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Abstract— We propose a novel method that enables a robot to
identify a graspable object part of an unknown object given only
noisy and partial information that is obtained from an RGB-D
camera. Our method combines the benefits of local with the
advantages of global methods. It learns a classifier that takes a
local shape representation as input and outputs the probability
that a grasp applied at this location will be successful. Given a
query data point that is classified in this way, we can retrieve all
the locally similar training data points and use them to predict
latent global object shape. This information may help to further
prune positively labeled grasp hypotheses based on, e.g. relation
to the predicted average global shape or suitability for a specific
task. This prediction can also guide scene exploration to prune
object shape hypotheses.

To learn the function that maps local shape to grasp stability
we use a Random Forest Classifier. We show that our method
reaches the same classification performance as the current
state-of-the-art on this dataset which uses a Convolutional
Neural Network. Additionally, we exploit the natural ability
of the Random Forest to cluster similar data. For a positively
predicted query data point, we retrieve all the locally similar
training data points that are associated with the same leaf nodes
of the Random Forest. The main insight from this work is that
local object shape that affords a grasp is also a good predictor
of global object shape. We empirically support this claim
with quantitative experiments. Additionally, we demonstrate the
predictive capability of the method on some real data examples.

I. INTRODUCTION

Autonomous grasping of any kind of object in arbitrarily
complex environments is still unattainable for today’s robots.
There have been great advances in robust grasping and even
manipulation of known objects in environments of moderate
complexity, e.g. by Righetti et al. [1], Hudson et al. [2],
Kazemi et al. [3]. However, the higher the uncertainty about
crucial aspects of a manipulation task, the harder it becomes
for the robot to successfully plan and execute its actions.

For example, there are theoretically well-founded metrics
to evaluate the performance of a grasp given complete
information about the object, the hand and their relative
poses [4] that are implemented in all the major simulators
such as GraspIt! [5] or OpenRave [6]. But how to let a robot
grasp an object of uncertain global shape is an active area
of research. There is little agreement in the community on
how to best represent partial object information and infer a
grasp given this. This is however a very common problem
in real-world scenarios. Especially in cluttered scenes, large
parts of an object may be occluded and segmentation of the
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visible parts from its surroundings becomes more difficult. A
comprehensive overview of the different approaches towards
this problem is given by Bohg et al. [7].

There are a few methods that try to estimate global object
shape from partial information. The inferred information
provides the basis for grasp planning methods that assume
knowledge of a full object model [8], for further guiding
tactile exploration [9, 10] to learn object models or for
informing a grasp controller [10].

Other methods do not attempt to predict global object
shape but rather to predict graspability directly from the
partial and local information. These methods often employ
supervised learning techniques on annotated grasp experi-
ence databases to predict where and how to grasp an object in
a scene [11, 12, 13, 14, 15, 16]. Local methods have several
advantages over method representing global object shape.
They allow to generalize learned models across different
objects that may have a very different global shape but
are locally similar. Because they only rely on local infor-
mation, they are also less sensitive to segmentation errors
or occlusions. Furthermore, no prior semantic knowledge
on e.g. object identity or category is necessary. All these
factors reduce the complexity of information extraction from
raw sensory data. However, global object shape has a large
influence on whether a grasp will succeed or not. This is
naturally not captured by local information. If two objects
share two similar parts but have otherwise vastly different
global shapes, different grasps may be required. In this paper,
we propose a method that predicts (i) graspability and (ii)
global object shape given only local information. Thereby,
we inherit the advantages of local methods and still yield a
prediction of global object shape. This can form the input
to subsequent grasp planners and controllers or guide further
interactive exploration of the environment.

In detail, we aim to infer a grasp pre-shape for an object
of unknown identity, category or shape given a point cloud
obtained from an RGB-D camera. In line with some of
the aforementioned related work [11, 13, 14, 15, 16], we
formulate this as a classification problem that takes in a
local shape representation and outputs the probability of a
grasp applied at this location to be successful. We learn
the function that maps our local shape feature to grasp
stability based on a recently proposed large-scale synthetic
database Kappler et al. [17]. In total, it contains around 500k
data points of annotated local shape representation, referred
to as templates throughout the remainder of this paper.

As a classifier, we use a Random Forest. In the experiment
section, we will show that our trained model achieves the



same performance as the current state-of-the-art on this data
set which uses a Convolutional Neural Net. For our second
aim of predicting global object shape from local information
we exploit the ability of the Random Forest to cluster the
dataset into locally similar templates. Given a classified
query template, obtained from the trained Random Forest,
we can extract all the exemplars of the training data set that
ended up at the same leaf nodes. Since we have access to
complete information about these exemplars, we can use it to
make predictions about some latent properties of the target
object. In this paper, we will focus on the global object shape
as this constitutes important information for grasp planners
and robot controllers or interactive exploration. We model
the global shape of the target object as a non-parametric
distribution that is populated with the polygonal mesh models
of the retrieved training data points. In the experimental
section, we quantitatively show that this yields coherent
information about the ground truth shape of the query object
although only using local shape information. Furthermore,
we show qualitative examples of grasp retrieval and object
shape prediction on real data.

II. RELATED WORK

In this section, we will review some of the methods that
use a supervised learning technique for deciding whether
a grasp is stable or not. We place special focus on those
that use local 3D shape information as they are closest to
the approach proposed in this paper. Detry et al. [12], Lenz
et al. [13], Herzog et al. [14] and Kroemer et al. [15] extract
local shape information and either represent it relative to the
hand coordinate system [12, 13] or relative to some object-
related coordinate frame [14, 15]. All infer hand pre-shapes
where Herzog et al. [14] also varies the hand configuration.
Kroemer et al. [15] infers a full movement primitive. The
extracted local 3D data is differently represented. We adopt
a variation of the local shape representation by Herzog
et al. [14] that has shown to work well for exemplar based
approaches. In particular it holds additional information
compared to the raw point clouds as it explicitly encodes
occlusion and free space. However, any other local shape
representation may also be used with the proposed approach.
Lenz et al. [13], Herzog et al. [14] and Kroemer et al. [15]
use supervised learning to infer a graspable sub part of the
environment. From those, Herzog et al. [14], Kroemer et al.
[15] use very little data and incrementally improve their
model based on trial and error learning. Lenz et al. [13]
learn a deep network on an annotated dataset to classify
their local shape representation as either graspable or not.
Recently, Redmon and Angelova [18] trained a deep network
on the same data and outperformed [13]. However, the
authors use global image information to predict a grasp.
The resulting model should suffer in performance when
objects are not as well segmented as in this particular
dataset. We train our model on significantly more data from
a new large-scale synthetic database in which each grasp is
automatically annotated using physics simulation [17]. The
suitability of this metric is verified through crowd-sourcing.

It is also the largest dataset available in the community
and probably has the least noisy labels of all the synthetic
datasets. Furthermore, it provides the aforementioned local
shape representation. We use a Random Forest that predicts
stable grasps at similar accuracy as a Convolutional Neural
Net (CNN) and has the additional ability to cluster locally
similar data in a supervised manner. We will show that we
can predict the global object shape based on the locally
similar exemplars. This is similar to retrieval approaches
where given a query object, we retrieve additional object
information from the locally similar exemplars. Goldfeder
et al. [19] use a similar database to ours. It is also constructed
in simulation. However, it is based on the Princeton Shape
Benchmark(PCB) [20] which contains many objects that
are rather uncommon in a household such as trees, insects
or planes. Furthermore, the labeling is based on a classic
metric which we have shown to be an inferior predictor of
grasp success compared to a physics-based metric [17]. The
retrieval method by Goldfeder et al. [19] is based on feature
matching extracted from synthetic depth maps of the objects
as seen from the robotic hand. In our database, there exist
multiple local shape templates per grasp that are generated
by varying the independent viewpoint of the camera. This
reflects sensing conditions on a real robot that seldom have
a camera in the palm of the hand. Detry et al. [12] also
propose a method for grasping by retrieval. The authors
focus on finding a lower dimensional space in which the data
samples can be clustered. The information in each cluster
is then compressed and represented by a prototypical grasp
that can be retrieved by projecting a query grasp into the
lower-dimensional space. None of these retrieval methods
has investigated whether global object shape can be predicted
from local information only.

Summarizing, the contributions of the method proposed
in this paper are: (i) a discriminative model for predicting
whether local shape affords a stable grasp, (ii) applying the
same model for retrieving global object properties. In this
paper, we focus on global object shape.

III. PROBLEM FORMULATION

Given the observation of a scene from an RGB-D camera,
we want to infer the best grasp location. Specifically, our aim
is to infer a pre-grasp pose (position and orientation of the
hand) which forms a natural pre-cursor to reactive grasping
approaches such as [21, 22, 23] that can robustly acquire a
grasp under uncertainty. More formally, given an observation
O of the scene, we want to learn a function f that outputs
the best grasp pose g:

g = f(O) (1)

where g = (x,q) with x as the 3D position and q as the
rotation represented by a quaternion. We formulate this as a
classification problem which determines whether grasping at
a specific location in the environment will be successful or
not. Let �(g,O) refer to the local shape of the environment
O relative to the coordinate frame of the grasp g. To simplify
notation, we will use �g. Furthermore, we define the class



label l(�g) = 1 if this particular local shape affords a stable
grasp. We train a discriminative model that given �g predicts
whether g will result in a stable grasp:

y = p(l(�g) = 1|g,O) (2)

with y 2 [0, 1]. In particular, we are interested in the best
pre-grasp pose from the set G of all possible grasps:

g

⇤
= f(O) = argmax

g2G
p(l(�g) = 1|g,O) (3)

Some of the related approaches, discussed in Section II, can
be exactly cast in this formulation.

Additionally to classifying a grasp candidate as either
stable or unstable, we also aim to predict additional latent
information about the object that has generated this can-
didate. We formulate this as a retrieval problem in which
the resulting set of most similar data points forms a non-
parametric distribution over the associated variables that are
latent for the query object. In our case, this distribution may
be over the object’s global shape, its category, contact points
or final grasp pose. In this paper, we focus on the global
shape. More formally, given a query grasp pose gq , we want
to retrieve a subset S from the total set G of grasps whose
members are perceptually similar to the query grasp pose.

S = {gd 2 G|d(�gq ,�gd) < ⌧} (4)

where d is a distance function between grasp poses and
⌧ is a threshold on this distance. This is essentially a
nearest neighbor problem. In terms of the prediction of
target variables, the connection between Random Forests and
adaptive k-nearest neighbor has previously been pointed out
by [24]. We will show, how a Random Forest classifier can
be used to learn the function f in Eq. 3 and how at the same
time it defines the variable number of nearest neighbors in
the set S as defined in Eq. 4.

IV. APPROACH

In this paper, we simultaneously address grasp prediction
and retrieval of latent global object properties. We employ a
random forest classifier as the discriminative model and use
its natural ability to cluster similar data points at the leaf
nodes for the retrieval task. This clustering is supervised in
the sense that it is not only driven by the similarity of the
data points themselves but also by their ground truth grasp
stability label. Fig. 1 gives an overview of out full pipeline
during both training and testing.

A. Grasp and Local Shape Representation

We use a variation of the local shape representation
by Herzog et al. [14] as described in Kappler et al. [17].
There are several advantages of this local representation of
the shape at which a grasp is applied. First of all, it is not
as dependent on accurate object segmentation as a global
representation. It can be extracted easily and efficiently from
partial point clouds. An unoptimized version for template
extraction requires on around 80 milliseconds for every
template. Additionally, it explicitly represents occluded parts
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Fig. 2: Variation of the local shape representation given different viewpoints. The grasp
for each of these templates is the same, i.e. approach direction along the cyan line and
fixed wrist roll. The viewpoint is indicated by the pink line. Each column shows the
same template from two different directions. (Top) Template viewed from the approach
direction. (Bottom) Template viewed from the side. The occlusion area is the most
affected by the varying viewpoint. Figure adopted from our previous work [17].

(a) (b) (c)
Fig. 3: Template for a small example object. It is linked to the grasp visualized in
(a). Cyan line labels the surface normal and approach direction. Pink line labels the
viewpoint from which the point cloud (blue dots in (b)) got generated. The associated
template is visualized in (c). Green dots label surface points. Red dots label the
boundary to the occluded space. Figure adopted from our previous work [17].

as being different from free space. In the following, we will
refer to this local shape representation as template.

Given a partial point cloud and a normal for each point,
a template is a circular height map of a specified diameter.
Its origin is positioned at the intersection of hand approach
and object model. The height map has the same normal
vector as this point. The diameter is chosen according to
the size of the robotic hand. A template has three channels
each storing information about the surface, free or occluded
space. The surface channel measures the distance from the
height map plane to the point cloud. Given the viewpoint
from which the point cloud was recorded, we can compute
the occluded space when viewing the point cloud along
the template normal. The occlusion channel measures the
distance from the height map plane to this occluded space.
The free space channel stores a fixed value for all positions
on the template that are neither occluded nor occupied by a
surface. See Fig. 2 for a visualization of such a template.

A grasp is linked to this template by equating its approach
direction with the normal of the height map. Its pre-grasp
position is at a fixed distance from the template origin to
which we will refer as stand-off throughout the remainder of
this paper. Each template has a fixed coordinate system. The
roll of the hand is determined by aligning the axis along the
fingers with the x-axis of the template. For the experiments
in this paper, we only consider one finger configuration as
depicted in Fig. 3.

B. Feature Vector

We discretize the height map into a grid of 48 ⇥ 48, for
all 3 channels. The dimensionality of the template is very
high when considering it as the input to the Random Forest
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Fig. 1: Overview of the proposed system from extracting the point cloud to suggesting a grasp. (Left) Point cloud is recorded with an RGB-D camera. The point cloud needs
to be sampled for grasp candidates. We use a simple table-plane based segmentation to restrict the sampling to the remaining clusters. Each grasp candidate is represented by
a template as described in Sec. IV-A. Here we show the three channels: surface, occlusion and free space. We extract a depth feature from each channel of this template as
described in Sec. IV-B and stack it into one feature vector. This feature vector is then used for training and at test time. (Middle) The feature vector serves as an input to a
Random Forest Classifier which has been trained offline on a database. By averaging over the response of each tree in the forest, the input feature vector is classified as either
stable or not. Additionally, each leaf node at which a the query data point ends up is associated with a subset of the training data. This is shown in the ’mosaics’ of the bottom
row in which each square represents a template of a training data point. (Right) This locally similar data can then not only be used for predicting the set of stable grasps per
point cloud, but also for predicting the object category and global object shape. Regarding the latter, the left shape distribution is based on synthetic data and can be compared
to the ground truth object model. On the right, you see an example for the prediction of global object shape for real point clouds.

Classifier. Therefore, we extract a feature vector very similar
to the one used in [25, 26].

Essentially, we uniformly sample once n pairs of probes
within a 48 pixels diameter. Let ui = (xu, yu) and vi =

(xv, yv) refer to the i

th pair of two probes and let Cj refer
to the height map for channel j 2 {sur, occ, free}, then one
feature component �ij is computed as:

�ij = �i(Cj) = Cj(ui)�Cj(vi) (5)

Per channel, we extract n features and stack them into the
feature vector

�j = [�1j , · · · , �nj ]
T (6)

where we choose n = 300 as in our previous work [25]. The
full feature vector is then

� = [�sur,�occ,�free]
T (7)

We use the same randomly sampled pairs of probes for
extracting a full feature vector for all the training and test
data. An example visualization of this, can be seen on the
left side of Fig. 1.

C. Random Forest Classification

We will give a brief summary of the random forest
classifier. For a more in-depth review of this model, we refer
to Breiman [27].

1) Classifying a Data Point: A random forest classifier
consists of a set of binary decision trees. Each tree consists
of a set of split nodes that each have two child nodes and a
set of leaf nodes with no further child nodes. Each split node
in this tree is associated with a specific feature component
�ij and a threshold ✓. Let �d be the feature vector of some
query data point d, then based on the value of �

d
ij , it will

either be handed further down the tree along the left branch
(�d

ij < ✓) or along the right branch (�d
ij � ✓). Once the query

point arrives at a leaf node, the majority ground truth label of
all training data points at this leaf node forms the predicted
label for this decision tree. The final label is determined by
simply averaging over the predictions of each tree. If the
forest has T trees, then

y =

1

T

TX

t=1

yt(�) (8)

2) Training a Random Forest: During training of the
forest, the optimization variables are the pairs of feature
component �ij and threshold ✓ per split node. For each tree,
a random subset of the total training data is selected that may
be overlapping with the subsets for the other trees. At each
node, the optimal split of the data is found by randomly
sampling among all feature component candidates �ij and
finding the best ✓ such that the split of the data minimizes
some impurity criteria. Here, we use the Gini impurity. The
open parameters for the forest training are the minimum
cardinality of the set of training points at a leaf node, the
maximum number of feature components to sample at each
split node and the number of trees in the forest.

D. Retrieval

After training the random forest classifier as above, there
is a minimum number of training data points at each leaf
node. Especially in our case where the input forms a local
shape representation, these reduced data sets are clusters of
locally similar data. Previously, they have been used to learn
local models of e.g. joint positions in human or robot pose
tracking [26, 25].

In our case, each training data point is generated in
simulation using a complete object mesh model of a known
category (see Sec. V for more detail on the database). Given
a query template that is classified by the Random Forest,
we can not only predict its probability to afford a successful



grasp but also make predictions about latent variables based
on the training examples at the corresponding leaf nodes.
These variables can recover the global shape of the associated
object. More formally, let T denote the number of trees in
the Random Forest classifier and let Mt denote the number
of leaf nodes in tree t after it has been trained. Per leaf node
bm,t, we have a set Lm,t containing a minimum number
of training data examples that ended up at this node during
training. As mentioned before, this minimum number is an
open parameter of the training procedure. Given the query
data point �g, which is classified to afford a stable grasp,
it will have ended up in one specific leaf node per tree:
{bm⇤,t with t 2 {1 · · ·T}}. It is therefore associated with T

leaf nodes. The retrieved set S of similar training examples
(Eq. 4) consists of the union of all corresponding sets:

S =

[

t2{1···T}

Lm⇤,t. (9)

V. EXPERIMENTAL EVALUATION

In this section, we will analyze how well the Random
Forest Classifier can (a) predict whether a template affords a
stable grasp and (b) whether the retrieval of locally similar
training data points helps to predict the global object shape.

A. Dataset

As a dataset we use our recently proposed large-scale
database of grasps [17]. It contains approximately 300k
different grasps that are applied to more than 700 dif-
ferent object instances of more than 80 different object
categories. The grasp varies in terms of the roll around the
approach vector towards the object (8 options) and in terms
of the stand-off from the object surface (2 options). The
ground truth labels of whether a grasp succeeded or not
are automatically generated through physics simulation of
the grasps and their validity is confirmed through crowd-
sourcing. Per grasp and object, the database contains several
local shape representations that are extracted from synthetic
partial point clouds. These are generated by recording data
from different viewpoints using a realistic RGB-D sensor
model that closely resembles the characteristics of a real
sensor, e.g. quantization, occlusion boundaries, and Perlin
noise [25]. In total, the database contains 500k labeled data
points.

B. Training

As proposed in [17], we split the objects into four different
sets: (i) toy dataset of bottles, (ii) set of small objects, (iii)
set of medium-sized objects and (iv) set of large objects.
Additionally we consider the union of the small, medium-
sized and large objects in the fifth set denoted by all. Each
of these sets is split into a train, test and validation set.
Each object instance is exclusive to one of these test sets.
Using this validation set will help us much better to prevent
overfitting than using cross-validation.

In the following section, we will learn one classifier for
each of the five sets of objects and individually for each
stand-off (since this does not influence the appearance of the
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Fig. 4: ROC curves for the datasets (a) Bottles (b) Small. Dashed curves refer to the
Random Forest based classifiers. Solid lines show the performance of the CNN-based
model. While there is little difference in performance for the bottle dataset, for small
objects the Random Forest produces significantly more true positives at a lower false
positive rate.
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Fig. 5: ROC curves for the datasets (a) Medium (b) Large (c) All. Dashed curves refer
to the Random Forest based classifiers. Solid lines show the performance of the CNN-
based model. For all three datasets, there is little difference in performance especially
at low false positive rates.

template). We use scikit-learn [28] as the implementation of
the Random Forest Classifier.

Using the validation dataset, we performed a grid search
over the three aforementioned open forest parameters: (i)
number of trees in the forest, (ii) minimum number of data
points at one leaf node and (iii) the maximum number of
feature component to sample as split candidates at each node.
We found that the optimal parameters were different per
object set and gripper stand-off. Due to space constraints
we omit the grid search results here. We finally used the
following parameters: 15 trees, 5 minimum data points at a
leaf node and 60 feature component candidates. These are
essentially the average parameters for the best classifiers for
each subset of data.

C. Classifying a Grasp

In this section, we show how well our Random Forests can
classify whether a grasp is stable or not. As mentioned above,
we split this analysis according to the five different datasets:
(i) bottles, (ii) small objects, (iii) medium-sized objects, (iv)
large objects and (v) the union of all these datasets denoted
by all. We compare to the Convolutional Neural Network
(CNN) from Kappler et al. [17]. Figs. 4 and 5 show the
ROC curves for all five datasets. For most of them, the
Random forest based classifiers perform similar to CNN-
based classifiers, especially for low false positive rates. For
the data set of small objects, the Random Forest outperforms
the CNN. For large objects, it performs significantly better
at higher false positive rates. At the most important dataset
of all objects, they both perform very similarly.

Additionally, we report the average classification accuracy
(ACC) for all the classifiers in Table 6. As all the datasets are



Bottles Small Medium Large All
s-off 0 s-off 1 s-off 0 s-off 1 s-off 0 s-off 1 s-off 0 s-off 1 s-off 0 s-off 1

Forest Acc 0.977 0.944 0.894 0.935 0.95 0.919 0.982 0.976 0.946 0.941
MCC 0.895 0.748 0.524 0.488 0.629 0.549 0.612 0.364 0.585 0.486

Fig. 6: Mean of the accuracy (Acc) and Matthew’s correlation coefficient (MCC) on the
test set over 10 trials of learning the Random Forest Classifier. Standard deviation is not
reported as it was very close to 0 for all results. Results are reported per object group
(bottles, small, medium, large and all) and gripper stand-off (s-off 0 and s-off 1) from
the object surface before closing the fingers. In the case of an extremely biased data
set (as it is in our case), classification accuracy does not well reflect misclassifications
of the minority class. MCC is a more balanced measure that is defined in [�1, 1]
where 1 indicates a perfect prediction and 0 a random prediction.

strongly biased towards negative data, we also included the
Matthews Correlation Coefficient (MCC) that better reflects
classification performance in these biased cases.

This shows that the proposed method can compete with
the current state of the art on this dataset and sometimes
even outperforms it.

D. Predicting Global Shape

In this section, we show how our Random Forest classifiers
can be used to predict global object shape from local shape
information. We are specifically considering templates that
are classified to be graspable. As mentioned in Sec. IV-D,
given a query shape template �gq , we can retrieve a set S
of locally similar exemplars from the training data. Members
of this set are all the training data points that during training
ended up in the same leaf nodes of the trees as �gq . We use
the ground truth object models that are available for each
training data point in S to build a non-parametric distribution
over the global object shape. Please note that the object
models in the test set are not contained in the training data
set. Therefore, a perfect shape prediction is not possible.

1) Evaluation Metric: We quantitatively evaluate how
well this non-parametric distribution predicts the ground
truth shape of the object from which �gq is extracted. For
each object model ok associated to a locally similar template
in S , we sample a set of points pi 2 Pk from their surface.
Let P denote the set containing all Pk. Furthermore, we
sample a set of points qj 2 Pq from the ground truth
object model oq . Please note, that all the object models as
well as the ground truth model are all transformed into the
same coordinate frame relative to the grasp that is related
to the associated template. Then for each object model ok

and corresponding points in Pk we compute the Euclidean
distance d to the nearest neighbor in Pq

dpk
i
= argmin

qj2Pq
||pk

i � qj ||22 (10)

such that we have a set D with

D = {dpk
i
| pk

i 2 Pk 8Pk 2 P}. (11)

This set represents the distribution of surface errors between
the ground truth and the retrieved object models.

2) Baselines:
a) Random Leafs: For each positively classified data

point, we randomly sample a different test data point that
may also be classified as negative. We retrieve object models
from the tree leafs that are associated to this randomly
sampled data point. By comparing to the resulting surface
error distribution, we want to emphasize that there is no
unfair bias in the data set.

b) Unsupervised Clustering: We use Random Forest
Embedding (RFE) [29] to perform a very similar clustering
as done for Random Forest Classification, however in an
unsupervised manner. That means that during training, the
split node parameters are not chosen to optimize some im-
purity measure of classification labels. However, we perform
the same retrieval of training data points for some test point
as for the supervised model. By comparing to the resulting
surface error distribution, we want to emphasize that the
information on grasp suitability provides cues on global
object shape.

RFE produces a very high-dimensional, sparse and binary
feature vector. We train a Bernoulli model for grasp stability
classification that is well suited for this type of input data.
This is only used to select positively classified test points.
The classification accuracy of this model is lower than that of
the CNN and Random Forest. However, in this baseline, we
are only interested in the performance of the unsupervised
clustering and use the classification for some filtering.

3) Results: Fig. 7 shows four example predictions of
global object shape from the retrieved object models (2nd
row) associated to templates in matching leaf nodes (1st
row). The ground truth object model is shown in red. We
can observe that all the templates within a leaf node are
locally similar. Furthermore, they predict well the global
shape of the object as we will quantitatively shown further
below. The third row shows object models that are retrieved
from leaf nodes which are matching a randomly selected test
data point (Random Leafs baseline). Especially for leaf nodes
which contain a majority of negative templates, the shapes
and poses of the retrieved objects vary a lot.

Fig. 8 visualizes the mean and standard deviation of this
surface error (red) with increasing distance from the centroid
of the template. The Random Leafs baseline is shown in blue
and the Unsupervised Clustering baseline in green. We can
observe that the proposed method can well predict global
object shape. Even at a distance of 20cm from the grasp
position, the mean surface error between ground truth model
and shape distribution is approximately 2cm for the ’all’ ob-
ject set. As expected, the error is also significantly lower than
for the Random Leafs baseline. The proposed method also
outperforms the Unsupervised Clustering baseline where the
retrieved locally similar exemplars are not predicting global
object shape nearly as well. Also the standard deviation of
the error is much lower for the proposed method than for
the two baselines on all data sets. Furthermore, the different
range of object sizes in the datasets is reflected in the error
distribution. For example, the maximum mean error for small
objects does not exceed approximately 1.9cm.

Apart from the object mesh model per retrieved training
data point, we also know their ground truth label in terms of
grasp stability. Therefore, we can additionally filter the set S
such that it only includes object models that are associated
with positive grasp templates. In Fig. 9, we visualize the
mean and standard deviation of the surface error (red) when
computed over this filtered set. Also for the retrieved object
models using the two baselines (blue and green), we only



Fig. 7: Comparison of shape distribution for four test templates formed of retrieved
objects from matching (second row) or non-matching leaf nodes (third row). (First row)
Visualization of the local shape templates at a leaf node in which the query template
ended up in. The query template is always shown in the top left and is framed grey.
Templates with a positive ground truth label are framed green; the others red. (Second
row) Visualization of the shape distribution given the object models associated with
the templates in the matching leaf node (grey). Ground truth object in red. (Third
row) Visualization of the shape distribution given the object models associated with
the templates in a non-matching leaf node. Ground truth object in red. (Fourth row)
Visualization of the local shape templates at a non-matching leaf node. Color coding
as in the First row. When comparing the second to the third row, it becomes apparent
that objects retrieved from matching leaves resemble the ground truth object shape
much better than objects retrieved from non-matching leafs.

include those that have a positive grasp label. As a first
observation, we can see that the mean surface error and
its standard deviation indeed decreased for all objects sets
and all retrieval methods. Especially for the Unsupervised
Clustering baseline it went down significantly. The results
for the proposed method changed only insignificantly. The
Random Leafs baseline performs consistently worse except
for the medium object set.

4) Discussion: On the one hand, the comparison to the
Random Leafs baseline (especially when only retrieving
positive training examples) reveals that local similarity has
a significant contribution to predict global object shape.
Graspability information alone does not provide enough
discrimination to recover this. On the other hand, the com-
parison to the Unsupervised Clustering baseline reveals that
local similarity alone does not provide enough information to
infer global object shape. We have shown that a combination
of local similarity and information of graspability allows to
best recover global object shape from local information.

If a robot can predict global object shape from partial
information only, it can leverage this to improve grasp
and manipulation planning. This is especially useful, if the
object is unknown and stands within a cluttered environment.
We expect that accumulating these predictions from all
local shape templates that are extracted from a point cloud
observation, will help to reinforce some hypotheses and
prune others. Furthermore, hypotheses can also be pruned
by verifying them against the observation of the entire
environment. It could be used in a hypothesis verification

Fig. 10: Global object shape prediction from a real point cloud segment in yellow
that is extracted as shown in Fig. 1. In purple are all the retrieved object models.
The green grippers show the associated grasps. (Left) Bottle (Middle Left) Hammer
(Middle Right) Impact Wrench (Right) Impact Wrench

system similar to Aldoma et al. [30] but without being
restricted to known objects.

E. Example Results on Real Data

We present qualitative results of predicting global object
shape on real point cloud data in Fig. 10. As a first observa-
tion, we can see that the suggested grasps are good although
they may not be task-relevant as for example for the hammer.
This confirms that grasps are generalized across objects that
share similar parts which afford grasps. In these examples,
we can also observe a remaining ambiguity when inferring
global shape from local shape. For example it is not clear
which way the bottle is rotated. Furthermore, some local
shapes are not good at predicting global shape as for example
the fruit fit to the head of the hammer. Regarding the example
of the impact wrench on the right, rather large objects are
fit to it. These could however be filtered out based on back
projecting them into the depth image and cross checking with
the visual evidence for the whole scene.

VI. CONCLUSIONS

We proposed a novel method that enables a robot to
autonomously decide how to grasp an unknown object given
only noisy and partial information that is obtained from
an RGB-D camera. Our method combines a discriminative
model to classify local shape information as either graspable
or not with a retrieval method for predicting global object
properties. We showed how our discriminative model has a
similar performance as the state-of-the-art on this dataset.
Furthermore, we showed how the retrieved training data
points can provide a coherent prediction of global object
shape. Lastly, we demonstrated how the model works on a
few real-world data points although it has been trained on
simulated data.

There are many interesting directions that this idea of
combining discriminative methods with retrieval. For exam-
ple, we can study whether other global object properties can
be predicted from locally similar information. Preliminary
results are promising for predicting the object category.
Furthermore, the information at the leaf nodes can also be
compressed by for example using Gaussian process regres-
sion to predict the global object shape.

Also promising is the accumulation of global shape pre-
diction from all local shape templates. They could be used
to populate the environment and then pruned by checking
with the visual evidence. High-quality proposals for object
segmentation in cluttered environments may be another out-
come of this method.
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(a) Bottles
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(b) Small
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(c) Medium
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(d) Large
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(e) All
Fig. 8: Mean and standard deviation over surface error (see Eq. 10) between retrieved object models and ground truth over the different object sets (bottles, small, medium,
large and all). Red: Object models retrieved from leafs in which the query template ended up. Blue: Random Leafs baseline where object models are retrieved from random
leafs. Green: Unsupervised Clustering with object models retrieved using an unsupervised random tree embedding. The plot on the ’all’ dataset does not contain results on the
unsupervised baseline. However, given the results on the subsets, we expect similar results.
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(c) Medium
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(d) Large

10 20 30 40 50
DLstDnce ThreshRld [cm]

0

2

4

6

8

10

12

5DndRm LeDfs

0DtchLng LeDfs + 6uServLsed

(e) All
Fig. 9: Mean and standard deviation over surface error (see Eq. 10) between retrieved object models and ground truth over the different object sets (bottles, small, medium,
large and all). Different from Fig. 8 only positive grasp templates are selected from the leafs. Red: Object models retrieved from leafs in which the query template ended up.
Blue: Random Leafs baseline where object models are retrieved from random leafs. Green: Unsupervised Clustering with object models retrieved using an unsupervised random
tree embedding. The plot on the ’all’ dataset does not contain results on the unsupervised baseline. However, given the results on the subsets, we expect similar results.

Finally, we want to investigate how the predicted infor-
mation can be exploited by a grasp planner and controller to
finally execute the resulting grasp on a real robot.
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