ for the first term

in (24) and τ → t+s−τ for the inner integral of the second

term, which yields

‖X(t)‖ ≤ ‖M12‖

∫ t

0
e‖M22‖(t−τ)eµ(M11−Ki)τ dτ

+

∫ t

0
‖M12‖‖M21‖

∫ t

s

e‖M22‖(t−τ)eµ(M11−Ki)(τ−s) dτ ‖X(s)‖ ds.

(25)

Comparing this inequality to (16), we find that we can

obtain (25) from (16) by the substitutions ‖Y (·)‖ → ‖X(·)‖,

‖M12‖ → ‖M21‖, and ‖M21‖ → ‖M12‖. Therefore, we can
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derive an upper bound on ‖X(t)‖ the same way as in Part

1. Corresponding to (23), for all t ≥ 0,

‖X(t)‖ ≤
L(t)

µi
,

where we obtain L(t) from M(t) by substituting ‖M12‖ →
‖M21‖ and ‖M21‖ → ‖M12‖. Thus, limi→∞X(t) = 0 and,

with (14) and Y0 = I , we have, for all t > 0,

‖Y (t) − eM22t‖ ≤ ‖M21‖

∫ t

0

eµ(M22)(t−τ)‖X(τ)‖ dτ

≤
‖M21‖

µi

∫ t

0

eµ(M22)(t−τ)L(τ) dτ

≤
‖M21‖

µi
t max

τ∈[0,t]

(

eµ(M22)(t−τ)L(τ)
)

.

Therefore, limi→∞‖Y (t) − eM22t‖ = 0 and thus

limi→∞ Y (t) = eM22t, which completes the proof of Part

2.

PART 3: The matrix exponential

X (t) := exp

([
M11 −Ki M12

M21 M22

]

t

)

is the unique solution to the linear matrix ODE, [4],

Ẋ (t) =

[
M11 −Ki M12

M21 M22

]

X (t), t ≥ 0, X (0) = I. (26)

Note that this implies continuity of X (·). By subdividing

X (t) into block matrices of appropriate dimensions,

X (t) =

[
X11(t) X12(t)
X21(t) X22(t)

]

,

we can write (26) equivalently as
[
Ẋ11(t)

Ẋ21(t)

]

=

[
M11 −Ki M12

M21 M22

] [
X11(t)
X21(t)

]

,

[
X11(0)
X21(0)

]

=

[
I
0

]

,

(27)
[
Ẋ12(t)

Ẋ22(t)

]

=

[
M11 −Ki M12

M21 M22

] [
X12(t)
X22(t)

]

,

[
X12(0)
X22(0)

]

=

[
0
I

]

.

(28)

Note that (27) and (28) represent the matrix ODEs considered

in Part 1 and Part 2, respectively. Using the results (9), (10),

we therefore conclude

lim
i→∞

exp

([
M11 −Ki M12

M21 M22

])

= lim
i→∞

[
X11(1) X12(1)
X21(1) X22(1)

]

=

[
0 0
0 exp(M22)

]

.

III. TIME SCALE SEPARATION ALGORITHM

In this section, we present an application of Theorem 2.1.

We derive a technique for simplifying a description of a

control system with inner and outer feedback loops, where

the time scale of the inner loops can be assumed to be

sufficiently smaller than the time scale of the outer loops. We

are interested in deriving a discrete-time model at the slow

rate, i.e. that is relevant to the outer loop, while assuming

infinitely fast inner loops. The problem is formulated in

Sec. III-A and the time scale separation algorithm is derived

in Sec. III-B.

A. Problem Formulation

Consider the continuous-time, linear time-invariant system

(time argument t in x and u omitted for convenience)

[
ẋ1

ẋ2

]

=

[
A11 A12

A21 A22

] [
x1

x2

]

+

[
B11 B12

B21 B22

] [
u1

u2

]

, (29)

where x1 ∈ R
n1 , x2 ∈ R

n2 , u1 ∈ R
m1 , and u2 ∈ R

m2 .

We require n1 = m1 and B11 being invertible. The input u2

changes at a rate T ; u1 may change at a faster rate. Local

proportional feedback is applied on the states x1 through the

input u1,

u1 = F (v − x1), (30)

with the gain matrix F and the reference input v ∈ R
n1 that

also changes at rate T . The control system is depicted in

Fig. 1. We assume that the dynamics of the local feedback

−

v Gu1
Fi

x2

x1

u2

Fig. 1. Control system with local feedback on x1.

loop closed through (30) are sufficiently faster than the

dynamics of the remaining states x2.

We are ultimately interested in a discrete-time model of the

system (29) with local feedback (30) discretized at sampling

rate T , that is we are interested in the system from inputs

(v, u2) to outputs (x1, x2) as shown in Fig. 1. This model

can for example be used to design an outer loop controller.

We will consider the limiting case, where the local feed-

back loop closed by (30) is made arbitrarily fast, i.e. where

the eigenvalues of A11 − B11F go to negative infinity.

Precisely, we consider a sequence of feedback controllers

F = Fi, i = 1, 2, . . . ,∞, where µ(−B11Fi) → −∞ as

i→ ∞. For example, the gain matrices may be chosen as

Fi = B−1
11 diag(ki,1, ki,2, . . . , ki,n1

), (31)

with ki,j ≥ i for all j = 1, . . . , n1, i.e. individual loops are

closed on the states x1. In the following, we will derive the

discrete-time system of (29) under feedback (30), (31) as

i→ ∞.

B. Algorithm

Substituting (30) in (29) yields

[
ẋ1

ẋ2

]

=

[
A11 −B11Fi A12

A21 −B21Fi A22

] [
x1

x2

]

+

[
B11Fi B12

B21Fi B22

] [
v
u2

]

.

Since the inputs v and u2 are constant over the sampling

period T (assuming zero-order hold sampling), this can be
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rewritten as






ẋ1

ẋ2

v̇
u̇2







=







A11 −B11Fi A12 B11Fi B12

A21 −B21Fi A22 B21Fi B22

0 0 0 0
0 0 0 0













x1

x2

v
u2






,

(32)

for 0 ≤ t ≤ T . Denoting the vector of states and inputs by

w := [x1 x2 v u2]
T and the matrix by H , (32) can be

rewritten as ẇ(t) = Hw(t).
Now, apply the transformation S, w̄ := Sw, with

S :=







I 0 −I 0
−Z I 0 0
0 0 I 0
0 0 0 I






, S−1 =







I 0 I 0
Z I Z 0
0 0 I 0
0 0 0 I






,

where Z := B21B
−1
11 . The transformed system reads

˙̄w(t) = H̄w̄(t), (33)

with

H̄ := SHS−1

=







A11 +A12Z −B11Fi H̄12 H̄13 H̄14

H̄21 H̄22 H̄23 H̄24

0 0 0 0
0 0 0 0






,

H̄12 = A12, H̄13 = A11 +A12Z, H̄14 = B12,

H̄21 = A21 − ZA11 + (A22 − ZA12)Z,

H̄22 = A22 − ZA12,

H̄23 = A21 − ZA11 + (A22 − ZA12)Z,

H̄24 = B22 − ZB12.

Note that via this transformation only the block H̄11 = A11+
A12Z −B11Fi depends on the feedback gain matrix Fi.

We discretize the system (33) with sampling time T ,

w̄(t+ T ) = exp(TH̄)w̄(t). (34)

Now, consider the limiting case for infinitely

fast local feedback (31) as i → ∞. We have

µ(−B11Fi) = µ(−B11B
−1
11 diag(ki,1, ki,2, . . . , ki,n1

)) =
µ(−diag(ki,1, ki,2, . . . , ki,n1

)) = maxj=1,...,n1
(−ki,j) →

−∞ as i → ∞. Therefore, we can apply Theorem 2.1 to

the matrix exp(TH̄). We obtain

lim
i→∞

exp(TH̄) =







0 0 0 0

0 Ĥ22 Ĥ23 Ĥ24

0 0 I 0
0 0 0 I






, (35)

where Ĥ22, Ĥ23, and Ĥ24 are defined from

[

Ĥ22 Ĥ23 Ĥ24

]
=

[
I 0 0

]
exp



T





H̄22 H̄23 H̄24

0 0 0
0 0 0







 .

Using the fact that exp(TH) = exp(TS−1H̄S) =
S−1 exp(TH̄)S, [4], we obtain the discretization of the

system (32), as i→ ∞,

w(t+ T ) = lim
i→∞

(exp(TH))w(t),

where

lim
i→∞

exp(TH) = S−1 lim
i→∞

(
exp(TH̄)

)
S

=







0 0 I 0

−Ĥ22Z Ĥ22 Ĥ23 + Z Ĥ24

0 0 I 0
0 0 0 I






.

This can be rewritten as
[
x1(t+ T )
x2(t+ T )

]

=

[
0 0

−Ĥ22Z Ĥ22

] [
x1(t)
x2(t)

]

+

[
I 0

Ĥ23 + Z Ĥ24

] [
v(t)
u2(t)

]

,

(36)

which is the desired discrete-time system of (29) under

feedback (30), (31) as i → ∞. Note, in particular, that

x1(t + T ) = v(t) as expected, i.e. we have ideal reference

tracking. We will refer to x1 as the residualized states. The

simplification of the matrix exponential in Theorem 2.1 for

i → ∞ corresponds to the simplified dynamics for the

residualized states due to high gain inner loop feedback.

IV. APPLICATION TO MULTI-LOOP CONTROL OF AN

INVERTED PENDULUM

In this section, the time scale separation algorithm pre-

sented in Sec. III is applied to the problem of designing a

two-loop cascaded control system for stabilizing an inverted

pendulum. The system and the control architecture are de-

scribed in Sec. IV-A. In Sec. IV-B, the time scale separation

technique is applied to derive a simplified model. With this

model, a state feedback controller is designed. Experimental

results of the closed-loop operation of the pendulum are

given in Sec. IV-C.

A. System description

The inverted pendulum (see Fig. 2) is pivoted at the

ground; it has one rotational degree of freedom. On the

pendulum, a second body (referred to as the module) is

mounted. A DC motor on the module can rotate the module

with respect to the pendulum via a bevel gear. The DC motor

features a built-in velocity controller. Two physical effects

are utilized to stabilize the inverted pendulum: First, torque

is exerted on the pendulum when the module is actuated, and,

second, the center of mass of the overall system is shifted

by moving the module.

Two encoders on the module and at the pendulum pivot are

used to measure the angles φ and ψ in radians. Rate gyros

mounted on the pendulum measure the pendulum angular

velocity φ̇ and an encoder on the motor is used to determine

the motor velocity, which is proportional to the module

velocity ψ̇.
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φ

ψ

Fig. 2. The inverted pendulum. Left: Photo of the real system. Right:
Schematic drawing with module angle ψ and pendulum angle φ.

A linear state space model of the system, which was

derived from first principles modeling, is given by

ẋ = Ax+Bu1, (37)

A =







0 0 −15.78 −8.04
0 0 −2.24 11.58
1 0 0 0
0 1 0 0






, B =







2.52
0.14
0
0






,

where the states are x = [ψ̇, φ̇, ψ, φ]T and u1 is the torque

at the module. The open loop poles are at ±4.05 i rad/s and

±3.5 rad/s.

Our objective is to design a controller for stabilizing the

system about the equilibrium of an upright pendulum (φ =
0) and a downward module (ψ = 0). We use a two-loop

control architecture: a fast inner feedback loop operating at

1 kHz that tracks commanded velocities and a slower outer

loop at 100 Hz generating the velocity commands from state

measurements, see Fig. 3. For the inner loop controller Cv ,

we employ the local velocity controller on the DC motor.

−

x2

GCvC

G̃

u1v
x1 = ψ̇

Fig. 3. The control architecture for balancing the inverted pendulum. The
block G represents the pendulum, Cv denotes the motor velocity controller,

G̃ combines these two blocks, and C is the outer controller.

In model (37), we assume that we can control the torque at

the module directly. In reality, however, we can only control

the torque at the motor, which is translated to the torque

at the module in a nontrivial way through a transmission

system, which involves nonlinearities like kinetic and static

friction and backlash. The approach we take avoids modeling

these nonidealities. By closing the inner loop, we can take the

abstract view of the motor and its controller as a system that

achieves a commanded module velocity sufficiently fast. In

fact, we consider the ideal case of an infinitely fast inner loop

control system: we apply the time scale separation algorithm

from Sec. III in order to obtain a simplified model of the

local feedback system G̃. With this model, we can design

the outer loop controller C without detailed knowledge of

the controller Cv and the nonidealities involved in the inner

loop. Note, however, that the effect of the inner loop itself is

taken into account in the simplified model by the time scale

separation algorithm.

The assumption that the motor controller tracks the ref-

erence velocity sufficiently fast translates to the requirement

that the inner closed-loop system G̃ (from v to ψ̇) operates

at a sufficiently smaller time scale than the outer closed-

loop system. In Fig. 4, the response of the system G̃ to a

step change in the reference velocity is shown. The time

constant of the motor response is roughly 0.03 s, which is

about one order of magnitude smaller than the time constants

of the physical system (37). Therefore, the assumption made
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Fig. 4. Inner loop subsystem G̃: Response of the module velocity ψ̇ (gray)
to changes in the reference velocity v (black).

in Sec. III-A that the local feedback dynamics are sufficiently

faster than the dynamics of the remaining states is valid. It

is thus legitimate to approximate the motor controller Cv by

a controller with an infinite gain of the form (30), (31).

B. Controller design using time scale separation algorithm

We approximate the inner closed-loop system G̃ using

the time scale separation algorithm presented in Sec. III.

Applying (36) on the system (37) with sampling time T =
0.01 yields

[
x1(t+ T )
x2(t+ T )

]

= Ad

[
x1(t)
x2(t)

]

+Bdv(t), (38)

Ad =









0 0 0 0

−0.054 1.001 −0.014 0.12

0 0 1.0 0

−5.4e−4 0.010 −7.0e−5 1.001









, Bd =









1.0

0.054

0.010

5.4e−4









,

where x1 = ψ̇ is the residualized state, x2 includes all

other states, and the desired module velocity v(t) is the new

input. Note in particular that by the high gain assumption the

commanded module velocity is achieved in one time step,

x1(t) = v(t− T ), irrespective of all other states.

The linear discrete-time model (38) is used to design an

infinite horizon LQR controller. In addition to weights on

states and control input v(t), we also penalize the difference
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in controller commands v(t)−v(t−T ). This is equivalent to

penalizing torque, which is the input to the original system

(37). Thus, we have the cost function

J(v) =

∞∑

k=0

(x2(kT ))TQx2(kT )

+ r(v(kT ))2 + ξ
(
v(kT ) − v((k−1)T )

)2
,

(39)

with weighting matrix Q and scalars r, ξ. Since v((k−1)T ) =
x1(kT ), we can reformulate (39) as an LQR design problem

with nonzero weights on state and input cross terms

J(v) =

∞∑

k=0

(x(kT ))T

[
ξ 0
0 Q

]

x(kT )

+ (r + ξ)
(
v(kT )

)2
+ 2(x(kT ))T

[
−ξ
0

]

v(kT ),

(40)

which can be solved using standard LQR design tools, [8].

A stabilizing feedback gain vector that results from suitable

weights is

l =
[
l1 l2 l3 l4

]
=

[
−0.23 −9.99 3.66 −34.6

]
.

The closed-loop poles are at 0.835, 0.966, 0.966, and 0.978.

As expected, there is one pole corresponding to the residu-

alized state that is considerably faster than the other poles.

Using the approximation x1(t) = v(t−T ), we implement

the following control law:

v(t) = −l1v(t− T ) −
[
l2 l3 l4

]
x2(t), (41)

where the states x2 are measured as described in Sec. IV-

A. Note that measurements of the residualized state are not

required for controlling the system.

C. Experimental results

The pendulum was operated with the controller architec-

ture shown in Fig. 3 and with the control law (41) imple-

mented for C. Typical state measurements during balancing

of the pendulum are shown in Fig. 5, where at time t ≈ 3 s

the system was disturbed by an impact on the pendulum.

From Fig. 6, we can see that the assumption of fast velocity

command tracking is valid.

V. CONCLUDING REMARKS

The time scale separation algorithm for a multi-loop

control system that we presented in Sec. III is one possible

application of the matrix exponential result in Theorem 2.1.

However, the limiting property of the matrix exponential

might also be beneficial for understanding other problems

involving fast and slow dynamics.

Similar results to the presented time scale separation

algorithm might also be obtained using singular perturbation

methods (see e.g. [9]). A detailed comparison of these

techniques is beyond the scope of this paper, but shall be

included in a later publication on this topic.

Furthermore, we are working on possible relaxations of

the assumptions on the system (29) (especially the input

matrix B11 being invertible) and on extending the time scale

separation technique to general nonlinear controllers that are

sufficiently fast.
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Fig. 5. State measurements of the inverted pendulum in closed-loop

operation. Top: Angular velocity of the module ψ̇ (black) and the pendulum

φ̇ (gray). Bottom: Angles of the module ψ (black) and the pendulum φ
(gray). At t ≈ 3s the system was disturbed by an impact on the pendulum.
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Fig. 6. Fast velocity tracking: Commanded velocity v (black) and actual

measured module velocity ψ̇ (gray).
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